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Abstract

We initiate in this paper the study of the geometry of the cross-cap in the
Minkowski 3-space R3

1. We distinguish between three types of cross caps, space-
like, timelike or lightlike according to the type of the unique tangent direction
at the cross-cap point. We obtain special parametrisations for the three types
of cross-caps and consider their affine properties. The induced metric changes
signature along a curve and the singularities of this curve depend on the type
of the cross-cap. We obtain the topological configurations of the lightlike curves
and those of the lines of principal curvatures in the source of a parametrisation
as well as on the cross-cap surface.

1 Introduction

Whitney showed that maps R2 → R3 can have a stable local singularity under smooth
changes of coordinates in the source and target. A model of this local singularity under
these changes of coordinates is given by (x, y) 7→ (x, xy, y2). The image of this map is
a singular surface called a cross-cap (it is also called a surface with a pinch-point or a
Withney umbrella).

Because the cross-cap is a stable singular surface, it is natural to seek to understand
its geometry. The extrinsic differential geometry of the cross-cap in the Euclidean 3-
space is investigated in [5, 7, 8, 9, 12, 18, 22, 23], and in [12] the authors considered
its intrinsic properties. It is shown, for instance, in [5, 23] that there are generically
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two types of cross-caps, labelled hyperbolic cross-cap and elliptic cross-cap (Figure 1),
and these are characterised by the singularity type of their parabolic set in the source
(see also §4 for another characterisation and [17, 18] for applications to the geometry
of surfaces in R4). The change from an elliptic to a hyperbolic cross-cap occurs at a
parabolic cross-cap, Figure 1.

Figure 1: Hyperbolic, elliptic and parabolic cross-caps.

We initiate in this paper the study of the geometry of the cross-cap in the Minkowski
3-space R3

1. At the cross-cap point, the tangent plane to the surface degenerates to
a line, which we label the tangent line of the cross-cap. We call the cross-cap space-
like, timelike or lightlike if its tangent line is respectively spacelike, timelike or light-
like. (Generically, cross-caps in R3

1 are either spacelike or timelike.) We obtain in §3
parametrisations of the cross-cap in simplified forms using smooth changes of coor-
dinates in the source and Lorentzian motions in the target. From these parametri-
sations we get pairs of quadratic forms (Q1, Q2) in (x, y). We show in §4 that the
G = GL(2,R) × GL(2,R)-class of (Q1, Q2) determines if the cross-cap is elliptic, hy-
perbolic or parabolic and obtain affine invariant properties of the cross-cap (such us
its Dupin indicatrices and its focal conic).

In §5, we study the induced metric on the cross-cap and determine the generic
topological configurations of the lightlike curves in the source and their images on the
cross-cap. We study in §6 the lines of principal curvature on the cross-cap. Some of
the configurations in §5 and in §6 are obtained in §7 using the blowing-up technique
on general binary differential equations

The configurations of the solution curves of the binary differential equations (BDEs)
in this papers have all been checked using Montesinos program [16]. The solutions of a
BDE form a pair of foliations in R2 or on a surface. In all the figures in this paper, we
draw one foliation in continuous line and the other in dashed line. The discriminant
curve is drawn in thick black. The double point curve of the cross-cap is drawn in
thick grey.
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2 Preliminaries

The Minkowski space (R3
1, 〈, 〉) is the vector space R3 endowed with the metric given

by the pseudo-scalar product

〈u,v〉 = −u0v0 + u1v1 + u2v2,

for any vectors u = (u0, u1, u2) and v = (v0, v1, v2) in R3 (see for example [19], p55).
We say that a non-zero vector u ∈ R3

1 is spacelike if 〈u,u〉 > 0, lightlike if 〈u,u〉 = 0
and timelike if 〈u,u〉 < 0. The norm of a vector u ∈ R3

1 is defined by ‖u‖ =
√
|〈u,u〉|.

We have the following pseudo-spheres in R3
1 with centre p ∈ R3

1 and radius r > 0,

H2(p,−r) = {u ∈ R3
1 | 〈u− p,u− p〉 = −r2},

S2
1(p, r) = {u ∈ R3

1 | 〈u− p,u− p〉 = r2},
LC∗(p) = {u ∈ R3

1 | 〈u− p,u− p〉 = 0}.

We denote by H2(−r) and S2
1(r) the pseudo-spheres centred at the origin in R3

1.
We consider the set C of smooth map-germs R2, 0→ R3

1 with a cross-cap singularity
at the origin and endowed with the Whitney C∞-topology. We say that a property of
the cross-cap is generic if it is satisfied by map-germs in a residual subset of C.

Let φ : U ⊂ R2 → R3
1 be representative of a map-germ with a cross-cap singularity

at the origin and denote its image by M . Let

E = 〈φx, φx〉, F = 〈φx, φy〉, G = 〈φy, φy〉

denote the coefficients of the first fundamental form of M (the subscripts denote partial
derivatives).

We label the Pre-Locus of Degeneracy (PLD) the set of point (x, y) ∈ U where
(F 2 − EG)(x, y) = 0, and by the Locus of Degeneracy (LD) its image by φ. The LD
is the locus of points on M where the induced metric is degenerate.

We decompose U = U1 ∪ U2 ∪ PLD, where φ(U1) is the Riemannian part of M
and φ(U2) is its Lorentzian part. One can define the de Sitter Gauss map U1 → S2

1(1)
on the Riemannian part of the surface and the hyperbolic Gauss map U2 → H2(−1)
on its Lorentzian part. Both maps are given by N = φx × φy/||φx × φy||. The map
Ap(u) = −dN p(u) is a self-adjoint operator on M \ LD. We denote by

l = −〈Nx, φx〉 = 〈N , φxx〉,
m = −〈Nx, φy〉 = 〈N , φxy〉,
n = −〈N y, φy〉 = 〈N , φyy〉

the coefficients of the second fundamental form on M \LD. At points on the LD, we
multiply the above coefficients by ||φx × φy|| and set

l̄ = 〈φx × φy, φxx〉, m̄ = 〈φx × φy, φxy〉, n̄ = 〈φx × φy, φyy〉.
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The Gaussian curvature K of M at p = φ(q) ∈M \ LD is given by

K(q) = det(Ap) =
ln−m2

EG− F 2
(q).

The (closure of) the pre-parabolic set is defined as the set of points in U where
(l̄n̄− m̄2)(q) = 0. Its image under φ is defined as the parabolic set on M (this is the
closure of the set of points where the Gaussian curvature vanishes).

We are interested in the R-singularities of germs of functions f : R2, 0 → R, 0,
where R denotes the group of germs of diffeomorphisms h : R2, 0 → R2, 0 which acts
on the set of germs of such functions by f ◦ h−1. We shall use representatives (up to
a sign) of the following orbits of this action (see [1]):

Ak x2 ± yk+1, k ≥ 0
Dk x2y ± yk−1, k ≥ 4

X1,0 {
x4 + ax2y2 + y4, a2 − 4 6= 0
xy(x2 + bxy + y2), b2 − 4 < 0

In the complex case, the singularity X1,0 has one normal form given by x4+ax2y2+
y4, a2− 4 6= 0. However, this form does not include the case when the quartic has two
real roots. This case is represented by the normal form xy(x2 + bxy + y2), b2 − 4 < 0.

3 Special parametrisations of the cross-cap

It is shown in [23] that a parametrisation of a cross-cap in the Euclidean 3-space can
be taken, by a suitable choice of coordinates in the source and isometries in the target,
in the form

φ(x, y) = (x, xy + p(y), y2 + ax2 + q(x, y)), (1)

where p ∈ M3(y) and q ∈ M3(x, y) (M(u) denotes the maximal ideal in the ring of
germs of functions in the variables u).

