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Abstract

We prove that any closed and convex surface in the Minkowski 3-space of class
C3 has at least two umbilic points. This shows that the Carathéodory conjecture
for surfaces in the Euclidean 3-space is true for surfaces in the Minkowski 3-space.

1 Introduction

The Carathéodory conjecture states that any smooth closed and convex surface in the
Euclidean 3-space has at least two umbilic points. Various attempts were made to
prove this conjecture (see for example [4] for a survey article and [3] for the latest
results on the problem using the mean curvature flow on the space of oriented lines in
R3).

We prove in this paper that any closed and convex surface in the Minkowski 3-space
of class C3 has at least two umbilic points (Theorem 3.3). For ovaloids, we can even
specify the nature of the umbilic points (Theorem 3.4). We give some preliminaries in
section 2 and prove the main results in section 3.

2 Preliminaries

The Minkowski space (R3
1, 〈, 〉) is the vector space R3 endowed with the pseudo-scalar

product 〈u,v〉 = −u0v0 + u1v1 + u2v2, for any u = (u0, u1, u2) and v = (v0, v1, v2)
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in R3
1. We say that a non-zero vector u ∈ R3

1 is spacelike if 〈u,u〉 > 0, lightlike if
〈u,u〉 = 0 and timelike if 〈u,u〉 < 0. The norm of a vector u ∈ R3

1 is defined by
‖u‖ =

√
|〈u,u〉|. The set of all lightlike vectors form the lightcone

LC∗ = {u ∈ R3
1 \ {0} | 〈u,u〉 = 0}.

The lightcone can be considered as the cone in R3 minus the origin given by

{(u0, u1, u2) ∈ R3 \ {(0, 0, 0)} | − u20 + u21 + u22 = 0}.

A plane Pvc = {u ∈ R3
1 | 〈u,v〉 = c}, for some constant c ∈ R, is called respectively,

spacelike, timelike or lightlike if v is timelike, spacelike or lightlike. Fixing v and
varying c gives a family of parallel planes with Pv0 passing through the origin (i.e.,
is a vector space). The vector v is called the “normal” vector to Pvc . Every non-
zero vector in a spacelike plane Pv0 is spacelike. There are two linearly independent
lightlike vectors in a timelike plane Pv0 and a unique lightlike vector in a lightlike plane
Pv0 . The normal vector v is transverse to Pvc if this plane is spacelike or timelike but
determines the unique lightlike direction in Pv0 if the plane Pvc is lightlike.

Let S be a surface in R3
1 (of class C3). The pseudo-scalar product in R3

1 induces a
metric on S. If S is closed, then this metric must be degenerate at some point on S
(see for example Lemma 3.1). This happens at points p on S where the tangent space
TpS is a lightlike plane. We call the locus of points where the induced metric on S is
degenerate the Locus of Degeneracy and denote it by LD.

Let x : U ⊂ R2 → S be a local parametrisation of S and let

E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉

denote the coefficients of the first fundamental form of S with respect to x. We identify
the LD and its pre-image in U by x. Then the LD (in U) is the zero set of the C2-
function δ(u, v) = (F 2 − EG)(u, v). Therefore, the LD is a closed subset of S. We
observe that the LD of a generic closed surface is a smooth curve, but we do not make
the genericity assumption here. We can have, for instance, a convex surface with an
LD that has interior points.

