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1 Introduction

1.1 The problem

In this thesis we deal with nonlinear elliptic boundary value problems of the form

—Au = f(z,u) in Q
Ou _
on , (1.1)
or n 69
u=20

where Q is a bounded domain in R,

It is well known that the solvability of (1.1) depends essentially on the interaction of the
nonlinearity f(x,s) with the spectrum of (—A).

In recent years it was discovered that for nonlinearities with different slopes at +o0c and —oo
also the so called Fucik spectrum plays an important role. This nonlinear spectrum is given
by the set ¥ of the couples (AT, A7) € R? such that the following equation (with Dirichlet or
Neumann boundary conditions) has nontrivial solutions:

—Au=Atut = A"u=  in Q
ou
ou _
on , (1.2)
or in 89
u=20

where v (z) = max{0,u(z)} and v~ (z) = max{0, —u(z)}.

The notion of Fu¢ik spectrum was introduced in [Fu¢76] and [Dan77]; for AT = A~ the
problem becomes linear and admits nontrivial solutions for AT = A\~ = )., being {\; }xen the
sequence of the usual eigenvalues of the operator; from these points arise curves belonging to
the Fucik spectrum and in most cases it may be proven that the whole spectrum is composed
by such curves.

To know the Fué¢ik spectrum is important in many applications, for example in the study of
problems with “jumping nonlinearities”, that is nonlinearities which are asymptotically linear
at both 400 and —oo, but with different slopes.

Such problems were first considered in [AP72], where the nonlinearity is assumed to cross the
first eigenvalue, that is the slope at —oco is below and the slope at +o00 is above A\; (Ambrosetti-
Prodi problem). The authors showed that such problems have, in dependence of a parameter,
either no or two solutions.

Like for the usual spectrum it is important to have a variational characterization of the
Fucik spectrum: this allows one to obtain interesting results for sublinear perturbations of the
equation, since these characterizations are stable under such perturbations. Results of this kind
may be found in [CG92, dFR93, dFG94, CdFG99], however these papers deal only with the first
nontrivial curve of the Fucik spectrum or with the periodic case on an interval.

Here, in section 4, we give a variational characterization of parts of the Fuc¢ik spectrum for
problem (1.2), in particular we prove:
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Theorem 1.1. Suppose that the point (at,a”) € R? with a™ > o~ is Y-connected to the
diagonal between A, and Axy1 in the sense of definition 4.1 on page 33, then we can find and
characterize one intersection of the Fuéik spectrum with the halfline {(at +t,a~ +rt), t > 0},
for each value of r € (0,1].

Moreover, some properties of this characterization will be proven, in particular we will show
in section 4.3 that it characterizes a branch of the spectrum connected to the point (Agi1, Agt1)
and that this branch is monotone decreasing.

In the one dimensional case we also prove that the intersection stated in theorem 1.1 is
actually the first, that is the one with smallest ¢, on the halfline {(a™ +t,a™ + rt), t > 0} (see
section 5.3).

To prove theorem 1.1 we will find a nontrivial solution of the Fuéik problem as a critical
point @ of the following functional defined in the Hilbert space H = H(Q) (resp. H = H} ()
with Dirichlet boundary conditions):

W= [Vl —at [@2—a [y, (1.3)

Q, = {u € H sit. /Q(u+)2 +ru)? = 1} ; (1.4)

constrained to the set

indeed by the Lagrange’s multipliers rule this critical point u will satisfy the equation
At =a e —a"u +t(at —ru) in (1.5)

with the considered boundary conditions.

A linking structure between a set homeomorphic to the boundary of a k-dimensional ball
and another set homeomorphic to a subspace of H of codimension k, will prove (through a
deformation lemma) the existence of such a critical point and that the Lagrange’s multiplier ¢ is
positive. These sets will be obtained using a technique similar to the one described in [DR9S|.

The second main result of the thesis concerns the following superlinear equation with Neu-
mann boundary conditions:

—u" = u+ g(x,u) + h(z) in (0,1)

| (1.6)
w(0)=u'(1)=0
where
€ C%([0,1] x R),
g€C([0,1] xR) (1)
limg oo 225 — 0, Timy o 2259 — 400
uniformly with respect to x € [0,1], and h € L?(0,1).
We will compare it to the Fu¢ik problem
—u”" = Atut —A"u™ in (0,1)
(1.7)

w'(0) =4 (1)=0
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and, taking advantage of the fact that in this case theorem 1.1 gives a characterization of the
whole Fucik spectrum and that this may be explicitly calculated, we will prove, in section 5,
existence results for problem (1.6). The proof uses the variational characterization above to
make a comparison of these minimax levels with those of the functional associated to problem
(1.6), in order to prove the existence of a linking structure for this last functional, too. A
fundamental ingredient in the proof is the compact inclusion H C C°([0, 1]).