We consider now a cross-cap in the Minkowski 3-space and seek parametrisations
in a simplified form, allowing any smooth changes of coordinates in the source and
changes of coordinates given by Lorentzian isometries in R3

1. At the cross-cap point
the tangent plane to the surface degenerates to a line. We label it the tangent line to
the cross-cap. This line can be spacelike, timelike or lightlike.

Definition 3.1 A cross-cap in the Minkowski 3-space is called spacelike, timelike or
lightlike if its tangent line is, respectively, spacelike, timelike or lightlike.

Theorem 3.2 A parametrisation of the cross-cap can be taken, by suitable choice
of coordinates in the sources and Lorentzian isometries in the target, in one of the
following forms.
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(a) Timelike cross-cap:

(x, y2 + p20x
2 + p(x), q20x

2 + q21xy + q22y
2 + q(x, y)) (2)

(b) Spacelike cross-cap:

(y2 + p20x
2 + p(x), x, q20x

2 + q21xy + q22y
2 + q(x, y)) (3)

(c) Lightlike cross-cap:

(y2 + x+ p20x
2 + p(x), x, q20x

2 + q21xy + q22y
2 + q(x, y)) (4)

where p ∈M3(x), q ∈M3(x, y) and q21 6= 0 (as the singularity is a cross-cap).

Proof (a) When the tangent line is timelike, we can make a Lorentzian motion in the
target and take it to be along (1, 0, 0). We can then write φ(x, y) = (x, f(x, y), g(x, y)),
where f and g are germs of functions with zero 1-jets. As the singularity is a cross-
cap, we have ∂2f

∂y2
(0, 0) 6= 0 or ∂2g

∂y2
(0, 0) 6= 0. We can suppose that ∂2f

∂y2
(0, 0) 6= 0 (if

it vanishes, we make the isometric change of coordinates (u, v, w) → (u,w, v) in the
target to get back to the case where it does not vanish).

We consider f(x, y) as a 1-parameter unfolding of the function f(0, y). Since
∂2f
∂y2

(0, 0) 6= 0, f(x, y) is R+-equivalent to the germ y2, that is, there exist a germ

of a diffeomorphism H : R2, 0 → R2, 0 of the form H(x, y) = (h(x), k(x, y)) and a
germ of a function c such that

y2 = f(h(x), k(x, y)) + c(x)

(see [1]). We have φ ◦H(x, y) = (h(x), y2 − c(x), g(k(x), h(x, y))).
Let K be a change of coordinate in the source with K(u, v) = (x, y) = (h−1(u), v).

Then
φ ◦H ◦K(u, v) = (u, v2 − c(k−1(u)), g(u, h(k−1(u), v)).

We revert back to the original notation and write x for u and y for v, so that the
cross-cap is parametrised in the form

(x, y2 + p20x
2 + p(x), q20x

2 + q21xy + q22y
2 + q(x, y)),

where p and q are germs of functions with zero 2-jets.
The case (b) follows in a similar way. For the case (c), we make a Lorentzian

motion in the target to set the lightlike tangent line along the direction (1, 1, 0) and
take the parametrisation of the surface in the form φ(x, y) = (x + f(x, y), x, g(x, y)),
where f and g have zero 1-jets. We then proceed as in case (a). 2
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Table 1: The G-classes of pairs of quadratic forms.
G-class Name

(y2 + x2, xy) hyperbolic
(y2 − x2, xy) elliptic

(x2, xy) parabolic
(x2 ± y2, 0) inflection

(x2, 0) degenerate inflection
(0, 0) degenerate inflection

Corollary 3.3 With a parametrisation of the cross-cap as in Theorem 3.2(b), (c) the
limiting tangent direction to the double point curve is lightlike on a spacelike or lightlike
cross-cap if and only if 1− q222 = 0.

The limiting tangent direction to the double point curve is always spacelike on a
timelike cross-cap.

Proof A point is on the double point curve if there exists two distinct points (x1, y1)
and (x2, y2) in the source such that φ(x1, y1) = φ(x2, y2). Taking a parametrisation of
the cross-cap as in Theorem 3.2, one can show that x1 = x2 = 0 and y2 = −y1, so
the double point curve in the source is parametrised by (0, y) and the double point
(on the cross-cap) is given by φ(0, y). For a timelike cross-cap, the limiting tangent
direction to the double point curve is along (0, 1, q22) so is spacelike. In the case of
spacelike and lightlike cross-caps, the limiting tangent direction is along (1, 0, q22) and
is lightlike if and only if 1− q222 = 0. 2

In the rest of the paper, we shall always take the parametrisations of the cross-cap
as in Theorem 3.2 and write the homogeneous part of degree n in p and q, respectively,
in the form pn0x

n and qn0x
n + qn1x

n−1y + . . .+ qnny
n.

4 Affine properties of the cross-cap

We associate to the parametrisations in Theorem 3.2 the pair of quadratic forms

(Q1(x, y), Q2(x, y)) = (y2 + p20x
2, q20x

2 + q21xy + q22y
2)

given by the 2-jet of the parametrisation with its linear part removed.
We consider the action of the group G = GL(2,R)×GL(2,R) on the pairs of binary

forms (Q1, Q2), where GL(2,R) denotes the general linear group (see for example [10]).
If H = (h, k) ∈ G, then H.(Q1, Q2) = k.(Q1 ◦ h−1, Q2 ◦ h−1). The G-orbits are listed
in Table 1.
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Lemma 4.1 The pair of quadratic forms (Q1, Q2) is
hyperbolic ⇔ q221p20 + (q22p20 − q20)2 > 0,

elliptic ⇔ q221p20 + (q22p20 − q20)2 < 0,
parabolic ⇔ q221p20 + (q22p20 − q20)2 = 0.

Proof The action in the target by (u, v) 7→ (u, v − q22u) gives

(Q1, Q2) ∼G (y2 + p20x
2, (q20 − p20q22)x2 + q21xy).

The action by (x, y) 7→ (x, y − q20−p20q22
q21

x) in the source followed by an action in the

target of the form (u, v) 7→ (u− αv, 1
q21
v) gives

(Q1, Q2) ∼G (y2 +
q221p20 + (q22p20 − q20)2

q221
x2, xy)

and the result follows. 2

A cross-cap is hyperbolic/elliptic/parabolic if the singularity of its pre-parabolic
set is A+

1 /A−1 /A≥2 ([5, 23]). The singularity of the pre-parabolic set depends on the
contact of the surface with planes, so is affine invariant (in particular, they do not
depend on the metric in the ambient space). We have the following for the cross-cap
in R3

1; see [18] for an analogous result for a cross-cap in the Euclidean 3-space.

Proposition 4.2 The cross-cap is hyperbolic/elliptic/parabolic if and only if its asso-
ciated pair of quadratic forms (Q1, Q2) is elliptic/hyperbolic/parabolic.

Proof The 2-jet of m̄2 − n̄l̄ for the three cross-caps in Theorem 3.2 is given by

−4q21(p20q21x
2 + 2(q22p20 − q20)xy − q21y2).

We have q21 6= 0, so the discriminant of the above quadratic form is given, up to a
non-zero factor, by q221p20 + (q22p20 − q20)2. The result follows by Lemma 4.1. (When
q221p20 + (q22p20 − q20)2 = 0, the parabolic set has an Ak-singularity, with k ≥ 2.) 2

In view of Proposition 4.2, we label the property hyperbolic/elliptic/parabolic of
a cross-cap as its affine property. This property can also be detected by consider-
ing the following curves in the source. We consider the intersection of the cross-cap
parametrised by φ : R2, 0 → R3, 0 with the planes f(x, y, z) = ax + by + cz − d = 0,
d 6= 0, parallel to a plane containing the unique tangent direction to the cross-cap.
We analyse the limit of the curves f ◦ φ(x, y) = 0 as d tends to zero and call them
the Dupin indicatrices in the source associated to the tangent plane ax+ by + cz = 0.
These are approximated by the zero set of the 2-jet of f ◦ φ.

