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Abstract

The caustic of a smooth surface in the Euclidean 3-space is the envelope of
the normal rays to the surface. It is also the locus of the centres of curvature
(the focal points) of the surface. This is why it is also referred to as the focal
set of the surface. It has Lagrangian singularities and its generic models are
given in [1] (see Figure 2). The aim of this paper is to define the caustic C(M)
of a smooth surface M embedded in the Minkowski 3-space and to study its
geometry. We denote by the LD the locus of points on M where the metric is
degenerate. If M is a closed surface then its LD is not empty. At a point on
the LD the “normal” line to M is lightlike and is tangent to M . Also, the focal
set of M is not defined at points on the LD. We define the caustic of M as the
bifurcation set of the family of distance squared functions on M . Then C(M)
coincides with the focal set of M \ LD and provides an extension of the focal
set to the LD. We study the local behaviour of the metric on C(M).

1 Introduction

Let M be a smooth and orientable surface in the Euclidean 3-space. To a point p ∈M
are associated two focal points p+ (1/κ1(p))N(p) and p+ (1/κ2(p))N(p), where κ1(p)
and κ2(p) are the principal curvatures of M at p and N is a unit normal vector at
p. The focal set of M is the locus of its focal points. The focal set of M coincides
with the caustic generated by its normal lines and is the bifurcation set of the family
of distance squared functions on M . Therefore, by a results in [1], for a generic M
the caustic C(M) is locally diffeomorphic to one of the models in Figure 2. The affine
geometry of the focal set is also of interest and captures some of the extrinsic geometry
of the surface M (see for example [2, 3, 9, 13]).

We consider in this paper surfaces M embedded in the Minkowski 3-space R3
1. The

induced metric ρ on M may be degenerate at some points on M (this is indeed the case
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on any closed surface in R3
1). We label the locus of such points the Locus of Degeneracy

(LD). At a point p ∈ LD, the tangent plane TpM to M is lightlike, so the “normal”
to the surface at p is the unique lightlike direction in TpM . Away from the LD, the
surface admits locally a unit normal vector which is spacelike if ρ is Lorentzian and
timelike if ρ is Riemannian. If x : U ⊂ R2 → R3

1 is a local parametrisation of M
at p /∈ LD, then the shape operator −dN p, where N is the Gauss map, may have
real eigenvalues. When it does we call them the principal curvatures. To these are
associated two focal points which trace the focal set of M . However, N is not well
defined on the LD and the principal curvatures near the LD tend to infinity as the
point tends to the LD. Therefore the focal set is not defined at points on the LD.
In contrast, the caustic C(M) of M is defined even on the LD. The caustic is also
the bifurcation set of the family of distance squared functions on M and C(M \ LD)
coincides with the focal set of M \ LD. Again, by a result in [1], for a generic M the
caustic C(M) is locally diffeomorphic to one of the models in Figure 2. We study in
this paper the behaviour of the induced metric on C(M).

We give in §2 some preliminaries on the geometry of surfaces in the Minkowski
space and a brief review of the lines of principal curvature of a surface as these are
related to its caustic. We study in §3 the behaviour of the induced metric on the
caustic of a Lorentzian surface patch and deal in §4 with a surface patch where the
induced metric has varying signature.

2 Preliminaries

2.1 Surfaces in R3
1

The Minkowski space (R3
1, 〈, 〉) is the vector space R3 endowed with the pseudo-scalar

product 〈u,v〉 = −u0v0 + u1v1 + u2v2, for any u = (u0, u1, u2) and v = (v0, v1, v2) in
R3

1. We say that a vector u ∈ R3
1 is spacelike if 〈u,u〉 > 0, lightlike if 〈u,u〉 = 0 and

timelike if 〈u,u〉 < 0. The norm of a vector u ∈ R3
1 is defined by ‖u‖ =

√
|〈u,u〉|.

We have the following pseudo-spheres in R3
1 with centre p ∈ R3

1 and radius r > 0,

H2(p,−r) = {u ∈ R3
1 | 〈u− p,u− p〉 = −r2},

S2
1(p, r) = {u ∈ R3

1 | 〈u− p,u− p〉 = r2},
LC∗(p) = {u ∈ R3

1 | 〈u− p,u− p〉 = 0}.

We denote by H2(−r) and S2
1(r) the pseudo-spheres centred at the origin in R3

1.
We consider embeddings i : M → R3

1 of a smooth surface M . The set of such
embeddings is endowed with the Whitney C∞-topology. We say that a property is
generic if it is satisfied by a residual set of embeddings of M in R3

1. We shall identify
i(M) with M .

The pseudo-scalar product in R3
1 induces a metric on M which can be degenerate
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at some points on M . We call the locus of such points the Locus of Degeneracy and
denote it by LD.

Let x : U ⊂ R2 → M be a local parametrisation of M . To simplify notation, we
write x(U) = M . Let

E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉

denote the coefficients of the first fundamental form of M with respect to x. The
integral curves of the lightlike directions on M are the solution curves of the binary
quadratic differential equation (BDE)

Edu2 + 2Fdudv +Gdv2 = 0. (1)

We identify the LD and its pre-image in U by x. Then the LD (in U) is given
by F 2 − EG = 0 and is the discriminant curve of the BDE (1) (the discriminant
curve of a BDE is the set of points where the directions it determines coincide). We
assume in this paper that the LD is either empty or is a smooth curve that splits
the surface locally into a Riemannian and a Lorentzian region (i.e., where the induced
metric has signature 2 and 1 respectively). The unique lightlike direction on the LD
is, in general, transverse to the LD. Then the configuration of the lightlike curves is
locally topologically equivalent to Figure 1 left. The unique lightlike direction on the
LD can be tangent to the LD at isolated points. Then the BDE (1) has a singularity,
and we assume that it is (well) folded (see for example [4] for terminology and [12]
for a survey paper on BDEs). The configuration of the lightlike curves at a folded
singularity is locally topologically equivalent to one of the last three cases in Figure 1.
The assumptions on the LD and on the singularities of the BDE (1) are satisfied for
generic embeddings of M in R3

1.

LD

Riemannian

Lorentzian

Figure 1: Stable local topological configurations of the lightlike curves at points on
the LD.