Some additional hypotheses on the growth at infinity of the nonlinearity g will be needed
to obtain the PS condition for the functional associated to problem (1.6): defining G(z,s) =

Iy 9(x,€)d€, we ask

30 € (0, ;) , s0>0 st 0<G(z,s) <0Osg(z,s) Vs> sp; (H2)

ds1 >0, Cop >0 st G(z,s) < %sg(x,s) +Cyp Vs< —sp. (H3)
For certain “resonant” values of A also the following hypothesis will be needed:
dpo >0, Mo eR sit. G(x,s)+h(x)s< My a.e. xze€[0,1], Vs < —pp. (HR)
The exact statement of the results is this:

Theorem 1.2. Under hypotheses (H1), (H2) and (H3), if \ € ()}Tk, )‘kjl) for some k > 1, then
there exists a solution of problem (1.6) for all h € L*(0,1).

Theorem 1.3. Under hypotheses (H1), (H2), (H3) and (HR), with h € L?(0,1), A = % for
some k > 1, then there exists a solution of problem (1.6).

It is important to remark that the values % correspond to the asymptotes of the curves that
compose the Fucik spectrum of problem (1.7).

In section 6 we also discuss how theorems 1.2 and 1.3 may be extended to the case of radial
solutions on an annulus, with radial coefficients of course (theorems 6.2 and 6.3).

Then in section 7 and 8 we consider the same kind of problem for other operators, in par-
ticular in section 7 for the multi-Laplacian operator, that is the higher order operator (—A)™
with m = 2,3, ..., while in section 8 for the p-Laplacian operator, that is the nonlinear operator

|s|P~2s s #0

0 s=0

For the multi-Laplacian operator (with suitable boundary conditions) we first adapt the
variational characterization of the Fuéik spectrum given in theorem 1.1 (theorem 7.7), then we
obtain a result corresponding to theorem 1.2 with £k = 1 (theorem 7.17), valid also for sets
Q C RY with N > 1 provided the relation between N and m is such that the space H™(Q)
is included at least in C°(f2)); finally we consider the case N = 1 and m = 2 and we describe
qualitatively the Fuéik spectrum for this case (following the results in [CDO01]) and with it we
obtain again results corresponding to theorems 1.2 and 1.3 (theorems 7.34 and 7.35).

For the p-Laplacian operator we obtain results corresponding to theorems 1.1, 1.2 and 1.3
for the one dimensional Neumann problem, but only with & = 2 and p > 2 (theorems 8.23 and
8.24).

Finally in section 9 we give the complete proof of the PS condition for the functional asso-
ciated to problem (1.6) and to its multi-Laplacian and p-Laplacian version for p > 2.

—V - [1)(V)] where p > 1 and 9(s) =
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p-Laplacian.

Results similar to [dFR91] may be found in [Vil98], where the result is also extended to the
p-Laplacian with p > 1 in any dimension N < p. Thus our result on the p-Laplacian is an
extension of this work.

A far more extensive analysis of these works is given in section 3.
In section 2 and in the appendix we give a review of techniques, results and definitions used
throughout the work.

1.3 Acknowledgments

The author wishes to thank his advisors Professor Bernhard Ruf and Professor Djairo Guedes
de Figueiredo for the help and encouragement during the work, Professors D. G. Costa, J.-
P. Gossez, M. Matzeu, K. Payne and P. Ubilla for the useful suggestions and comments, and his
colleagues at Milan and Campinas for stimulating conversations.

The work was prepared part at Universita degli studi di Milano and part at UNICAMP,
Campinas (SP), Brazil.

The period at Campinas was partially supported by Istituto Nazionale di Alta Matematica
“F. Severi”: Gruppo Nazionale per ’Analisi Matematica, la Probabilita e le loro Applicazioni
and Progetto Giovani Ricercatorsi.



2 Short introduction to the calculus of variations

The purpose of this chapter is to give a short review of the classical results that will be used in
the following.

Moreover the definitions of some of the objects used here are given in the appendix.