7



Consider the case of the timelike cross-cap with φ as in Theorem 3.2(a) (the other
two cases follow similarly). Then a = 0 and the Dupin indicatrices in the source are
given by

bQ1(x, y) + cQ2(x, y)− d = 0.

We identify a quadratic form Q = Ax2 +Bxy +Cy2 by its coefficients (A : B : C)
in the projective plane RP 2. We denote by Γ the conic {Q : B2 − 4AC = 0} of
degenerate quadratic forms. Then the G-orbit of a pair of quadratic forms (Q1, Q2) is
completely determined by the pencil bQ1(x, y) + cQ2(x, y) in RP 2. The pair (Q1, Q2)
is hyperbolic (resp. elliptic) if and only if its associated pencil intersects the conic Γ
in 2 (resp. 0) points. It is parabolic if the pencil is tangent to Γ.

Proposition 4.3 At a hyperbolic cross-cap, the Dupin indicatrices in the source as-
sociated to any tangent plane are hyperbolae.

At an elliptic cross-cap, there are two tangent planes whose associated Dupin indi-
catrices is a pair of parallel lines. The remaining Dupin indicatrices are either hyper-
bolae or ellipses.

At an parabolic cross-cap, there is a unique tangent plane whose associated Dupin
indicatrices is a pair of parallel lines. The remaining Dupin indicatrices are all hyper-
bolae.

Remark 4.4 The height function on the cross-cap along a normal direction (a, b, c)
is given by 〈φ(x, y), (a, b, c)〉. On a hyperbolic cross-cap the singularities of the height
function in any normal direction is A−1 . On an elliptic cross-cap, there are two normal
directions along which the singularities of the height function is Ak, k ≥ 2, and for the
remaining directions it is A+

1 or A−1 . On a parabolic cross-cap, there is a unique normal
direction along which the singularity of the height function is Ak, k ≥ 2, and for the
remaining directions it is A−1 ([5, 23]). As the 2-jet of 〈φ(x, y), (a, b, c)〉 is the pencil
associated to the pair of quadratic forms (Q1, Q2), the statement of Proposition 4.3
is a reformulation of the result on the singularities height functions in terms of the
Dupin indicatrices in the source.

We turn now to an aspect of the contact of a cross-cap parametrised by φ : R2, 0→
R3, 0 with pseudo-spheres in R3

1. This contact is measured by the singularities of the
distance squared functions d : (R2, 0)× R3

1 → R with

d(x, y, u) = 〈φ(x, y)− u, φ(x, y)− u〉.

We set du(x, y) = d(x, y, u) and consider its R-singularities at the cross-cap point,
that is at the origin in the xy-plane.

The plane orthogonal to the tangent line at the cross-cap is labelled the normal
plane to the cross-cap. It is not difficult to show that the function du is singular at the
origin if and only if u is on the normal plane to the cross-cap.
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Theorem 4.5 (1) For a spacelike or timelike cross-cap, the singularities of du are
always of type Ak, k ≥ 1. There is a conic in the normal plane of the cross-cap,
labelled the focal conic, where the singularities of du are of type Ak, k ≥ 2. The focal
conic contains the cross-cap point and is as follows:

an ellipse ⇔ q221p20 + (q22p20 − q20)2 < 0 ⇔ (Q1, Q2) is elliptic,
a hyperbola ⇔ q221p20 + (q22p20 − q20)2 > 0 ⇔ (Q1, Q2) is hyperbolic,
a parabola ⇔ q221p20 + (q22p20 − q20)2 = 0 ⇔ (Q1, Q2) is parabolic.

(2) For a lightlike cross-cap, the singularity of d0 at the cross-cap point is of type D4

if and only if p20 6= 0. Those of du, u 6= 0, are of type Ak, k ≥ 1. The focal conic is a
pair of transverse lines intersecting at the cross-cap point if and only if the cross-cap
is not parabolic (equivalently, if and only if (Q1, Q2) is hyperbolic or elliptic).

Proof (1) We consider only the timelike cross-cap and take φ as in Theorem 3.2(a).
The case of the spacelike cross-cap follows similarly and we get the same conditions
which identify the focal conic. We write u = (u0, u1, u2), so

du(x, y) = −(u0−x)2+(u1−y2−p20x2−p(x))2+
(
u2 − q20x2 − q21xy − q22y2 − q (x, y)

)2
.

We have j1du(x, y) = −u20 + u21 + u22 + 2u0x, so du is singular at the origin (i.e., at
the cross-cap point) if and only if u0 = 0, that is, if and only if u is on the normal
plane of the cross-cap.

We take now u0 = 0. Then the 2-jet of du, without the constant terms, is given by

−(1 + 2u1p20 + 2u2q20)x
2 − 2u2q21xy − 2(u1 − u2q22)y2. (5)

The quadratic form (5) can never vanish identically as q21 6= 0, so the singularities
of du are always of type Ak, k ≥ 1.

The singularity of du is of type Ak, k ≥ 2, if and only of the quadratic form (5) is
degenerate, that is, if and only if

2p20u
2
1 + 2(q20 + p20q22)u1u2 + (2q20q22 −

1

2
q221)u

2
2 + u1 + u2q22 = 0. (6)

The above equation is that of a non-degenerate conic (the focal conic), in the
normal plane (0, u1, u2). The discriminant of its quadratic part is

δ = p20q
2
21 + (q20 − p20q22)2.

The focal conic is a parabola if and only if δ = 0, equivalently, if and only if
(Q1, Q2) is parabolic (Lemma 4.1).

When δ 6= 0, the linear terms in (6) can be removed by a translation to obtain a
new equation in the form

2p20U
2
1 + 2(q20 + p20q22)U1U2 + (2q20q22 −

1

2
q221)U

2
2 =

1

8

q221
p20q221 + (q20 − p20q22)2

.
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This is a hyperbola if and only if p20q
2
21 + (q20 − p20q22)2 > 0 and an ellipse if and

only if p20q
2
21 + (q20 − p20q22)2 < 0. The interpretation of these inequalities in terms

of the pair of quadratic forms (Q1, Q2) is given in Lemma 4.1. (It is worth observing
that for a spacelike cross-cap, the focal conic is tangent to a lightlike line if and only
if the limiting tangent direction to the double point curve is lightlike.)

(2). When the cross-cap is lightlike, we take φ as in Theorem 3.2(c), so that

du = −(u0−y2−x−p20x2−p(x))2 + (u1−x)2 + (u2− q20x2− q21xy− q22y2− q(x, y))2.

We have j1du(x, y) = −u20 + u21 + u22 + 2(u0 − u1)x, so du is singular at the origin
if and only if u0 = u1, that is, if and only if u is on the lightlike normal plane of the
cross-cap.

We suppose now that u0 = u1. Then the 2-jet of du, without the constant term, is
given by

(u0p20 − u2q20)x2 − u2q21xy + (u0 − u2q22)y2. (7)

The quadratic form (7) vanishes identically if u0 = u2 = 0, that is, if u = 0. Then
the 3-jet of d0, without the constant terms, is given by −2x(y2 + p20x

2). Thus, d0 has
a D4-singularity if and only if p20 6= 0.

Suppose that u 6= 0. Then the singularity of du is of type Ak, k ≥ 2, if and only if
the quadratic form (7) is degenerate, that is, if and only if

−4p20u
2
0 + 4(q20 + p20q22)u0u2 + (q221 − 4q20q22)u

2
2 = 0. (8)

This is a pair of transverse lines if and only if q221p20 + (q22p20 − q20)2 6= 0, that is,
if and only if (Q1, Q2) is not parabolic. 2

We have the following results about more degenerate singularities of the distance
squared functions (these are not affine invariant).

Proposition 4.6 There are generically 1, 3 or 5 points on the focal conic of a timelike
or a spacelike cross-cap where du has an A3-singularity at the cross-cap point, and one
of these is always at the cross-cap point.