The following special local parametrisations simplify considerably the calculations
and make the algebraic conditions involved easier to interpret geometrically. (The
proof is standard and is omitted.)
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Theorem 2.1 (1) At any point p on the Lorentzian part of M there is a local parametri-
sation x : U → V ⊂ M of a neighbourhood V of p, such that for any p′ ∈ V , the
coordinate curves through p′ are tangent to the lightlike directions. Equivalently, there
exists a local parametrisation with E ≡ 0 and G ≡ 0 on U .

(2) Let p be a point on the LD of a generic surface M . Then there exists a local
parametrisation x : U → V ⊂ M of a neighbourhood V of p, such that for any
p′ = x(q′) ∈ V ∩ LD, the lightlike directions in Tp′M are parallel to xu(q

′), i.e.,
E = F = 0 on the LD.

Pei [10] defined an RP 2-valued Gauss map on M . In x(U), this is simply the map
PN : x(U) → RP 2 which associates to a point p = x(q) the projectivisation of the
vector xu×xv(q), where “×” denotes the wedge product in R3

1. Away from the LD, the
RP 2-valued Gauss map can be identified with the de Sitter Gauss map x(U)→ S2

1(1)
on the Lorentzian part of the surface and with the hyperbolic Gauss map x(U) →
H2(−1) on its Riemannian part. Both maps are given by N = xu × xv/||xu × xv||.
The map Ap(v) = −dN p(v) is a self-adjoint operator on x(U) \ LD. We denote by

l = −〈Nu,xu〉 = 〈N,xuu〉,
m = −〈Nu,xv〉 = 〈N,xuv〉,
n = −〈Nv,xv〉 = 〈N,xvv〉

the coefficients of the second fundamental form on x(U) \ LD. When Ap has real
eigenvalues, we call them the principal curvatures and their associated eigenvectors
the principal directions of M at p. (There are always two principal curvatures on
the Riemannian part of M but this is not true on its Lorentzian part.) The lines
of principal curvature, which are the integral curves of the principal directions, are
solutions of the BDE

(Gm− Fn)dv2 + (Gl − En)dvdu+ (Fl − Em)du2 = 0. (2)

The discriminant of the BDE (2) is denoted the Lightlike Principal Locus (LPL) in
[5, 6].

On the Riemannian part of a generic surface, the LPL consists of isolated points
labelled spacelike umbilic points (these are points where Ap is a multiple of the identity
map). At none spacelike umbilic points, there are always two orthogonal spacelike
principal directions.

On the Lorentzian part of a generic surface, the LPL is either empty or is a
smooth curve except at isolated points where it has Morse singularities of type node.
Such points are labelled timelike umbilic points (these are also points where Ap is
a multiple of the identity map). The LPL consists of points where the principal
directions coincide and become lightlike. There are two principal directions on one
side of the LPL and none on the other. When there are two of them, they are
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orthogonal and one is spacelike while the other is timelike. The configurations of the
lines of principal curvature at points of the LPL are studied in [6].

One can extend the lines of principal curvature across the LD as follows ([6]). As
equation (2) is homogeneous in l,m, n, we can multiply these coefficients by ||xu×xv||
and substitute them by

l̄ = 〈xu × xv,xuu〉, m̄ = 〈xu × xv,xuv〉, n̄ = 〈xu × xv,xvv〉.

This substitution does not alter the pair of foliations on x(U)\LD. The new equation
is defined on the LD and defines the same pair of foliations associated to the de Sitter
(resp. hyperbolic) Gauss map on the Lorentzian (resp. Riemannian) part of x(U).
The extended lines of principal curvature are the solution curves of the BDE

(Gm̄− Fn̄)dv2 + (Gl̄ − En̄)dudv + (F l̄ − Em̄)du2 = 0. (3)

We observe that one of the principal directions on the LD is the unique lightlike
direction and the other is spacelike. The LD and LPL can meet tangentially at
isolated points. These points are exactly the folded singularities of the BDE (1) of the
lightlike foliations ([6]).

2.2 The family of distance squared functions

The family of distance squared functions on M is given by

d2 : M × R3
1 → R

(p,v) 7→ d2(p,v) = 〈p− v, p− v〉.

We denote by d2
v the function on M given by d2

v(p) = d2(p,v). We take a local
parametrisation x : U → R3

1 of M at p = x(q) and write x(U) = M . We denote by

Σ(d2) = {ξ = ((u, v),v) ∈ U × R3
1 | d2

u(ξ) = d2
v(ξ) = 0},

and by

Bif(d2) = {v ∈ R3
1 | ∃((u, v),v) ∈ Σ(d2) such that rank(Hess(d2

v)) < 2 at (u, v)}.

The set Bif(d2) is the local stratum of the bifurcation set of the family d2, i.e.,
it is the set of points v ∈ R3

1 for which there exists (u, v) ∈ U such that d2
v has a

degenerate local singularity at (u, v). The mapping (d2
u, d

2
v) is not degenerate at any

point in U × R3
1. Indeed, its Jacobian matrix, which is a multiple of(

〈xuu,x− v〉+ 〈xu,xu〉 〈xuv,x− v〉+ 〈xu,xv〉 x0
u −x1

u −x2
u

〈xuv,x− v〉+ 〈xu,xv〉 〈xvv,x− v〉+ 〈xv,xv〉 x0
v −x1

v −x2
v

)
,
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has rank 2 at any point in U×R3
1 as xu = (x0

u,x
1
u,x

2
u) and xv = (x0

v,x
1
v,x

2
v) are linearly

independent. Therefore the family d2 is a generating family (see [1] for terminology)
and Σ(d2) is a smooth 3-dimensional submanifold of U ×R3

1. We write v = (v0, v1, v2)
and denote by T ∗R3

1 the cotangent bundle of R3
1 endowed with the canonical symplectic

structure (which is metric independent). Then the map L(d2) : Σ(d2) → T ∗R3
1, given

by

L(d2)((u, v),v) = (v, (
∂d2

∂v0

((u, v),v),
∂d2

∂v1

((u, v),v),
∂d2

∂v2

((u, v),v))),

is a Lagrangian immersion, so the map π ◦L(d2) : Σ(d2)→ R3
1 given by ((u, v),v)→ v

is a Lagrangian map. The caustic C(M) of M , which is the set of critical values of
π ◦L(d2), is precisely Bif(d2) (see [1] for details). It follows that for a generic surface
M , the caustic C(M) is locally diffeomorphic to one of the surfaces in Figure 2.