Let us start by considering the model elliptic problem

—Au= f(z,u) in Q
ou
du _
on , (2.1)
or in 89
u=20

where (2 is a bounded domain (that is, a non empty connected open set) in RY, 99 denotes its
boundary and n the unit outer normal; we just suppose for the moment that 02 is Lipschitz
continuous and f : 2 x R — R is Carathéodory, that is:

e the function f(-,s): Q2 — R:z+— f(x,s) is measurable for all s € R;
e the function f(z,-): R — R:s+— f(z,s) is continuous for almost every z € .

In the following we will call H the space H'(f2) when considering the Neumann problem
(boundary condition % = 0) and H}(Q2) when considering the Dirichlet problem (boundary
condition u = 0).

We will define
Definition 2.1.

e Classical solution: u € C%(Q) NCY(Q) (or u € C3(Q) NCQ) for the Dirichlet case)

satisfying pointwise the conditions in (2.1).

e Weak solution: u € H such that

/Vqu:/f(:c,u)v for all ve H. (2.2)
Q Q

Actually (provided everything above is well defined) multiplying the equation in (2.1) by the
function v € H, integrating by parts and using the boundary condition (in the Neumann case)
or the definition of the space H} (in the Dirichlet case) to get rid of the boundary term, it is
clear that any classical solution is a weak solution too; we will see in section 2.2 that with some
regularity conditions on 2 and f the converse is also true.

Note that the choice of the space H guarantees that fQ VuVu exists and is finite, while in
general some more hypotheses on f will be needed to give sense to the integral on the right
hand side of the (2.2) for any u,v € H: this is usually achieved by growth conditions at infinity
like |f(z,s)| < A+ B|s|” where 0 = ¥£2 (for N > 3), being N the dimension of the set , by
virtue of the Sobolev embedding theorems.
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2.1 Variational approach

I(u) = ;/ \vu|2—/QF(;c,u) (2.3)

(where F(xz,s) = [ f(z,£)d€) is a well defined C'(H,R) functional, then we have a one to one
relation between the weak solutions of (2.1) and the critical points of I: that is those u € H
such that the Fréchet derivative I'(u) = 0.

Then the method of the calculus of variations consists in seeking solutions of (2.1), through
the study of the geometry of the functional in (2.3).

If the functional

2.1.1 Free critical points of minimum type

The first possibility is to find local minima of the functional: the existence of a global minimum
may be guaranteed by the following theorem (see for example [Str96])

Theorem 2.2.
1. E reflexive Banach space;
2. I:E—RU{+o0};

3. I coercive, that is:

4. I sequentially weakly lower semicontinuous, that is:
if {fup} C E and u, — u, then I(u) < liminf, 4 I(uy);

Then there exists u € E such that I(u) = inf,ecp I(u) > —oo.

Idea of the proof. One uses the coercivity to prove that a sequence which realizes the inf has to
be bounded; then (by reflexivity) one extracts a subsequence weakly convergent to some u € E
and finally uses lower semicontinuity to assert that [(u) = inf,cp I(u). O

2.1.2 Free critical points of minmax type

If the functional does not admit global minima, or if one is interested in finding other critical
points, then different techniques should be used.
Let us define, for a functional I € C'(E,R), E being a Banach space,

Definition 2.3.
e K.={u€ FE such that I(u) = ¢ and I'(u) = 0};
e A. = {u € FE such that I(u) < c}.
Moreover define

Definition 2.4.

e Palais-Smale (PS) sequence for I:
{un} C E such that |I(u,)| < C and I'(u,) — 0.
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o The functional I satisfies the PS condition:
For each PS-sequence there exists a (strongly) convergent subsequence.

This last property (first introduced by Palais and Smale in [PS64, Pal63, Sma64]) is required
to have some compactness in the problem: actually, if the functional is C', it guarantees that if
we are able to prove the existence of a sequence of “almost critical points at level ¢” (that is a
PS-sequence), then there has to be a critical point at level c.

Remark 2.5. In order to have a lighter notation, when passing to a subsequence, we will always
continue to denote it with the same index as the previous sequence.

The fundamental tool to prove the existence of a critical point will be the following defor-
mation lemma (see for example in [Rab86]):

Lemma 2.6 (Deformation Lemma).
1. E Banach space;
2. I € CHE,R);
3. I satisfies the PS condition;
4. ceR;E>0;
5. K. =10.
Then there exist € € (0,€) and n € C([0,1] x E, E) such that:
a. n(0,u) =u VuekE;
(t,u) = V(t,u) such that I(u) ¢ [c —E,c+E|;
c. n(t,-) : E — E is an homeomorphism V't € [0,1];
d. (1, Acye) € Ac—e.