For a lightlike cross-cap, the cross-cap point is a D4-singularity of d0 and there is
one point on each line of the focal conic where du has an A3-singularity at the cross-cap
point.

The A2 and A3-singularities of du, u 6= 0, at the cross-cap point are versally un-
folded by the family d. The singularity of d0 at the cross-cap point is not versally
unfolded by the family d.

Proof We take u on the focal conic. Then the 2-jet of du is a perfect square L2.
The singularity of du is of type Ak, k ≥ 3 if and only if L divides C, where C is the
homogeneous cubic part of du. For the timelike cross-cap, we take L = u2q21x+2(u1−
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u2q22)y (up to a constant factor), see the proof of Theorem 4.5. The cubic C divides
L if and only if C(2(u1 − u2q22),−u2q21) = 0, that is, if and only if

8p30u
4
1 − 8(3p30q22 + q30)u

3
1u2 + 4(q21q31 − 6p30q

2
22 − 6q30q22)u

2
1u

2

+2(4q31q21q22 − q221q32 − 12q30q
2
22 − 4p30q

3
22)u1u

3
2

+(q321q33 + 4q31q21q
2
22 − 2q32q

2
21q22 − 8q30q

3
22)u

4
2 = 0.

This is a homogeneous quartic in u1, u2, so is generically a union of 0,2,4 real lines
meeting at the origin. Thus, the singularity of du is of type Ak, k ≥ 3 if and only if
u = (0, u1, u2) is a point of intersection of these lines with the conic (6), so we get
generically 1, 3 or 5 such singularities, and they are generically of type A3. We proceed
similarly for the spacelike cross-cap.

For the lightlike cross-cap, proceeding as above, we show that du has an Ak, k ≥ 3-
singularity if and only if u is a point of intersection of the conic (8) with the following
non-homogeneous quartic

Q(u0, u2) = (2q221q32q22 − 4q31q21q
2
22 − q321q33 + 8q30q

3
22)u

4
2

+2(4q31q21q22 − q32q221 − 4p30q
3
22 − 12q30q

2
22)u0u

3
2

+4(6q30q22 + 6p30q
2
22 − q21q31)u22u20 − 8(q30 + 3p30q22)u2u

3
0 + 8p30u

4
0

+2(q221q22 + 4p20q
3
22)u

3
2 − 2(12p20q

2
22 + q221)u

2
2u0 + 24p20q22u

2
0u2 − 8p20u

3
0.

Denote by u0 = λiu2, i = 1, 2, the lines of the conic (8). Then Q(λiu2, u2) =
u32(Aiu2+Bi), i = 1, 2, where Ai and Bi depend on λi as well as pj0 and qjk, j, k = 2, 3.
Generically, Ai 6= 0 and Bi 6= 0, so we have a single point u 6= 0 on each line of the
focal conic where the singularity of du at the origin is generically of type A3. (When
u = 0, the singularity of of type D4.)

The statement about the versality of the family d follows by standard calculations
and are omitted (see for example [7] for detailed calculations for the cross-cap in the
Euclidean 3-space). 2

5 The induced metric on the cross-cap

Let E,F,G denote, as in §2, the coefficients of the first fundamental form of a cross-
cap parametrised by φ. The induced metric on the cross-cap is given by ds2 = Edx2 +
2Fdxdy+Gdy2. This metric is Riemannian if F 2−EG < 0, Lorentzian if F 2−EG > 0
and degenerate if F 2 − EG = 0. The Pre-Locus of Degeneracy (PLD) is defined as
the set of points (x, y) in the source where (F 2 − EG)(x, y) = 0. Its image by φ is
labelled the Locus of Degeneracy (LD).

Proposition 5.1 The PLD of a timelike cross-cap has an A+
1 -singularity and that

of a spacelike cross-cap has A−1 -singularity. The PLD of a lightlike cross-cap has
generically (when p20 6= 0) an A2-singularity.

11



Proof We compute the coefficients of the first fundamental form. Suppose that the
unique tangent direction is timelike and take a parametrisation of the surface as in
Theorem 3.2(a). Then,

j2E = −1 + 4(p220 + q220)x
2 + 4q21q20xy + q221y

2,

j2F = 2q20x
2q21 + (4p20 + q221 + 4q20q22)xy + 2q21q22y

2,

j2G = q221x
2 + 4q22q21xy + 4(1 + q222)y

2, (9)

so that
j2(F 2 − EG) = q221x

2 + 4q21q22xy + 4(1 + q222)y
2.

The discriminant of the above quadratic form is −16q221 and is strictly negative, so
the PLD has a Morse singularity of type A+

1 , i.e., it is an isolated point.
We take a parametrisation of a spacelike cross-cap as in Theorem 3.2(b). Then,

j2E = 1− 4(p220 − q220)x2 + 4q21q20xy + q221y
2,

j2F = 2q20q21x
2 + (4q20q22 − 4p20 + q221)xy + 2q21q22y

2,

j2G = q221x
2 + 4q22q21xy − 4(1− q222)y2, (10)

and
j2(F 2 − EG) = −q221x2 − 4q21q22xy + 4(1− q222)y2.

The discriminant of the above quadratic form is 16q221 so the PLD has a Morse
singularity of type A−1 , i.e., it is a pair of transverse crossing curves.

For a lightlike cross-cap parametrised as in Theorem 3.2(c),

j2E = −4p20x− 2(2p220 + 3p30 − 2q220)x
2 + 4q21q20xy + q221y

2,

j2F = −2y + 2q20q21x
2 + (4q20q22 − 4p20 + q221)xy + 2q21q22y

2,

j2G = q221x
2 + 4q22q21xy − 4(1− q222)y2. (11)

Then the 3-jet of F 2 − EG is, up to a scalar multiple, given by

y2 + q221p20x
3 + 2q21(2q22p20 − q20)x2y + (4p20q

2
22 − 4q20q22 − q221)xy2 − 2q21q22y

3. (12)

Therefore, the PLD has an A2-singularity if p20 6= 0. Observe that the condition
p20 6= 0 is the same as that for the distance squared function d0 to have a D4-singularity
(Theorem 4.5). 2

Remark 5.2 The singularities of the PLD can be explained geometrically as follows.
There is a pencil of planes containing the tangent line of the cross-cap which are
tangent to the cross-cap. When the tangent direction is timelike all the planes in the
pencil are timelike so all nearby tangent planes to the surface are timelike, i.e., the
PLD must be an isolated point. For the spacelike (resp. lightlike) cross-cap, there
are two (resp. one) tangent planes in the pencil which are lightlike and this indicates
that there are two (resp. one) branches of the PLD.

12



We consider the integral curves of the lightlike directions on a cross-cap, which we
label the lightlike curves. (These are the isotropic geodesics, i.e., those with identically
zero length, [20].) The lightlike curves are the images by the parametrisation φ of the
solution curves of the binary quadratic differential equation (BDE)

ω : Edu2 + 2Fdudv +Gdv2 = 0. (13)

We identify a BDE by its coefficients and write ω = (E,F,G). We call the solutions
of (13) the pre-lightlike curves in the source. There are two pre-lightlike curves at each
point in the region mapped by φ to the Lorentzian region of the cross-cap and none
at points mapped to its Riemannian region. The PLD, which is the discriminant
curve of the BDE (13) (the discriminant curve of a BDE is the set of points where the
equation determines a unique solution direction) separates the two regions. We have
the following result about the generic configurations of the pre-lightlike curves at the
cross-cap point. (See [14] for the generic configurations of the lightlike curves on a
smooth surface.)

Theorem 5.3 The BDE (13) of the pre-lightlike curves of a cross-cap in the Minkowski
3-space is topologically equivalent to one of the following topological normal forms:

(i) (1, 0,−x2 − y2) at a timelike cross-cap;
(ii) (1, 0,−x2 + y2) at a spacelike cross-cap if the limiting tangent direction to the

double point curve is spacelike (q222 − 1 > 0), and to (1, 0, x2 − y2) if it is timelike
(q222 − 1 < 0).