A2 A3 A4 D4
+D4

-

Figure 2: Generic singularities of 2-dimensional caustics.

The local models of the caustic at v corresponding to p ∈ M on a generic M ,
depend on the R-singularity type of the distance squared function d2

v at p, where R is
the right group of local diffeomorphisms in the source that fix p. For a generic M , d2

v
has local singularities of type A±1 , A2, A

±
3 , A4, D

±
4 which are modelled by the following

functions (together with a multiplication of these functions by −1)

(A±1 ) : u2 ± v2, (A2) : u2 + v3, (A±3 ) : u2 ± v4, (A4) : u2 + v5, (D±4 ) : u2v ± v3.

The caustic is the empty set at an A±1 -singularity of d2
v. At the remaining generic

singularities, it is diffeomorphic to a surface in Figure 2 labelled by the singularity
type of d2

v at p.
We define the ridge on M as the closure of the set of points on M where d2

v (for
some v ∈ R3

1) has an A3-singularity. It is the locus of points on M corresponding to
the singular points on the caustic. The image of the ridge on the caustic is labelled
the rib curve. (The notation follows that of Porteous [11] for surfaces in the Euclidean
3-space.)

We can obtain a parametrisation of the caustic, or its defining equations, as follows.
We have d2

v(u, v) = 〈x(u, v)− v,x(u, v)− v〉, so d2
v is singular at q ∈ U if and only if
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〈x−v,xu〉 = 〈x−v,xv〉 = 0 at q, if and only if x−v is parallel to xu×xv at q. That
is, x− v = µxu × xv for some scalar µ. It is important to observe that this condition
includes the case when p is on the LD where xu×xv is parallel to the unique lightlike
direction at p.

The singularity of d2
v at q is degenerate if and only if x(q)− v = µxu × xv(q) for

some scalar µ and ((d2
v)2

uv − (d2
v)uu(d

2
v)vv) (q) = 0. We have

1
2
(d2

v)uu = 〈xu,xu〉+ 〈x− v,xuu〉 = E + 〈x− v,xuu〉,
1
2
(d2

v)uv = 〈xu,xv〉+ 〈x− v,xuv〉 = F + 〈x− v,xuv〉,
1
2
(d2

v)vv = 〈xv,xv〉+ 〈x− v,xvv〉 = G+ 〈x− v,xvv〉.

At q, x−v = µxu×xv, so 〈x−v,xuu〉 = µl̄, 〈x−v,xuv〉 = µm̄ and 〈x−v,xvv〉 =
µn̄, where l̄, m̄, n̄ are defined in §2.1. Then

1
2
(d2

v)uu = E + µl̄,
1
2
(d2

v)uv = F + µm̄,
1
2
(d2

v)vv = G+ µn̄.

Therefore the singularity of d2
v is degenerate if and only if x− v = µxu × xv and

(F 2 − EG)− µ(n̄E − 2m̄F + l̄G) + µ2(m̄2 − l̄n̄) = 0. (4)

Then the caustic is given by

C(M) = {x(u, v)− µxu × xv(u, v) | (u, v) ∈ U and µ is a solution of equation (4)}.

Away from the LD we can write x − v = λN , where λ = µ||xu × xv|| and
N = xu×xv/||xu×xv|| is a unit normal vector. Then a singularity of d2

v is degenerate
if and only if x− v = λN and

(F 2 − EG)− λ(nE − 2mF + lG) + λ2(m2 − ln) = 0. (5)

The solutions of equation (5) in λ are equal to minus the radii of curvatures.
Therefore the caustic C(M \ LD) is the focal set of M \ LD.

We study in the subsequent sections the induced metric on the caustic C(M).
When C(M) is a smooth surface, its normal vector is parallel to one of the principal
direction of M (Proposition 3.2). Therefore when the metric on M is Riemannian
the caustic is Lorentzian. We consider separately the cases where the metric on M is
Lorentzian and when it is degenerate.

In the figures, the Riemannian part of C(M) is in white and its Lorentzian part is
in grey.

Remark 2.2 Following [7], the contact between two submanifolds φ(U), where φ :
U ⊂ Rn → Rk is an immersion and ψ−1(0), where ψ : Rk → Rp is a submersion, at
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φ(u0) ∈ ψ−1(0) is measured by the singularities of the map-germ ψ◦φ : Rn, u0 → Rp, 0.
In our case, the singularities of d2

v at p measure the contact of M at p with the pseudo-
sphere centred at v and of radius ||p − v||. The family d2 is generic, so the contact
makes sense even when the fibre of d2

v is singular, i.e., is a lightcone (see [8]). When
M is a Riemannian (resp. Lorentzian) patch, it can have singular contact (i.e., d2

v is
singular) only with pseudo-spheres H2(p,−r) (resp. S2(p, r)). At points on the LD,
the contact can be singular only when the pseudo sphere is a lightcone.

3 Lorentzian surface patches

We suppose that x(U) is a Lorentzian surface patch and write M = x(U). The
vector xu × xv is spacelike at all points in U , so we can use the unit normal vector
N = xu × xv/||xu × xv||.

Let p = x(q) and suppose that p is not on the lightlike principal locus (LPL).
Then to p are associated either two distinct points or no points on the caustic C(M)
(which coincides with the focal set in this case) and this depends on whether there are
two or no principal directions at p. When there are two principal directions, one is
spacelike and the other is timelike, so one sheet of C(M) is Lorentzian and the other is
Riemannian. We analyse the situation on the LPL, and suppose that p = x(q) ∈ LPL
and q = (0, 0) ∈ U . We define the map φ : U × R→ R by

φ(u, v, λ) = (F 2 − EG)(u, v)− λ(nE − 2mF + lG)(u, v) + λ2(m2 − ln)(u, v).

In all the paper, we assume that (m2 − ln)(q) 6= 0, that is, p is not a parabolic
point.

Theorem 3.1 Let M be a generic Lorentzian surface patch in R3
1 and p a point on

the LPL of M .
(1) The distance squared function has an A2-singularity at p if and only if p is

neither a folded singularity of the lines of principal curvature nor a timelike umbilic
point. At folded singularities of the lines of principal curvature the singularity is of
type A3 and at a timelike umbilic point it is of type D±4 .