Pei [6] defined an RP 2-valued Gauss map on S. In x(U), this is simply the map
PN : x(U) → RP 2 which associates to a point p = x(q) the projectivisation of
the vector (xu × xv)(q), where “×” denotes the wedge product in R3

1. Away from
the LD, the RP 2-valued Gauss map can be identified with the de Sitter Gauss map
x(U1) → S2

1 on the Lorentzian part of the surface and with the hyperbolic Gauss
map x(U2) → H2(−1) on its Riemannian part. (Here U1 and U2 are open sets with
U = U1 ∪ U2 ∪ LD.) Both maps are given by N = xu × xv/||xu × xv||. The shape
operator Ap(v) = −dN p(v) is a self-adjoint operator on x(U) \ LD. We denote by

l = −〈Nu,xu〉 = 〈N ,xuu〉,
m = −〈Nu,xv〉 = 〈N ,xuv〉,
n = −〈N v,xv〉 = 〈N ,xvv〉
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the coefficients of the second fundamental form on x(U) \ LD. When Ap has real
eigenvalues, we call them the principal curvatures and their associated eigenvectors
the principal directions of S at p. We observe that there are always two principal
curvatures at points in the Riemannian part of S but this is not true at points in its
Lorentzian part ([5]). The lines of principal curvature, which are the integral curves
of the principal directions, are solutions of the binary quadratic differential equation
(BDE for short)

(Gm− Fn)dv2 + (Gl − En)dvdu+ (Fl − Em)du2 = 0. (1)

The discriminant of the above equation, which is the set points in U \LD where it
determines a unique direction, is denoted the Lightlike Principal Locus (LPL) in [5].
It is the zero set of the function ((Gl − En)2 − 4(Gm− Fn)(Fl − Em))(u, v).

A spacelike umbilic point (resp. timelike umbilic point) is a point in the Riemannian
part (resp. Lorentzian part) of the surface where the coefficients of equation (1)
vanish simultaneously. (The coefficients of a BDE are its coefficients when viewed as
a quadratic form in du and dv.) Spacelike and timelike umbilic points can also be
characterised as the points p where the shape operator Ap is a multiple of the identity
map.

One can extend the lines of principal curvature across the LD as follows ([5]). As
equation (1) is homogeneous in l,m, n, we can multiply these coefficients by ||xu×xv||
and substitute them by

l̄ = 〈xu × xv,xuu〉, m̄ = 〈xu × xv,xuv〉, n̄ = 〈xu × xv,xvv〉.

This substitution does not alter the pair of foliations on x(U)\LD. The new equation
is defined on the LD and defines the same pair of foliations associated to the de Sitter
(resp. hyperbolic) Gauss map on the Lorentzian (resp. Riemannian) part of x(U).
The extended lines of principal curvature are the solution curves of the BDE

(Gm̄− Fn̄)dv2 + (Gl̄ − En̄)dudv + (F l̄ − Em̄)du2 = 0. (2)

We still call the directions determined by equation (2) at points on the LD principal
directions. We do not have a shape operator at points on the LD. For this reason, we
define a lightlike umbilic point as a point on the LD where the coefficients of equation
(2) vanish simultaneously.

We say that a point on S is an umbilic point if it is either a spacelike, timelike or
lightlike umbilic point. Thus, a point p = x(q) is an umbilic point if and only if all
the coefficients of equation (2) vanish at q.

Remark 2.1 The lines of principal curvatures on a generic surface in R3
1 are studied in

[5]. On the Riemannian part of a generic surface, the LPL, when not empty, consists
of isolated points which are spacelike umbilic points. Away from these points, there
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are always two orthogonal spacelike principal directions. On the Lorentzian part of a
generic surface, the LPL, when not empty, is a smooth curve except at isolated points
where it has Morse singularities of node type. The singular points of the LPL are
precisely the timelike umbilic points. The regular points of the LPL consist of points
where the principal directions coincide and become lightlike. There are two principal
directions on one side of the LPL and none on the other. When there are two of them,
they are orthogonal and one is spacelike while the other is timelike.

Equation (2) determines two directions in TpS at most points p on the LD. One of
these directions is the unique lightlike direction in TpS and the other is a spacelike. The
two directions coincide and become the unique lightlike direction in TpS at isolated
points p on the LD. Generic surfaces do not have lightlike umbilic points. The generic
local topological configurations of the lines of principal curvature at points on the LPL
and on the LD are given in [5].