(iii) (x, y, x2) at a lightlike cross-cap if p20 > 0 and to (x,−y, x2) if p20 < 0.
See Table 2, second column for figures.

Proof (i) The 2-jets of the coefficients of the first fundamental form are given in (9).
Dividing the coefficients of the BDE (13) by E and making changes of coordinates in
the source, transforms the 2-jet of the BDE (13) to

dx2 + (−4(1 + q222)y
2 − q221

(1 + q222)
x2)dy2.

Following [2] (see also [21]), the BDE (13) is topologically equivalent to dx2 +
(−x2−y2)dy2 = 0, i.e., it has a Morse Type 1 A+

1 -singularity of type saddle (because its
discriminant, which is the PLD, has an A+

1 -singularity and the coefficient −4(1 + q222)
of y2 is negative). Thus, the configuration of the pre-lightlike curves are as in Table
2, left second column.

There is another Morse Type 1 A+
1 -singularity of type focus modeled by dx2 +

(y2 + x2)dy2 = 0. Its integral curves consist of an isolated point. In our context, the
timelike cross-cap is a Lorentzian surface, so it has two lightlike curves at each point

13



Table 2: Pre-lightlike lines and lightlike lines on cross-caps in R3
1 viewed from two

opposite directions.
Cross-cap type Pre-lightlike curves Lightlike curves

Timelike

Spacelike
q222 − 1 > 0

Spacelike
q222 − 1 < 0

Lightlike p20 < 0

Lightlike p20 > 0
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away from the cross-cap point. Therefore, the Morse Type 1 A+
1 -singularity of type

focus cannot occur in the BDE (13).

(ii) Proceeding as in (i) and using (9), we can transform the 2-jet of the BDE (13)
to

dx2 + (q221x
2 + 4q22q21xy − 4(1− q222)y2)dy2.

Following [2], the BDE (13) is topologically equivalent to dx2 ± (x2 − y2)dy2 = 0
(i.e., it has a Morse Type 1 A−1 -singularity) if q222 − 1 6= 0, that is, if the limiting
tangent direction to the double point curve is not lightlike (Corollary 3.3). When this
is the case, we can reduce further the 2-jet of the BDE (13) to

dx2 + (4(q222 − 1)y2 − q221
(q222 − 1)

x2)dy2.

We have the saddle type Morse Type 1 A−1 model dx2 + (−x2 + y2)dy2 = 0 (resp.
the focus type model dx2 + (x2−y2)dy2 = 0 ) if q222−1 > 0 (resp. q222−1 < 0), that is,
if the limiting tangent direction to the double point curve is spacelike (resp. timelike).
The configuration of the pre-lightlike curves are as in Table 2, second column.

(iii) Here the 2-jets of the coefficients of the BDE (13) are as in (11). We observe
that all the coefficients of the BDE vanish at the origin and the 1-jet of the BDE is
equivalent to xdx2 ± ydxdy (assuming, generically, that p20 6= 0). This case is not
studied previously and we deal with it in details in section 7. Using Theorem 7.1 in
section 7, we deduce that the BDE (13) is topologically equivalent to xdx2 +2ydxdy+
x2dy2 = 0 if p20 > 0 and to xdx2 − 2ydxdy + x2dy2 = 0 if p20 < 0; see Table 2, second
column. (The sign of p20 determines the D4 type of the singularity of the distance
squared function d0 at the origin, D+

4 if p20 > 0 and D−4 if p20 < 0; see the proof of
Theorem 4.5.) 2

Remark 5.4 The normal forms in Theorem 5.3 do not take into consideration the
double point curve. When mapping the pre-lightlike curves to the cross-cap, the
double point curve plays a key role. For the lightlike cross-cap, one can show that
one of the separatrices of the pre-lightlike curves is tangent to the double point curve
and is parametrised by x = −1

2
(−1 + q222)y

2 + h.o.t. The relative position of this
separatrice, the double point curve and of the PLD (12) depends only on the sign of
p20(−1 + q222). Thus, we have two cases for each case in Theorem 5.3(iii) when taking
into consideration the relative position of the above three curves; see Table 2 second
column.

One can make a cross-cap from a rectangular piece of paper as follows. Label one
side of the paper A and the other B. Draw a line that divides the piece of paper into
two equal rectangles. This line is the double point curve. Cut the piece of paper along
half of the double point. Fold one free edge of the cut and seller tape it to the other
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fixed half of the double point curve on the side A of the paper. Take the remaining
free edge and fold it along the fixed half of the curve double point curve on the side B
of the paper.

When every pre-lightlike curve intersects the double point curve in at most one
point, their images on the cross-cap do not self-intersect. Then one can draw the
pre-lightlike curves on a piece of paper and determine by the above procedure the
configurations of the lightlike curves on the cross-cap itself (Table 2 third column).
This can be done for all the figures in Table 2 second column except for the last case.
For this last case there are pre-lightlike curves which intersect the double point curve
twice. One needs to show that these two points are not mapped to the same image on
the cross-cap (see for example [22] for proofs for some pairs of foliations on a cross-
cap). We conjecture that this is the case and that the configurations on the cross-cap
are as in the last figure in Table 2 third column.

6 The lines of principal curvature

When the shape operator Ap has real eigenvalues at a point p ∈M \LD, we call them
the principal curvatures and their associated eigenvectors the principal directions of
M at p. (There are always two principal curvatures at each point on the Riemannian
part of M but this is not always true on its Lorentzian part.) The lines of principal
curvature, which are the integral curves of the principal directions, are the images by
the parametrisation φ of the solutions of the BDE

(Gm− Fn)dy2 + (Gl − En)dydx+ (Fl − Em)dx2 = 0. (14)

One can extend the lines of principal curvature across the LD as follows ([14]). As
equation (14) is homogeneous in l,m, n, we substitute these by l̄, m̄, n̄. This substitu-
tion does not alter the pair of foliations on M \ LD. The new equation is defined on
the LD and defines the same pair of foliations associated to the de Sitter (resp. hy-
perbolic) Gauss map on the Riemannian (resp. Lorentzian) part of M . The extended
lines of principal curvature are the images by φ of the solution curves of the BDE

(Gm̄− Fn̄)dy2 + (Gl̄ − En̄)dydx+ (F l̄ − Em̄)dx2 = 0. (15)

We call the solutions of the BDE (15) the pre-lines of principal curvature and label
its discriminant the Pre-Lightlike Principal Locus (PLPL). The image of the PLPL
by φ is labelled the Lightlike Principal Locus (LPL) (see [13, 14] for smooth Lorentzian
surface and smooth surface with varying signature metric).

The PLPL is the zero set of the function

(Gl̄ − En̄)2 − 4(Gm̄− Fn̄)(F l̄ − Em̄). (16)

We have the following about the singularities of the PLPL.
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Proposition 6.1 The PLPL of a timelike cross-cap has an A−3 -singularity.
The PLPL of a spacelike cross-cap has an A3-singularity if the limiting tangent

direction to the double point curve is not lightlike. The singularity is of type A+
3 if the

limiting tangent direction to the double point curve in the target is spacelike and A−3 if
it is timelike.

For both spacelike and timelike cross-caps, when the PLPL has an A−3 -singularity,
its two branches are tangent to the double point curve in the source.

The PLPL of a lightlike cross-cap has generically and X1,0-singularity with two or
four real branches. The double point curve has generically an ordinary tangency with
one of the branches of the PLPL.

Proof We compute the relevant jets of the coefficients l̄, m̄, n̄ and find that the 3-jet
of the PLPL is given by

4q221x
2 + 8q21q31x

3 − 24q21q33xy
2.