(2) The surface φ−1(0) is smooth in a neighbourhood of (q, λ) if and only if p =
x(q) is not a timelike umbilic point. When p is a timelike umbilic point, φ−1(0) is
diffeomorphic to a cone.

(3) The projection π : φ−1(0)→ U is a fold map at (q, λ) when p = x(q) ∈ LPL is
not a timelike umbilic point. The discriminant of π (i.e., the image of the critical set
of π) is the LPL.

Proof (1) We take a local parametrisation of M as in Theorem 2.1(1). The LPL
is then given by ln = 0 and the timelike umbilic points occur when l = n = 0. If
p ∈ LPL is not a timelike umbilic point we suppose, without loss of generality, that
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l = 0 and n 6= 0 (we also have m 6= 0). Then the unique principal direction on
the LPL is parallel to xu, and equation (5) has a double root given by λ = −F/m.
We have (d2

v)uu/2 = λl, (d2
v)uv/2 = F + λm and (d2

v)vv/2 = λn. Therefore on the
LPL, (d2

v)uu = (d2
v)uv = 0 and (d2

v)vv 6= 0, so d2
v has singularities of type Ak. The

singularity is of type A2 at q if and only if (d2
v)uuu = λlu 6= 0 at q, if and only if the

unique principal direction at q is not tangent to the LPL, if and only if p = x(q) is
not a folded singularity of the lines of principal curvature BDE. When lu = 0, the
singularity is generically of type A3.

At a timelike umbilic point, we have (d2
v)uu = (d2

v)uv = (d2
v)vv = 0 and the

singularity is generically of type D±4 .

(2) The expression for φ in a local parametrisation with E = G = 0 is

φ = (F + λm)2 − λ2nl,

where F, l,m, n are evaluated at (u, v). On the LPL, F +λm = 0 and m 6= 0. We can
make a change of variable and write φ = ξ2−nl(ξ−F )2/m2. This is a regular function
at (q, 0) if and only if l(q) 6= 0 or n(q) = 0, i.e., if and only if p = x(q) is not a timelike
umbilic point. At a timelike umbilic point φ has generically a Morse singularity and
is equivalent, by smooth changes of coordinates in the source, to ξ2 − (±u2 ± v2).

(3) The result follows from the fact that φλ = 0 and φλλ 6= 0 at the points in
consideration. 2

Proposition 3.2 The normal to the caustic C(M) at a smooth point v is parallel to
the principal direction corresponding to the principal curvature which determines v.

Proof We can assume, without loss of generality, that φv 6= 0 and parametrise
locally the surface S = φ−1(0) by (u, v(u, λ), λ). Then the caustic is parametrised
locally by

ψ(u, λ) = x(u, v(u, λ))− λN (u, v(u, λ)).

We have
ψu = xu + vuxv − λ(Nu + vuN v),
ψλ = vλxv −N − λvλN v.

As Nu and N v are in TpM , it follows that the caustic is singular if and only if ψu = 0.
The matrix of the shape operator −dN p with respect to the basis {xu,xv} is

− 1

F 2 − EG

(
G −F
−F E

)(
l m
m n

)
,

so

Nu = −Fm−Gl
F 2 − EG

xu −
Fl − Em
F 2 − EG

xv

N v = −Fn−Gm
F 2 − EG

xu −
Fm− En
F 2 − EG

xv.
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Therefore

ψu = (1 + λ
Fm−Gl
F 2 − EG

+ λvu
Fn−Gm
F 2 − EG

)xu + (λ
F l − Em
F 2 − EG

+ vu(1 + λ
Fm− En
F 2 − EG

))xv

and

ψλ = λvλ
Fn−Gm
F 2 − EG

xu + vλ(1 + λ
Fm− En
F 2 − EG

)xv −N .

We write ψu = axu + bxv and ψλ = cxu + dxv −N with a, b, c, d as above, then

ψu × ψλ = (ad− bc)xu × xv − axu ×N − bxv ×N .

We have, after simplification,

ad− bc =
vλ

F 2 − EG
(
(F 2 − EG)− λ(nE − 2mF + lG) + λ2(m2 − ln)

)
and this is zero as λ is a solution of equation (5). Now,

xu ×N = 1
||xu×xv ||xu × (xu × xv)

= 1
||xu×xv ||(〈xu,xu〉xv − 〈xv,xu〉xu)

= 1
||xu×xv ||(Exv − Fxu).

Similarly,

xv ×N =
1

||xu × xv||
(Fxv −Gxu).

It follows that

ψu × ψλ =
1

||xu × xv||
((aF + bG)xu − (aE + bF )xv) .

The result follows by showing that equation (2) is satisfied for du = aF + bG and
dv = −(aE + bF ). 2

Theorem 3.3 Let M be a generic Lorentzian surface patch in R3
1 and p ∈ LPL but

is not a timelike umbilic point.
(1) Suppose that p is not a folded singularity of the lines of principal curvature.

Then there is locally one sheet of the caustic C(M) which is a smooth surface at the
point corresponding to p. The induced metric on C(M) is degenerate on the image of
the LPL on M , which we denote by the LDC (the locus of degeneracy of the metric
on the caustic). The LDC is a smooth curve that splits C(M) into a Riemannian and
a Lorentzian region (Figure 3, left).

(2) Suppose that p is a folded singularity of the lines of principal curvature. The
LPL and the ridge curve meet tangentially at p. The caustic is a cuspidal-edge and
each of its smooth components contains part of the LDC (Figure 3, right).
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LDC LDC

Figure 3: The metric structure on the caustic at general points on the LPL (left) and
at a folded singularity of the lines of principal curvature (right).

Proof The results on the differentiable structure of the caustic are deduced from
results on 2-dimensional caustics ([1]). We proceed as follows to obtain information
about the positions of the relevant curves.

Statement (1) follows form Proposition 3.2. The surface S = φ−1(0) is a double
cover of the set of points on M where there are two principal directions. As the
normal to C(M) is parallel to a principal direction, one cover of S is mapped to the
Riemannian part of C(M) and the other to its Lorentzian part. (Recall that when
there are two principal directions one is spacelike and the other is timelike [5, 6].) As
the principal direction is lightlike at points on the LPL, it follows that the induced
metric on C(M) is degenerate at points on the LDC.