We consider here closed and convex surfaces in R3
1. Convexity is an affine property

so is independent of the metric (Euclidean or Lorentzian) in R3.
We also consider some special convex surfaces. An ovaloid in the Euclidean space

R3 is defined as a surface with everywhere strictly positive Gaussian curvature K. We
do not have the concept of Gaussian curvature of a surface in the Minkowski space
R3

1 at point on the LD. (In fact, for generic surfaces, the Gaussian curvature tends
to infinity as a point on the LD is approached from either the Riemannian or the
Lorentzian part of the surface; see [7].) However we can still define the concept of
ovaloids using the contact of the surface with planes (which is an affine property of
the surface).

Let Pvc = {p ∈ R3 | 〈p,v〉 = c} be a plane in R3
1. The contact of a surface S with

Pvc is measured by the singularities of the height function h : S → R, given by

h(p) = 〈p,v〉.

We say that the contact is of type A+
1 at p ∈ S if p ∈ Pvc and the height function

h has a Morse singularity of index 0 or 2 at p, i.e., h can be written in some local
coordinate system at p in S in the form ±(u2 + v2). For this, it is necessary and
sufficient for the Taylor polynomial of degree 2 of h at p to be a strictly positive or a
strictly negative quadratic form.

We say that a closed and convex surface S is an ovaloid if it has an A+
1 -contact

with its tangent plane TpS at all p ∈ S. An example of an ovaloid in the Minkowski
space R3

1 is (the “Euclidean sphere”)

S2 = {(u0, u1, u2) ∈ R3
1 |u20 + u21 + u22 = 1}.

The surface S2 ⊂ R3
1 has two umbilic points ([5] section 4.4.), so is not a totally

umbilic surface. (See [2] for the study of geodesics on an ellipsoid in R3
1.)
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A surface S is locally convex at p ∈ S if there exists a neighbourhood V of p in S
such that V is contained in one of the closed half-spaces determined by the tangent
plane TpS. A convex surface is of course locally convex. Given a local parametrisation
x : U → S of the surface S and q0 = (u0, v0) ∈ U , the height function h along
the “normal vector” v = (xu × xv)(q0) at q0 can be considered locally as a map
U → R, given by h(u, v) = 〈x(u, v),v〉. The Taylor polynomial of degree 2 of h at
q0 = (u0, v0) ∈ U is given by

1

2

(
huu(q0)(u− u0)2 + 2huv(q0)(u− u0)(v − v0) + hvv(q0)(v − v0)2

)
and a necessary condition for S to be locally convex at p0 = x(q0) is that

(h2uv − huuhvv)(q0) ≤ 0.

The above condition is true at any point on S including points on the LD.

3 The main results

The proof of the main result relies on the structure of the LD and on the directions
determined by equation (2) on this set.

Lemma 3.1 The LD of a closed surface S in R3
1 of class C1 is the union of at least

two disjoint non-empty closed subsets of S.

Proof The LD is the set of points on S where the tangent plane to S is lightlike.
Lightlike planes are those tangent to the lightcone LC∗ and a key observation is that
these planes can be captured by changing the metric on R3.

We change the metric in R3 and consider S ⊂ R3
1 as a surface S̃ in the Euclidean

space R3. Since S̃ is closed, the image of its Gauss map N : S̃ → S2 is the whole
sphere S2.

The unit Euclidean normals to the tangent planes to LC∗ (viewed as a cone in
R3, see §1) trace the two circles u0 = ±1/

√
2 on S2. The LD of S is precisely the

pre-image of the two circles u0 = ±1/
√

2 by the Gauss map N on S̃. Therefore, the
LD consists of at least two disjoint non-empty closed subsets of S. 2

Lemma 3.2 Let S be a closed and convex surface in R3
1 of class C3and x : U → S a

local parametrisation of S.
(1) The singular points of δ = F 2 − EG on the LD are lightlike umbilic points.
(2) The unique lightlike principal direction in TpS at the regular points of δ on the

LD is transverse to the LD.
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Proof If E(q) = 0 or G(q) = 0 at q ∈ U with x(q) ∈ LD, then F (q) = 0. Therefore,
we cannot have E(q) = G(q) = 0 at points on the LD. We assume, without loss of
generality, that G 6= 0 on U .