Therefore, its singularity is of type A≥3. We eliminate the term xy2 by a change
of coordinates of the form x → x + ay2 and find that the 4-jet of the PLPL is R-
equivalent to

4q221(x
2 − 16(1 + q222)y

4),

which is an A−3 -singularity.
Similar calculation to the timelike case shows that the 4-jet of the PLPL is R-

equivalent to
4q221(x

2 − 16(1− q222)y4).

This is an A−3 if 1 − q222 > 0 and an A+
3 -singularity if 1 − q222 < 0 (see the proof of

Corollary 3.3 for a geometric interpretation of the sign of 1− q222).
For a lightlike cross-cap, the 4-jet of the PLPL is given by

64q21x(q21p
2
20x

3 + 3q21p20xy
2 + 2(q22p20 − q20)y3).

This is an X1,0-singularity if p20(q
2
21p20 + (q22p20 − q20)

2) 6= 0 (see Lemma 4.1 and
Theorem 4.5 for a geometric interpretation of this condition). The above quartic has
always two or four real roots. One of the roots has tangent direction x = 0 so is tangent
to the double point curve. The tangency is ordinary if and only if the coefficient of y5

in the Taylor expansion of the PLPL is not zero, that is, if and only if

Λ = (2q21(q
2
22 − 1) + 3q33)(q22p20 − q20) 6= 0.

2

We seek to determine the generic topological configurations of the pre-lines of
principal curvature and their images on the cross-cap. We start with the timelike and
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spacelike cross-cap. Then the PLPL, the discriminant of the BDE (15), has an A+
3 -

singularity for the timelike case and an A−3 -singularity for the spacelike case. We take
a parametrization of the surface as in Theorem 3.2. Then the 1-jet of the coefficients
of the BDE (15) is (0, b0x, y), with b0 = −1/2.

Proposition 3.2 in [22] asserts that the 3-jet of the BDE (15) is equivalent to
(a3y

3, b0x+ b2y
2 + b3y

3, y) and Theorem 3.3 in [22] states that if the discriminant has
an A±3 -singularity, then this BDE is topologically equivalent to

(∓y3, b0x+ b2y
2, y),

with (b0, b2) a fixed value in an open region delimited by some exceptional curves in
the b0b2-plane. The exceptional curves are the parabola 1 + b0 − b22 = 0, and the lines
b0 = −1, b0 = 0, 2 + b0 − 2b2 = 0, 2 + b0 + 2b2 = 0 (Figure 2). There are 4 generic
topological models when the singularity is A+

3 and 9 when it is A−3 .

b2

R1

R2

R4

R3

R1

R2

R9
R6

R5
R4 R3

R8

R7

b2

b0 b0

Figure 2: Partition of the (b0, b2)-plane, A+
3 left and A−3 right. The topological type

for (b0,−b2) is the same as that for (b0, b2).

Theorem 6.2 (1) Suppose that the PLPL has an A−3 -singularity. Then the BDE (15)
of the pre-lines of principal curvature of a timelike or spacelike cross-cap is topologically
equivalent to

(y3,−1

2
x+ b2y

2, y)

if b2 6= 3/4,±
√

2/2, where b2 = 3q33/(4q21
√

1 + q222) for a timelike cross-cap and

b2 = 3q33/(4q21
√

1− q222) for a spacelike cross-cap. The topological configuration of
the pre-lines of principal curvature is as in

Table 3 second column first figure (region 9 in Figure 2 right) if |b2| <
√
2
2

,

Table 3 second column second figure (region 8 in Figure 2 right) if −3
4
< b2 < −

√
2
2

or
√
2
2
< b2 <

3
4
,
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Table 3 second column third figure (region 4 in Figure 2 right) if |b2| > 3
4
.

(1) When the PLPL of a spacelike cross-cap has an A+
3 -singularity, the BDE (15)

is topologically equivalent to (−y3,−1
2
x, y); Table 3 second column last figure (region

3 in Figure 2 left).

Table 3: Pre-lines and lines of principal curvature on a timelike and spacelike cross-cap
in R3

1 viewed from two opposite directions.
Cross-cap type Pre-lines of principal curvature Lines of principal curvaure

A−3 -singularity
of the PLPL

A+
3 -singularity

of the PLPL

Proof We take a parametrization of the timelike cross-cap as in Theorem 3.2(a).
Then we can reduce the 3-jet of the BDE (15) to

(4(1 + q222)y
3,−x

2
+

3q33
2q21

y2 + βy3, y),

where β is a constant depending on the coefficients of the 4-jet of the parametrisation of
the surface. We divide the BDE by 4(1+q222) and make smooth changes of coordinates
in the source of the form x = 2

√
1 + q222X, y = Y. The 3-jet of the new BDE is given

by
(Y 3, b0X + b2Y

2 + β̃Y 3, Y ), (17)

where b0 = −1/2, b2 = 3q33/4q21
√

1 + q222 and β̃ is a new constant. The result follows
by apply Theorem 3.3 in [22]. Similar calculations give the result for the spacelike
case. 2
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The double point curve is tangent to the branches of the PLPL when the latter
has an A−3 singularity (Proposition 6.1), so following the discussion at the end of §5,
we can easily map the configurations in Table 3 second column to the cross-cap surface
and these are as shown in Table 3 third column. The case when PLPL has an A+

3 -
singularity can be mapped to the surface using Theorem 2.7 in [22], where it is shown
that, generically, the two points of intersection of a solution curve with the double
point curve are not mapped to the same point on the cross-cap. The configurations of
the lines of principal curvatures on the cross-cap are thus as in Table 3 third column,
last figures.

We turn now to the lightlike cross-cap.

Theorem 6.3 The BDE (15) of the pre-lines of principal curvature of a lightlike cross-
cap parametrised as in Theorem 3.2(c) is topologically equivalent to one of the following
normal forms:

(xy,−x2, 3xy + 3y2) if p20 < 0, Table 4 first column second row for |c| > 2
(xy,−x2, 3xy + y2) if p20 < 0, Table 4 first column third row for |c| < 2
(xy, x2,−3xy + y2) if p20 > 0, Table 4 first colum fourth row,

provided that c = 2(q20 − p20q22)/q21
√
|p20| 6= 0,±2 and (q22p20 − q20)(q21(q222 − 1) +

2q33) 6= 0.

Proof The 2-jet of the BDE (15) is given by

(4q21xy, 4q21p20x
2,−12q21p20xy + 8(q20 − p20q22)y2).

When p20 < 0 we can change coordinates and multiply by a non zero function and
reduce it to

(xy,−x2, 3xy + cy2),

with c = 2(q20 − p20q22)/q21
√
−p20. Similarly, when p20 > 0 we can write the 2-jet in

the form
(xy, x2,−3xy + cy2),

with c = 2(q20 − p20q22)/q21
√
p20.

The above cases are not studied previously. We deal with them in details in
section 7. The result follows by applying Theorem 7.2 in section 7. 2

In this case too it is not difficult to map the configurations in Table 4 first column
to the cross-cap as all pre-lightlike curves intersect the double point curve in at most
one point. As pointed out in Remark 5.4 the topological configuration in the source
do not take into consideration the double point curve. This curve is drawn in grey in
Table 4 first column and we have two possible configurations for its relative position
with respect to the PLPP for the cases in the second and fourth rows in Table 4 first
column (the cases are determined by the sign of Λ in the proof of Proposition 6.1).
The configurations of the lines of principal curvatures on the lightlike cross-cap are as
in Table 4 second column.
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Table 4: Pre-lines and lines of principal curvature on a lightlike cross-cap R3
1 viewed

from two opposite directions.
Pre-lines of principal curvature Lines of principal curvaure
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7 Normal forms of certain BDEs

We obtain here topological normal forms of BDEs needed in the previous sections. A
germ of a BDE is an equation in the form

ω : a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0,

where a, b, c are germs of smooth functions (say, at the origin) R2, 0→ R. We denote a
BDE by ω = (a, b, c). BDEs are extensively studied with many applications including
control theory and differential geometry; see for example [6, 15] and [21] for a survey
article. A BDE determines a pair of transverse foliations away from the discriminant
curve which is the set of points where the function δ = b2 − ac vanishes. The pair
of foliations together with the discriminant curve are called the configuration of the
solutions of the BDE.