(2) We can assume, without loss of generality, that φv 6= 0 and parametrise locally
the surface S by (u, v(u, λ), λ). Using the notation in the proof of Proposition 3.2, the
caustic is singular if and only if the coordinates of ψu in the basis {xu,xv} vanish.
As λ satisfies equation (5), both coordinates vanish if and only if one of them vanish.
Therefore the ridge curve is given by eliminating λ from the following system{

(F 2 − EG)− λ(nE − 2mF + lG) + λ2(m2 − ln) = 0,
F 2 − EG+ λ(Fm−Gl) + λvu(Fn−Gm) = 0.

(6)

We take a local parametrisation of M as in Theorem 2.1(2) (i.e., with E = G =
0) and analyse the lifts of the ridge curve and of the LPL on the surface S. The
surface S is parametrised by (u, v(u, λ), λ) and the lift of the LPL is parametrised
by (u,w(u),−F (u,w(u))/m(u,w(u))), for some germ of a smooth function w which
satisfies w′(u) = 0 at the folded singularity of the lines of principal curvature (i.e., at a
point on the LPL which is also points on the ridge curve). Then the tangent direction
to the lift of the LPL at such points is parallel to (1, 0,−(Fum− Fmu)/m

2).
Denote by H the left hand side of the second equation in the system (6), the left

hand side of the first equation being φ. The tangent to the ridge is orthogonal to the
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gradients vectors ∇φ and ∇H. At the point of interest on the LPL, and with the
above setting, φ = φλ = φu = 0. Hence the tangent to the lift of the ridge curve to
the surface S is parallel to (φvHλ, 0,−φvHu). The result follows from the fact that the
two vectors (1, 0,−(Fum−Fmu)/m

2) and (φvHλ, 0,−φvHu) are transverse for generic
surfaces and their projections to the (u, v)-parameter space are parallel vectors. 2

We deal now with the case when p is a timelike umbilic point. Then the LPL has
a Morse singularity of type node at p.

Lemma 3.4 Let p be a timelike umbilic point of a generic Lorentzian surface patch
M in R3

1. The image of the LPL on the caustic is the union of two smooth curves
meeting tangentially at the image of the timelike umbilic point.

Proof We take a local parametrisation as in Theorem 2.1(2) (i.e., with E = G = 0),
so the LPL is given by ln = 0 and the double root of equation (5) on this set is given
by λ = −F/m. We write α1(t) = (u1(t), v1(t)) (resp. α2(t) = (u2(t), v2(t))) for a local
parametrisation of the curve l = 0 (resp. n = 0). Then the image of the LPL on the
caustic is parametrised by

βi(t) = (x +
F

m
N )(αi(t)), i = 1, 2.

It follows that

β′i = −v
′
in

m
xu −

u′il

m
xv + (

F

m
)′N ,

so at the timelike umbilic point β′1 = β′2 = ( F
m

)′N , and this is generically a non-zero
vector. 2

Theorem 3.5 Let M be a generic Lorentzian surface patch in R3
1 and p a timelike

umbilic point on M . There are four possible generic configurations for the metric
structure on the caustic at a D+

4 (Figure 4) and two at a D−4 (Figure 5). These are
completely determined by the 3-jet of a parametrisation of M .

Proof We take here a local parametrisation of the surface in Monge form (x, y) 7→
(x, y, f(x, y)) with the origin mapped to the timelike umbilic point. We write the 2-jet
of f in the form a0(x2 − y2). Under the genericity condition, we can suppose that
the roots of the cubic part of f are not lightlike. We suppose that one of the roots is
spacelike (the case when the root is timelike follows similarly) and make Lorentzian
changes of coordinates so that the 3-jet of f is written in the form

j3f = a0(x2 − y2) + αx(x2 + axy + by2).

12



Figure 4: The metric structure on the caustic at a D+
4 -singularity of d2

v (the LDC is
the thick curve).

Figure 5: The metric structure on the caustic at a D−4 -singularity of d2
v (the LDC is

the thick curve).
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The D+
4 -case

The cubic part of f has one root, so a2 − 4b < 0. If we write v = (v0, v1, v2), then the
family of distance squared functions d2, which we denote here by D, is given by

D = −(x− v0)2 + (y − v1)2 + (f(x, y)− v2)2.

The function germ Dv = D(−,v) has a singularity at the origin if and only if
v = (0, 0,− 1

2a0
) and the singularity is of type D+

4 . Consider the set

Ω = {ξ ∈ R2 × R3, ((0, 0), (0, 0,− 1

2a0

)) |Dx = Dy = D2
xy −DxxDyy = 0 at ξ}.

Its projection to R3 gives the caustic of M . The equation D2
xy −DxxDyy = 0 involves

only x, y and v2 and determines a cone C in the (x, y, v2)-space. A parametrisation of
this cone yields a parametrisation of Ω and of the caustic C(M).

For (x0, y0, v0, v1, v2) ∈ Ω, the quadratic part of the Taylor expansion of Dv at
(x0, y0) is a perfect square L2. The point (x0, y0, f(x0, y0)) is on the ridge curve if and
only if the cubic part of Dv divides L, if and only if

−DxxxD
3
xy + 3DxxyD

2
xyDxx − 3DxyyDxyD

2
xx +DyyyD

3
xx = 0

at (x0, y0, v0, v1, v2). We can now obtain the 1-jets of the parametrisations of the
relevant curves. The 1-jet of the ridge curve (in the (x, y)-plane) is given by y = −a

b
x

and those of the LPL curves by

y1 = 2a−b−3
a−2b

x,

y2 = −2a+b+3
a+2b

x.

The 1-jet of the lift of the ridge to the cone C is given by (x,−a
b
x,− 1

2a0
− αb

2a2
0
x) and

those of the lifts of the LPL curves are, respectively,

(x, y1,− 1
2a0

+ α(a2−ab+b2−3b)

2(a−2b)a2
0

x)

(x, y2,− 1
2a0
− α(a2+ab+b2−3b)

2(a+2b)a2
0

x).

The 1-jet of the rib (the image of the ridge on the caustic) is (0, 0,− 1
2a0
− αb

2a2
0
x),

and the 1-jets of the images of the LPL curves on the caustic are, respectively,

(0, 0,− 1
2a0

+ α(a2−ab+b2−3b)

(a−2b)a2
0

x)

(0, 0,− 1
2a0
− α(a2+ab+b2−3b)

(a+2b)a2
0

x).