The lightlike directions at points in x(U) are solutions of the equation

Gdv2 + 2Fdudv + Edu2 = 0,

and the unique lightlike direction on the LD is parallel to Gxu−Fxv. This is a smooth
vector field on x(U), so we can re-parametrise x(U) so that one of the coordinate
curves are the integral curves of this vector field. That is, we can choose a local
parametrisation of S, that we still denote by x, so that the unique lightlike direction
on the LD is along xu. With this parametrisation, that we use in the rest of the proof,
E = F = 0 on the LD.

(1) The function δ is singular on the LD if and only if (−EuG,−EvG) = (0, 0).
The coefficients of equation (2) become (Gm̄,Gl̄, 0) on the LD, and on this set we also
have xu × xv = λxu for some non-zero function λ. Therefore,

l̄ = 〈xu × xv,xuu〉 = λ〈xu,xuu〉 =
1

2
λEu,

and similarly,

m̄ = 〈xu × xv,xuv〉 = λ〈xu,xuv〉 =
1

2
λEv.

Thus, the coefficients of equation (2) at points on the LD are (λEvG, λEuG, 0),
and this is (0, 0, 0) at a point q ∈ LD if and only if the δ is singular at q.

(2) Suppose now that δ is regular on the LD (so the LD is a regular curve). Then
we have either Eu 6= 0 or Ev 6= 0 on this curve. We consider the contact of S with
its tangent plane Tp0S at p0 = x(q0) ∈ LD. The Taylor polynomial of degree 2 of the
height function h(u, v) = 〈x(u, v),xu(q0)〉 along the lightlike “normal vector” xu(q0)
at q0 is given by

1

2

(
huu(q0)(u− u0)2 + 2huv(q0)(u− u0)(v − v0) + hvv(q0)(v − v0)2

)
,

with
huu(q0) = 〈xuu(q0),xu(q0)〉 = 1

2
Eu(q0),

huv(q0) = 〈xuv(q0),xu(q0)〉 = 1
2
Ev(q0),

hvv(q0) = 〈xvv(q0),xu(q0)〉 = (Fv − 1
2
Gu)(q0).

The lightlike direction xu(q0) is tangent to the LD at p0 = x(q0) if and only if
Eu(q0) = 0. But as S is convex, (h2uv − huuhvv)(q0) = 1

4
(E2

v − 2(Fv − 1
2
Gu)Eu)(q0) ≤ 0,

so Eu(q0) = 0 implies Ev(q0) = 0, and consequently the LD is singular. Therefore,
Eu 6= 0 at regular points of δ on the LD, that is, the lightlike principal direction is
transverse to the LD at the regular points of δ on this set. 2
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Theorem 3.3 Let S be a closed and convex surface of class C3 in R3
1. Then S has at

least two umbilic points.

Proof Consider the C3-function f : S → R given by f(p) = p0 for any p =
(p0, p1, p2) ∈ S. It has a global minimum pmin and a global maximum pmax (these
points need not be unique). The tangent planes to S at pmin and pmax are spacelike
(both are given by u0 = 0). Therefore, pmin and pmax belong to the Riemannian part
of S. Suppose that they belong to the same Riemannian connected component R of
S. Let γ : [0, 1] → R be a continuous path in R with γ(0) = pmin and γ(1) = pmax,
and consider the Gauss map N : S̃ → S2 as in the proof of Lemma 3.1. The con-
tinuous curve N ◦ γ satisfies N ◦ γ(0) = (−1, 0, 0) and N ◦ γ(1) = (1, 0, 0), so there
exists t0 ∈ (0, 1) such that N ◦ γ(t0) belongs the equator u0 = 0 on S2. Therefore,
the tangent space to S at γ(t0) is a timelike plane, which is a contradiction as R is
supposed to be Riemannian.