Following the notation in [11], let fi(w), i = 1, 2, denote the foliation associated to
ω which is tangent to the vector field

ξi(ω) = a
∂

∂u
+ (−b+ (−1)i

√
b2 − ac )

∂

∂v
.

If ψ is a diffeomorphism and λ(x, y) is a non-vanishing real valued function, then
([11]) for k = 1, 2,

1. ψ(fk(w)) = fk(ψ∗(ω)) if ψ is orientation preserving;
2. ψ(fk(w)) = f3−k(ψ∗(ω)) if ψ is orientation reserving;
3. fk(λw) = fk(ω) if λ(x, y) is positive;
4. fk(λw) = f3−k(ω) if λ(x, y) is negative.

7.1 BDEs with 1-jet (0,±y, x)

We consider BDEs ω with 1-jet equivalent to (0,±y, x) and whose discriminants have
an A2-singularity (see section 5). We shall take j1ω = (0,±y, x). Similar calculation
to those carried out in [3, 4, 21] show that any k-jet, k ≥ 3, of ω can be reduced by
smooth changes of coordinates in R2, 0 and multiplication by a non-zero polynomial
to one in the form

(M1(x),±y, x+M2(y)), (18)

where M1(x) = a2x
2 + a3x

3 + . . . + akx
k with a2 6= 0 and M2(y) = b3y

3 + . . . + bky
k.

When a2 6= 0, we can re-scale and set a2 = 1.

Theorem 7.1 Suppose that j1ω = (0, εy, x), ε = ±1 and that discriminant of ω has
an A2-singularity. Then ω is topologically determined by the 2-jet of its coefficients
and is topologically equivalent to one of the following normal forms

(i) (x2, y, x) Figure 3, bottom left
(ii) (x2,−y, x) Figure 3, bottom right.
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Z1 Z2 Z1 Z2

Figure 3: Configurations of the integral curves of a BDE ω with j1ω = (0, εy, x) and
whose discriminant has an A2-singularity, together with their associated blowing up
models: ε = −1 left and ε = 1 right.

Proof We take ω as in (18) and consider the directional blowing-up x = u, y = uv
and x = uv, y = v.
The blowing-up x = u, y = uv.

The new BDE is given by ω0 = (u, v)∗ω = ādv2 + 2b̄dudv + c̄du2 with

ā = u2M1(u),

b̄ = uv(εv +M1(u)),

c̄ = u+ 2εuv2 +M1(u)v2 +M2(uv).

We can write ω0 = u(u2A1, uB1, C1) with

A1 = uN1(u),

B1 = εv + uvN1(u),

C1 = 1 + 2εv2 + u(N1(u)v2 +N2(uv))

where M1(u) = u2N1(u) and M2(uv) = u2N2(uv).
The quadratic form ω1 = (u2A1, uB1, C1) is a product of two 1-forms, and to these

1-forms are associated the vectors fields

Zi =
(
− uB1 + (−1)iu

√
B2

1 − A1C1

) ∂
∂u

+ C1
∂

∂v
, i = 1, 2.

The blowing-up transformation is orientation preserving if u is positive and ori-
entation reserving if u is negative. As we factored out u once, it follows that Z1 is
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tangent to the foliation associated to f1(ω) and Z2 is tangent to the foliation associated
to f2(ω).

The fields Zi, i = 1, 2 are defined in the region where B2
1 − A1C1 > 0. The set

B2
1 − A1C1 = 0 is a smooth curve tangent to the exceptional fibre at u = 0 and we

have (B2
1 − A1C1)(0, v) = v2, so the whole exceptional fibre is an integral curve for

both Z1 and Z2.

We study the vector fields Zi in a neighbourhood of the exceptional fibre u = 0.
The singularities of Zi on u = 0 occur when 1 + 2εv2 = 0. Thus, the vector fields Z1

and Z2 have singularities at v = ±
√

2/2 when ε = −1 and have no singularities when
ε = 1.

Consider ε = −1. At v =
√

2/2, we have B1(0,
√

2/2) = −
√

2/2, so that

−uB1 − u
√
B2

1 − A1C1 = −uB1 + uB1

√
1− A1C1/B2

1

=
A1C1

2B1

+ C2
1g(u, v)

for some germ of a smooth function g with a zero 1-jet at the origin. Therefore Z1 is
singular along the curve C1(u, v) = 0. We replace Z1 with the vector field Z̃1 = Z1/C1,
which is regular along the exceptional fibre.

At v = −
√

2/2, the eigenvalues of the linear part of Z1 at a singularity are 2
√

2
and −

√
2, so Z1 has a saddle singularity at this point.

Similar calculations to those for Z1 show that Z2 has a saddle singularity at v =√
2/2 and its regular at the v = −

√
2/2.

The blowing-up x = uv, y = v
The new BDE is given by ω0 = (u, v)∗ω = ādv2 + 2b̄dudv + c̄du2 with

ā = u3v + 2εuv + u2M2(v) +M1(uv),

b̄ = u2v2 + εv2 + uvM2(v),

c̄ = uv3 + v2M2(v).

We can write ω0 = v(A1, vB1, v
2C1) with

A1 = u3 + 2εu+ v(u2N2(v) +N1(uv)),

B1 = u2 + ε+ vuN2(v),

C1 = u+ vN2(v)

where M1(uv) = v2N1(uv) and M2(v) = v2N2(v).
The quadratic form ω1 = (A1, vB1, v

2C1) is a product of two 1-forms, and to these
1-forms are associated the vectors fields

Zi =
(
−B1 + (−1)i

√
B2

1 − A1C1

) ∂
∂u

+ vC1
∂

∂v
, i = 1, 2
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with
A1 = u3 + 2εu+ v(N1(uv) + u2N2(v)),
B1 = u2 + ε+ v(uN2(v)),
C1 = u+ vN2(v).

We only need to study the vector fields Zi at origin. Similar calculations to the
first blowing-up show that Z1 has a saddle singularity (resp. has no singularity) and
Z2 has no singularity (resp. has a saddle singularity) when ε = −1 (resp. ε = 1).
Therefore, the integral curves of Z1 and Z2 are in as Figure 3, top left. Blowing down
yields the configuration in Figure 3, bottom left 2

7.2 BDEs with 2-jet (xy, εx2,−3εxy + cy2)

We take j2ω = (xy, εx2,−3εxy + cy2), ε = ±1. Then the 4-jet of the discriminant of
ω is given by

x(x3 + 3εxy2 − cy3).
The discriminant has an X1,0-singularity if c 6= 0,±2 when ε = −1, and if c 6= 0

when ε = 1.
We write

ω = (a, b, c) = (xy +M1(x, y), εx2 +M2(x, y),−3εxy + cy2 +M3(x, y)), (19)

where Mi(x, y), i = 1, 2, 3, are germs of smooth functions with zero 2-jets at the origin.
We set

j3M1 = a30x
3 + a31x

2y + a32xy
2 + a33y

3,
j3M2 = b30x

3 + b31x
2y + b32xy

2 + b33y
3,

j3M3 = c30x
3 + c31x

2y + c32xy
2 + c33y

3.

Theorem 7.2 Suppose that j2ω = (xy, εx2,−3εxy+cy2), ε = ±1, c 6= 0,±2 if ε = −1,
c 6= 0 if ε = 1. Suppose further that (b33 − 2ca33) 6= 0. Then ω is topologically
determined by the 2-jet of its coefficients and is topologically equivalent to one of the
following normal forms

(i) (xy,−x2, 3xy + 3y2) Table 4 first colum second row,
(ii) (xy,−x2, 3xy + y2) Figure 4 first colum third row,
(iii) (xy, x2,−3xy + y2) Figure 4 first colum fourth row.