The caustic has two sheets at a D+
4 (Figure 4) (each sheet is the image of a con-

nected component of the cone C \ {(0, 0,− 1
2a0

)}). We consider the sheet where part
of the the rib curve parametrised by x ≥ 0 lives. The other sheet has symmetrical
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properties. This part of the rib curve is below the plane v2 = − 1
2a0

. We seek the

positions of the images of the LPL with respect to the plane v2 = − 1
2a0

. These are

determined by the signs of α(a2−ab+b2−3b)

(a−2b)a2
0

and −α(a2+ab+b2−3b)

(a+2b)a2
0

. We set α = 1 so that the

sign is completely determined by (a, b). We obtain a partition of the set a2 − 4b > 0
into regions where the configuration of the caustic is constant. The configurations are
as shown in Figure 4.

In order to distinguish between the first two cases in Figure 4 we consider the curve
v2 = − 1

2a0
on the caustic. The two cases are distinguished by the relative position of

the rib and of the images of the LPL with respect to this curve. This is determined
by the relative position of the lifts of the ridge curve and of the LPL curves on C
with respect to the pre-image of the curve v2 = − 1

2a0
on C. A calculation shows that

the relative position of the above curves is determined by the sign of (a− 2b)(a+ 2b)
(negative for the first configuration in Figure 4 and positive for the second).

The D−4 -case
We follow the same setting as for the D+

4 -case and take α = 1. The 1-jets of the LPL
curves, of their lift on the cone C and of their images on the caustic are as for the
D+

4 -case. We have three ridge curves in this case and their 1-jets are given by

yr1 = −a
b
x,

yr2 = − 1
2(a−1)b2

(a3 − ab2 + 5ab+ (a2 − 3b− b2)
√
a2 − 4b )x,

yr3 = − 1
2(a−1)b2

(a3 + ab2 − 5ab+ (a2 − 3b− b2)
√
a2 − 4b )x.

The 1-jets of the lifts of the ridge curves to the cone C are given by

(x, yr1 ,− 1
2a0
− b

2a2
0
x),

(x, yr2 ,− 1
2a0
− (a2−4b)

2a2
0(b−1)

x),

(x, yr3 ,− 1
2a0
− (a2−4b)

2a2
0(b−1)

x).

There are two possible configurations for the metric structure on the caustic (Figure
5) and these are determined by the relative position of the lifts of the ridge curves
and of the LPL on the cone C. The position of these curves on C is completely
determined by a and b. There is a partition of the region a2 − 4b > 0 given by the
connected components of the complement of an algebraic curve into regions where
each case occur. The algebraic curve has a lengthy expression to reproduce here. If
we take for example (a, b) = (0,−2) we get the configuration in Figure 5 left, and for
(a, b) = (−3,−1) we get the configuration in Figure 5 right. 2

4 Surfaces with a degenerate metric

We start by determining the type of the singularities of d2
v at points on the LD. This

will determine the structure, up to diffeomorphism, of the caustic.
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Theorem 4.1 Suppose that p is a point on the locus of degeneracy (the LD) of the
induced metric on M . If p is not a folded singular point of the lightlike curves, there
are two distinct light cones that have degenerate contact with the surface at p. One of
these is centred at p and it has an A2-contact with M at p. The other is centred away
from p and has an A2-contact with M at p, except maybe at isolated points on the LD
where the contact becomes of type A3. At folded singularities of the lightlike curves,
the light cone centred at p is the unique pseudo sphere that has a degenerate contact
with M at p and the contact is generically of type A3.

Proof Let x be a local parametrisation of M with p = x(0, 0) ∈ LD. The origin is a
degenerate singularities of d2

v if and only of equation (4) is satisfied. As F 2−EG = 0
at p, equation (4) has two solutions

µ1 = 0, µ2 =
n̄E − 2m̄F + l̄G

m̄2 − l̄n̄
.

At µ = µ1, v = p and (d2
v)uu = 2E, (d2

v)uv = 2F , (d2
v)vv = 2G. Generically, one

of the coefficients of the first fundamental form is not zero at p, so the singularity of
d2
v at the origin is of type Ak≥2. As v = p, the pseudo sphere that has this degenerate

contact with M is the set of points q with 〈q − v, q − v〉 = 〈p− v, p− v〉 = 0. This is
the light cone LC∗(p) centred at p.

We have, at the origin,

(d2
v)uuu = 3Eu,

(d2
v)uuv = Ev + 2Fu,

(d2
v)uvv = Gu + 2Fv,

(d2
v)vvv = 3Gv.

The singularity of d2
v is of type A2 unless the cubic part of d2

v divides L, where
L2 = (Eu2 + 2Fuv+Gv2)/2 is the quadratic part of d2

v. We can take L = −Gu+Fv.
Let

C(u, v) =
1

6

(
(d2

v)uuuu
3 + 3(d2

v)uuvu
2v + 3(d2

v)uvvuv
2 + (d2

v)vvvv
3
)

denote the cubic part of d2
v at the origin. Then the singularity is of type A2 if and

only if C(−G,F ) 6= 0, if and only if

EuG
2 − FG(Ev + 2Fu) + EG(Gu + 2Fv)− EFGv 6= 0.

The above inequality is equivalent to

−G(F 2 − EG)u + F (F 2 − EG)v 6= 0,

which means that the unique lightlike direction −Gxu+Fxv on the LD is not tangent
to the LD, or equivalently, p is not a folded singularity of the lightlike BDE. At folded
singularities of the lightlike BDE we have generically a singularity of type A3.
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The condition C(−G,F ) = 0 is equivalent to µ2 = µ1 = 0. (This can be seen by
setting E = F = 0 on the LD. Then C(−G,F ) = 0 if and only if l̄ = Eu = 0, if and
only if µ2 = 0 = µ1 = 0.)

When p is not a folded singularity of the lightlike BDE, µ2 6= 0, and d2
v with

v = p + µ2xu × xv has a singularity of type A2 at general points on the LD. The
pseudo sphere that has this degenerate contact with M at p is the set of points q with
〈q − v, q − v〉 = 〈p− v, p− v〉 = µ2

2 〈xu × xv,xu × xv〉 = 0, which is the light cone
LC∗(v) centred at v. The singularity of d2

v at p can become of type A3 (when the
cubic part of d2

v divides L, L2 being its quadratic part) at isolated points on the LD.
(At such points, the ridge intersects transversally the LD and is transverse to both
principal directions.) 2

We consider now the behaviour of the metric on the caustic at points on the LD
and deal separately with the cases where p is or is not a folded singular point of the
lightlike curves.