Using this Deformation Lemma one can prove the existence of critical points considering the
geometry of the functional.
The general idea is:

e consider a class I' of subsets of F,

define ¢ = inf gcr sup, e 4 I (u),

give conditions such that one can build the deformation n such that n(1,A4) € I' for all
Ael,

finally obtain a contradiction between the infsup characterization of ¢ and the fact that,
if K. were empty, one could find a A € I' such that sup,c, 1 4) I(u) <c

The most classical example is the following (see [AR73]):

Theorem 2.7 (Mountain Pass Theorem).
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1. FE Banach space;
I € CHE,R);
1 satisfies the PS condition;

1(0)=0;

SN

dp,a > 0 such that I(u) > « for all u such that ||u||p = p;
6. Je € E such that ||e||g > p and I(e) < 0.
Moreover, let
o I'={ye€C%0,1]; E) such that v(0) = 0 and (1) = e};
o ¢=infyersup;cpqyL(7(1))-
Then ¢ > « and K. # 0, that is there exists a critical point at level c.

Idea of the proof. Since ||0||p < p < ||e||g, for all v € T there exists ¢ such that ||y(¢)||z = p and
then

sup I(v(t)) > « Vyel. (2.4)
te(0,1]

Now suppose K, = ): choose £ < § and apply the deformation lemma, obtaining a value

¢ < & and the deformation 7 such that n(1, Acy.) € A.—e. Then select a . € T such that
SUPyen. (f0,1]) L (u) < ¢+ ¢ and consider 7(1,7:(-)):

e by property c. of the deformation lemma 7(1,7:(-)) € C°([0,1]; E);

e by property b. of the deformation lemma (since ¢ — & > § > 0), we get
77(17'75(0)) =17:(0) =0 and 77(1a'76<1)) =7:(1) =e,

e by property d. of the deformation lemma sup, e, ~.(o,1)) {(#) < ¢ — &;
then n(1,7:(-)) € I' and so the last inequality contradicts the definition of c. O
A more general theorem is the following (see [Wil96])
Theorem 2.8.
1. E Banach space;
2. I € CY(E,R);
3. I satisfies the PS condition;

4. K compact metric space, Kq closed subset of K, fo € C(Ky, E) such that

sup I(fo(p)) < 0; (2.5)
pEKo

5. T = {y € CYUK;E) such that v|k, = fo};
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6. ¢ = infersup,er I1(7(p)) > 0.
Then K. # (), that is there exists a critical point at level c.

Proof. Consider the same idea as before, where the hypotheses sup,cx, I(fo(p)) <0 and ¢ >0
guarantee the possibility to make a deformation leaving unaffected 7|, so that n(1,~(:)) € T’
for all y € . O

A classical sufficient condition to obtain the last hypothesis above is the following linking
structure:

e JW C FE such that

* I‘WZOé>O,
*WNy(K) #0 for all v €T

we say then that the sets W and fy(Kp) link.

2.1.3 Ekeland variational principle

Even more powerful tools to find PS sequences are the Ekeland variational principle and the
minmax principle that follow (see [MW89)]):

Theorem 2.9 (Ekeland variational principle).
M complete metric space;

¢: M — RU {400} lower semicontinuous;

¢ = infyen o(u) # £oo.

Given any € > 0 and u € M such that

p(a) <c+e, (2.6)
there exists v € M such that
p(v) < ¢(a), (2.7)
(i, v) < Ve, 2.

d(w) > ¢(v) — Ved(w,v) for any w#v, we M.
Moreover if M is a Banach space and ¢ € C*(M,R) one gets from (2.9) that
16" (W)l < Ve (2.10)

Theorem 2.10.

E Banach space, I € C*(E,R);

K compact metric space, Ko C K and closed, fy € C(Ky, F).

Assume that T' = {y € C(K, E) such that v|x, = fo} is a complete metric space.
Suppose

c=inf max I(u) >c; = max I(u). (2.11)
veT uey(K) u€ fo(Ko)
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Given any € > 0 and 5 € I' such that

max I(u) <c+e, 2.12
max I() (212)
there exists v € E such that
c—e<I(v) < max I(u), (2.13)
uey(K)
dv,5(K)) < VE, (2.14)
')l < Ve. (2.15)

2.1.4 Constrained critical points

The same constructions made in lemma 2.6 and in the following theorems, may be made if one
restricts to a manifold in the space E defined by M = {J(u) = b}, J being a C!(E, R) functional.
For this topic see [CAFG99] and the references therein.