Let R1 (resp. R2) denotes the Riemannian connected component of S which con-
tains pmin (resp. pmax) and let L1 (resp. L2) be its boundary. The sets L1 and L2 are
part of the LD. It follows from the proof of Lemma 3.1 that L1 and L2 are disjoint
sets (L1 is part of the pre-image of the circle u0 = −1/

√
2 by the Gauss map N , and

L2 is part of the pre-image of the circle u0 = 1/
√

2 by N).
We consider local parametrisations of S at points on L1 and L2. If δ = F 2 − EG

is singular on L1 and L2, then the singular points are lightlike umbilic points (Lemma
3.2(1)). As L1 and L2 are disjoint, we get at least two umbilic points on S.

Suppose that δ is regular on L1 (so L1 is a regular curve; it is also a closed curve).
The surface S being closed and convex is homeomorphic to a 2-sphere. Thus R1 is
homeomorphic to a disc. Consider the direction field in R1 given by equation (2) and
which agrees with the unique lightlike direction in TpS for all p ∈ L1. This direction
field is transverse to L1 (Lemma 3.2(2)), so by Poincaré-Hopf theorem it must have
at least one singularity in R1. This singularity is a spacelike umbilic point as R1 is a
Riemannian region. We proceed similarly if δ is regular on L2 to get a second umbilic
point of S. If δ is singular at a point on L2, the singularity is a lightlike umbilic point
and gives a second umbilic point of S. 2

We showed in [5] section 4.4 that (the Euclidean sphere) S2 has exactly two umbilic
points and both of them are spacelike. We have the following general result.

Theorem 3.4 The umbilic points of an ovaloid in R3
1 of class C

3 are all spacelike and
there are at least two of them.

Proof We change the metric in R3 and consider an ovaloid S ⊂ R3
1 as a surface S̃ in

the Euclidean space R3. The fact that the contact of S with its tangent plane (which
is independent of the metric) is A+

1 implies that the Gaussian curvature of S̃ is strictly
positive. By Hadamard’s theorem, the Gauss map N : S̃ → S2 is a diffeomorphism
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([1]). This implies that the LD of S is the union of two regular (non-empty) disjoint
closed curves. These split the surface into three parts, two of them are Riemannian
and one is Lorentzian. By Lemma 3.2(2), the unique lightlike principal direction on
the LD is transverse to the LD. By Poincaré-Hopf theorem, there is at least one
spacelike umbilic point in each Riemannian disc of S.

We now show that there are no timelike umbilic points on S. The timelike umbilic
points occur in the Lorentzian part of the surface, so we can take a local parametrisa-
tion x : U ⊂ R2 → R3

1 where the coordinate curves are lightlike (Theorem 3.1 in [5]).
Then E = G = 0 in U . The equation of the lines of principal curvature simplifies to
ndv2 − ldu2 = 0, so the timelike umbilic points are the solutions of l = n = 0.

Let q0 = (u0, v0) ∈ U and consider the height function h on x(U) along the
unit normal vector N (q0) = (xu × xv/||xu × xv||)(q0). The Taylor polynomial of
h(u, v) = 〈x(u, v),N (q0)〉 at q0 is given by

1

2

(
l(q0)(u− u0)2 + 2m(q0)(u− u0)(v − v0) + n(q0)(v − v0)2

)
,

where l,m, n are the coefficients of the second fundamental form. As S is an ovaloid,
(m2 − nl)(q) < 0 for any q ∈ U and consequently l(q)n(q) 6= 0 at any q ∈ U . This
proves that there are no timelike umbilic points on S. 2
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