Theorem 4.2 Suppose that p is on the locus of degeneracy of the induced metric on
M but is not a folded singular point of the lightlike curves. Then the caustic has locally
two sheets C1(M) and C2(M).

(1) The sheet C1(M) is a smooth surface tangent to M along the LD. The LD on
M is also the locus of degeneracy of the induced metric on C1(M) and splits C1(M)
into a Riemannian part and a Lorentzian part.

(2) The sheet C2(M) is either a smooth surface or a cuspidal-edge, and is Lorentzian
at its regular points. The image of the LD on C2(M) is a lightlike curve.

Proof (1) We follow the notation in the proof of Theorem 4.1. Denote by C1(M)
the caustic associated to the value µ1 = 0 at p. The roots of the quadratic equation
(4) in µ are distinct, so its discriminant function is strictly positive. Therefore there
exists a smooth function µ(u, v), with µ(u, v) = 0 on the LD near p, which solves
equation (4) .

A parametrisation of C1(M) is given by v(u, v) = x(u, v) − µ(u, v)xu × xv(u, v).
It follows that the LD is also a curve on C1(M). We have

vu = xu − µuxu × xv − µ(xu × xv)u
vv = xv − µvxu × xv − µ(xu × xv)v

At p = x(u, v) ∈ LD, xu × xv ∈ TpM which implies that vu and vv are also in TpM .
That means that C1(M) and M are tangential along the LD and that the LD is also
the locus of degeneracy of the induced metric on C1(M).

We take a local parametrisation of M with E = F = 0 on the LD. The generic
assumption on the LD (given by F 2 − EG = 0) to be a smooth curve implies that
Eu 6= 0 or Ev 6= 0 on the LD. We assume, without loss of generality, that Eu 6= 0.
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The coefficients Ẽ, F̃ , G̃ of the first fundamental form of C1(M) are equal to those
of M on the LD. Let δ̃ = F̃ 2 − ẼG̃. To prove that the LD on C1(M) splits this
surface into a Riemannian and a Lorentzian part, we show that δ̃ changes sign on the
LD. For this, it is enough to show that δ̃u 6= 0. As δ̃u = −ẼuG on the LD, we show
that Ẽu 6= 0.

The vector xu is the unique lightlike direction in TpM at p ∈ LD, therefore there
exists a smooth function α(t) such that

xu × xv = αxu

on the LD. We have l̄ = 〈xu × xv,xuu〉, so on the LD, l̄ = 〈αxu,xuu〉 = 1
2
αEu, and

therefore

α =
2l̄

Eu
.

Differentiating equation (4) yields (on the LD)

µu = −Eu
l̄
.

It follows from the identity 〈xu,xu×xv〉 ≡ 0 that 〈xu, (xu×xv)u〉 = −〈xuu,xu×xv〉.
In particular, 〈xu, (xu × xv)u〉 = −α〈xuu,xu〉 on the LD.

Now, on the LD,
vu = (1− µuα)xu = 3xu

and
vuu = xuu − 2µu(xu × xv)u − µuuxu × xv

= xuu − 2µu(xu × xv)u − µuuαxu.

Therefore, on the LD,

1
2
Ẽu = 〈vuu,vu〉

= 〈xuu − 2µu(xu × xv)u − µuuαxu, 3xu〉
= 3 (〈xuu,xu〉 − 2µu〈(xu × xv)u,xu〉)
= 3(1 + 2µuα)〈xuu,xu〉
= −9

2
Eu 6= 0.

(2) The sheet C2(M) of the caustic is associated to the non-zero solution of equation
(4). It is not difficult to show that the normal to C2(M) at its smooth points is parallel
to the spacelike principal direction −m̄xu + l̄xv, so C2(M) is a Lorentzian surface at
its smooth points. (The result on the smooth model of C2(M) follows from Theorem
4.1.)

To simplify the calculations, we take a local parametrisation as in Theorem 2.1(2).
We suppose that l̄ 6= 0 so that the solution

µ2 =
l̄G

m̄2 − l̄n̄
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of equation (4) is not zero at p. Here too the caustic is parametrised by v(u, v) =
x(u, v) − µ(u, v)xu × xv(u, v) for some smooth function µ with µ = µ2 on the LD.
The image of the LD on C2(M) is then parametrised by

γ(t) = (x− µxu × xv)(u(t), v(t)),

where (u(t), v(t)) is a local parametrisation of the LD (in U). We simplify notation by
dropping the coordinates (u(t), v(t)) of points on the LD. We can suppose (u′, v′) =
(−Ev, Eu) as this is a non-zero tangent vector to the LD. We seek to prove that
〈γ′, γ′〉 = 0. For this we need some preliminary results, where differentiation is carried
out along the LD with respect to the parameter t.

We have E = 〈xu,xu〉 = 0 on the LD, so on this curve

〈xu,−Evxuu + Euxuv〉 = 0. (7)

From the proof of Theorem 4.2 (1), there exists a smooth function α(t) such that
xu × xv = αxu on the LD. Therefore, on the LD,

l̄ = α〈xu,xuu〉, m̄ = α〈xu,xuv〉, n̄ = α〈xu,xvv〉.

Differentiating both sides of the equality xu × xv = αxu, we get

(−Evxuu + Euxuv)× xv + xu × (−Evxuv + Euxvv) = α′xu + α(−Evxuu + Euxuv).

Taking the pseudo scalar product of both sides of the above equality with xu and
using (7) yield

〈(−Evxuu + Euxuv)× xv,xu〉 = α〈−Evxuu + Euxuv,xu〉
= 0.