Proof We start with the case the case ε = −1. We consider the directional blowing-
up x = uv, y = v and x = u, y = uv.

The blowing-up x = uv, y = v:
The new BDE is given by ω0 = (u, v)∗ω = ādv2 + 2b̄dudv + c̄du2 with

ā = (u3 + cu2 + u)v2 +M3(uv, v)u2 + 2M2(uv, v)u+M1(uv, v),

b̄ = (2u2 + cu)v3 +M2(uv, v)v +M3(uv, v)uv,

c̄ = (3u+ c)v4 +M3(uv, v)v2.
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We can write ω0 = v2(A1, vB1, v
2C1) with

A1 = u3 + cu2 + u+ v(N1(u, v) + 2N2(u, v)u+N3(u, v)u2),

B1 = u(2u+ c) + v(N2(u, v) +N3(u, v)u),

C1 = 3u+ c+ vN3(u, v)

where Mi(uv, u) = v2Ni(u, v), i = 1, 2, 3. The quadratic form ω1 = (A1, vB1, v
2C1) is

a product of two 1-forms, and to these 1-forms are associated the vectors fields

Yi = A1
∂

∂u
+
(
− vB1 + (−1)i|v|

√
(B2

1 − A1C1)
) ∂
∂v
, i = 1, 2. (20)

Here, as we factored out v twice, it follows that Y1 is tangent to the foliation
associated to f1(ω) if v is positive and to that associated to f2(ω) if v is negative;
while Y2 is tangent to the foliation associated to f2(ω) if v is positive and to the
associate to f1(ω) if v is negative.

We study the vector fields Yi in a neighbourhood of the exceptional fibre v = 0.
The fields Yi are only defined in the regions where the discriminant δ = B2

1−A1C1 ≥ 0.
On v = 0, this means that

u(u3 − 3u− c) ≥ 0.

The above segment of the exceptional fibre is an integral curve of both fields Yi, i =
1, 2. The discriminant δ has two roots if |c| > 2 and four roots if |c| < 2.

We start with the case |c| > 2 and take c > 2 (the case c < −2 is topologically
equivalent to the case c > 2). The singularities of Y1 on v = 0 occur when A1(u, 0) = 0,
that is, when

u(u2 + cu+ 1) = 0.

Thus, Y1 has singularities at u = 0 and u± = (−c±
√
c2 − 4)/2.

At u+ = (−c+
√
c2 − 4)/2, we have B1(u+, 0) =

√
c2 − 4 (−c+

√
c2 − 4)/2 < 0, so

that

−vB1 − |v|
√
B2

1 − A1C1 = −vB1 − |vB1|
√

1− A1C1/B2
1

= −vB1 + |v|B1 −
A1C1|v|

2B1

+ A2
1g(u, v)

for some germ of a smooth function g with a zero 1-jet at the origin. When v > 0,
Y1 is singular along the curve A1(u, v) = 0. We consider the vector field Ỹ1 = Y1/A1.
Then Ỹ1 has no singularity. When v < 0, Y1 has a saddle singularity at (u+, 0).

Similarly, Y1 has a saddle singularity at (u−, 0) if v > 0 and no singularities if
v < 0.

The singularity of Y1 at u = 0 occur at the point of intersection of the exceptional
fibre with the branches of the blown-up discriminant. We change variables and set
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t = v, s2 = B2
1 −A1C1, with s ≥ 0. The 2-jet of the vector field (s, t)∗Y1 is equivalent

to

(−s+ Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v > 0

(s+ Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v < 0, (21)

where Λ1 = b33 − 2ca33. The singularity of (s, t)∗Y1 is a saddle-node provided Λ1 6= 0,
and its integral curves are as in Figure 4.

t

s

t

s

Figure 4: Integral curves of (s, t)∗Y1(s ≥ 0), Λ1 > 0 left, and Λ1 < 0 right.

The singularities of Y2 on v = 0 occur when A1(u, 0) = 0, that is, when

u(u2 + cu+ 1) = 0.

Therefore, Y2 has singularities at u = 0 and u± = (−c±
√
c2 − 4)/2.

At u+ = (−c +
√
c2 − 4)/2, we have B1(u+, 0) =

√
c2 − 4 (−c +

√
c2 − 4)/2 < 0.

Following the same arguments for Y1, we can write

−vB1 − |v|
√
B2

1 − A1C1 = −vB1 + |v|B1 −
A1C1|v|

2B1

+ A2
1g(u, v)

for some germ of a smooth function g with a zero 1-jet at the origin. When v < 0,
Y2 is singular along the curve A1(u, v) = 0. We consider the vector field Ỹ2 = Y2/A1.
Then Ỹ2 has no singularities. When v > 0, Y2 has a saddle singularity at (u+, 0).

Similarly, Y2 has a saddle singularity at (u−, 0) if v < 0 and no singularities if
v > 0.

At u = 0, we change variables and set t = v, s2 = B2
1 − A1C1, with s ≥ 0. The

2-jet of the vector field (s, t)∗Y2 is equivalent to

(s+ Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v > 0

(−s+ Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v < 0 (22)
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s

t

s

t

Figure 5: Integral curves of (s, t)∗Y2(s ≥ 0), Λ1 > 0 left, and Λ1 < 0 right.

where Λ1 = b33−2ca33, as for Y1. The singularity of (s, t)∗Y2 is a saddle-node provided
Λ1 6= 0, and its integral curves are as in Figure 5.

The blowing-up x = u, y = uv:
Consider the coefficients of the BDE as in (19). Then the new BDE is given by

ω0 = u2(u2A1, uB1, C1) with

A1 = v + uN1(u, uv),

B1 = v2 − 1 + u(N1(u, uv)v +N2(u, uv)),

C1 = v3 + cv2 + v + u(N1(u, uv)v2 + 2N2(u, uv)v +N3(u, uv))

where Mi(uv, u) = v2Ni(u, v), i = 1, 2, 3. The quadratic form ω1 = (u2A1, uB1, C1) is
a product of two 1-forms, and to these 1-forms are associated the vectors fields

Xi = (u2A1)
∂

∂u
+
(
− uB1 + (−1)i|u|

√
(B2

1 − A1C1)
) ∂
∂v
, i = 1, 2.

These vector fields are tangent to the foliations defined by ω1. It is clear that we can
factor out the term u in Xi, with an appropriate sign change when u < 0. The vector
fields

Yi = (uA1)
∂

∂u
+
(
−B1 + (−1)i

√
(B2

1 − A1C1)
) ∂
∂v
, i = 1, 2,

are then considered. It is easy to see that Y1 (resp. Y2) has a node singularity (resp.
has no singularities) at the origin.

We can now draw the integral curves of the fields Y1 and Y2, as illustrated in Figure
6, top figures, and blow down to obtain the configurations of the integral curves of the
associated BDE (Figure 6, bottom figures).

We consider now the case |c| < 2. The singularities of Yi, i = 1, 2 on v = 0 occur
only at u = 0. At u = 0, the vector fields Yi have a saddle-node singularity as in (21)
and (22). The configurations of the integral curves of Yi are as in Figure 6 right, top
figures. Blowing-down yields the configuration of the integral curves of the original
BDE.
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Y1 Y2 Y1 Y2

Figure 6: Configurations of the integral curves of the BDEs when ε = −1: |c| > 2 left,
and |c| < 2 right and their associated blowing up.

Y1 Y2

Figure 7: Configuration of the integral curves of the BDEs when ε = 1 and its associ-
ated blowing up.

The case ε = 1 follows similarly and the configuration of the integral curves is
given in Figure 7.

2
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