It follows that −Ev〈xuu × xv,xu〉+ Eu〈xuv × xv,xu〉 = 0 on the LD, that is,

−Ev l̄ + Eum̄ = 0. (8)

We have also on the LD, F = 〈xu,xv〉 = 0. We get by differentiating along this
curve

〈−Evxuu + Euxuv,xv〉 = −〈xu,−Evxuv + Euxvv〉 = − 1

α
(−Evm̄+ Eun̄). (9)

It follows from (7) that −Evxuu + Euxuv ∈ TpM (xu is a normal lightlike vector
to TpM). Hence, −Evxuu + Euxuv = axu + bxv, for some scalar a and b. Then,
from (9), 〈−Evxuu + Euxuv,xv〉 = − 1

α
(−Evm̄ + Eun̄) = bG, and from this we get

b = −(−Evm̄+ Eun̄)/(αG) and

〈−Evxuu + Euxuv,−Evxuu + Euxuv〉 = b2G =
(−Evm̄+ Eun̄)2

α2G
. (10)
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Now, differentiating γ = x− (µα)xu, we get

γ′ = −(Ev + (µα)′)xu + Euxv − (µα)(−Evxuu + Euxuv).

Therefore,

〈γ′, γ′〉 = E2
uG+ 2µEu(−Evm̄+ Eun̄) + µ2

G
(−Evm̄+ Eun̄)2 (using (7), (9), (10))

= E2
uG− 2µEu(Evm̄− Eun̄) + µ2

G
(Evm̄− Eun̄)2

= 1
G

(EuG− µ(Evm̄− Eun̄))2

= E2
u

G
(G− µ(Ev

Eu
m̄− n̄))2

= E2
u

G
(G− µ( m̄

2

l̄
− n̄))2(using (8))

= (m̄2−l̄n̄)2E2
u

l̄G
( l̄G
m̄2−l̄n̄ − µ)2

= 0.

2

Remark 4.3 The principal curvature κi (i = 1, 2) tends to infinity and ||xu × xv||
tends to zero along a sequence of points on M \ LD converging to a point on the LD.
Theorem 4.2 states that 1/(κi||xu × xv||) has a finite limit µi and the focal set of
M \ LD can be extended to M (giving the caustic of M).

We turn now to the case when p ∈ LD is a folded singular point of the lightlike
curves. Recall from [6] that the LPL meets the LD tangentially at such points.

Theorem 4.4 Suppose that p ∈ M is folded singular point of the lightlike curves.
Then p is an A3-singularity of the distance squared function. The LPL, LD and the
ridge curve are tangential at p and the ridge curve can be either in the Riemannian or
in the Lorentzian part of M . There are four possible configurations for the caustic as
shown in Figure 6.

Proof We follow the same steps of the proof of Theorem 3.3. We denote by φ̄ the left
hand side of equation (4). The surface S̄ = φ̄−1(0) is generically smooth and we can
assume, without loss of generality, that φ̄v 6= 0 and parametrise S by (u, v(u, µ), µ).
Then the caustic is parametrised by ψ(u, µ) = x(u, v(u, µ))− µxu × xv(u, v(u, µ)).

On the LD near p, equation (4) has two roots µ1 = 0 and µ2 = (n̄E − 2m̄F +
l̄G)/(m̄2 − l̄n̄), which coincide at p. Thus the LD lifts to two curves on S̄, one is
the LD itself and corresponds to the root µ = µ1 and the other corresponds to the
root µ = µ2. The latter maps to a lightlike curve on the caustic (Theorem 4.2(2);
dotted curve in Figure 6). We denote this curve by (L). It is generically smooth and
transverse to the LD on S̄.
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Figure 6: The metric structure on the caustic at a folded singularity of the lightlike
curves. The thick curve is the LDC and the dotted curve is the lightlike curve in
Theorem 4.2(2).

Calculation (similar to those in the proofs of Proposition 3.2 and Theorems 3.3)
show that the ridge is a solution of the system of equations{

(F 2 − EG)− µ(n̄E − 2m̄F + l̄G) + µ2(m̄2 − l̄n̄) = 0,
F 2 − EG+ µ(Fm̄−Gl̄) + µvu(Fn̄−Gm̄) = 0.

(11)

The first equation of (11) is φ̄ = 0 and we denote the left hand side of the second
equation by H̄. The solutions of (11) are the projections to the (u, v)-space of the
intersection set of S̄ = φ̄−1(0) with H̄−1(0). We consider the map germ J(u, µ) =
H̄(u, v(u, µ), µ)), where (u, v(u, µ), µ)) is the local parametrisation of S̄. A calculation
shows that J has an A−1 -singularity at the origin, so J−1(0) consists of a pair of
transverse curve. One of them maps to the LD on S̄ and the other to the lift of the
ridge curve on S̄.

We can use J to calculate the tangent directions to the lifts of the relevant curves
on S̄. To simplify the notation, we take a parametrisation of M at p as in Theorem
2.1(2) so that the tangent direction to the LD at p is along the lightlike direction xu.
Then at p, E = F = l̄ = Eu = 0. We found that the tangent directions to the lift of
the relevant curves on S̄ are as follows

the lift of the LD (1, 0, 0),

the lift of the ridge (1, 0, 2(−FuEv+EuuG−2F 2
u)

m̄Ev
),

the lift of the LPL (1, 0,−2m̄Fu−l̄uG
2m̄2 ),

the lift of the curve L (1, 0,−2m̄Fu−l̄uG
m̄2 ).

These curves are generically transverse and all possible configurations can occur.
The projections of the above curves to the (u, v)-plane are tangential curves and have
generically pairwise ordinary tangency at the origin. A maple calculation shows that
the ridge curve is between the LD and the LPL if and only if the singularity of d2

v is
of type A−3 . Then the ridge lies in the Lorentzian part of the surface. The ridge lies
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in the Riemannian part of the surface (the LD is between the ridge and the LPL) if
and only if the singularity of d2

v is of type A+
3 . 2

Remark 4.5 Define the colour of a ridge as white if its associated principal direc-
tion is timelike and grey if it is spacelike. The ridge does not change colour at an
A3-singularity of d2

v on the LD (Figure 6). However, it changes colour at an A3-
singularity on the LPL and away from the LD (Figure 3, right). The ridges also
change colour at a D±4 -singularity (Figures 4, 5).

Remark 4.6 The distance squared function d2
v can have a swallowtail singularity (A4)

at isolated points on a generic surface M . These points are generically neither on the
LPL nor on the LD of M . They occur either on the Riemannian part of M , in which
case the caustic is Lorentzian at its regular points, or in the Lorentzian part of M away
from the LPL. In the latter case the caustic is either Riemannian or Lorentzian at its
regular points (this depends on whether its normal direction is parallel to the timelike
or spacelike principal direction).
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