In this case the concept of critical (and “almost critical”) point will be given by the Lagrange’s
multipliers rule:

Definition 2.11. @ is a critical point of I constrained to M :
3t, s € R not both zero such that sI'(u) = tJ'(u);

Remark 2.12. If the constraint is such that J'(u) # 0 on M, then definition 2.11 may be
replaced by the simpler one:

3t € R such that I'(a) = tJ'(u).
An equivalent formulation of this last condition is:

infier [|I'(w) — tJ'(@)|| g = 0.

Definition 2.13. {u,} C M is a PS-sequence for I constrained to M:
o [[(un)| <C,

e there exist two sequences {t,},{sn} C R, with the property that, for each n, t, = 1 or
sp =1, such that spI'(uy) — tpJ' (uy) — 0.

Remark 2.14. Again for the case J'(u) # 0 on M the second condition reduces to:
there exists a sequence {t,} C R such that I'(u,) — tpJ' (u,) — 0,
or equivalently infier ||’ (un) — tJ' (up)|| g — 0.

With these definitions, a result analogous to lemma 2.6 guarantees that we may find a
deformation n € C([0, 1] x M, M) with the same properties given there, which then allows one to
prove theorems analogous to 2.8 to find critical points of I constrained to M, while analogous
to theorem 2.9 and 2.10 allow one to prove the existence of a point v € M with the property

I1'(0) | < VE replaced by infieg |[1'(v) — tJ'(0) | 5 < V.



2.2.  Regularity of the weak solutions 15

2.2 Regularity of the weak solutions

Let us see now how one can obtain sufficient conditions in order to prove that a weak solution
is a classical solution too.
We need the following result (see [Bre83)):

Definition 2.15. Let:
Q={(x1,2"): xR, 2 eRV"L |m|<1, [2]<1},
Qt ={(z1,2") e Q: =z >0},
Q" ={(z1,2) €Q: =z =0}.
We say that the set Q C RY is of class C™, where m € N, if for any x € 0N there exists
a neighborhood U of x and a one to one map M : Q — U such that

MeC™Q), M‘teC™U), MQH=UNQ and M(Q")=UnNoN. (2.16)

Lemma 2.16. Let u be a weak solution of the problem

[ _Au= h(z) in Q
ou
du _
on , (2.17)
or in 8Q
u=0
where h € H™(Q) and Q of class C™*2 for some m =0,1,2, ..
Then we have the estimate
]l gmra < Call 2 + 17l gm) s (2.18)

that is (for Q of class C™*2), h € H™ = uw € H™*2.

Remark 2.17. If Q does not have the required regularity then the estimate (2.18) has to be
replaced by

lll gssge) < Clw) (ruum n uhuHm(m) , (2.19)

where w s any open set such that w C Q: the reqularity is guaranteed only in the interior of ).

In this case @ may not satisfy the differential equation in the classical sense, but the H?
regularity in the interior of ) allows one to integrate by parts in (2.2) when v € C§°(2) and so
to obtain that the equation is satisfied almost everywhere in €.

Now let us see how we may apply lemma 2.16 to problem (2.1): once we have proved the
existence of a weak solution 4 € H! of (2.1), if the regularity of f is such that f(z,u(z)) € L?
for any u € H' and Q is regular enough, then the above lemma implies @ € H?.

This idea may be iterated until f and 2 are regular enough to guarantee that f(x,u(z)) € H™
for w € H™*!, obtaining u € H™ 12,

Finally if this “boot strap argument” may be iterated a sufficient number of times to conclude
that 4 € H™ where m is such that H™(Q2) C C%(Q), then integration by parts and the use of
appropriate test functions in (2.2) yields that u is a classical solution too.
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2.3 Eigenvalues of the Laplacian

In the study of problems like (2.1) it is usually important to consider the spectrum of the
operator, that is the set ¢ C C of those A (eigenvalues) such that there exist non trivial
solutions (eigenfunctions) of the problem

( —Au=Xu in Q
ou
du _
on . (2.20)
or in 8Q
u=~0

We resume here some known results on the matter, considering only the case 2 bounded
(see[Eva98]):

e The eigenvalues are all real and nonnegative and form a discrete set unbounded from
above.

e For each eigenvalue A, the set N(A) of the related eigenfunctions is a finite dimensional
subspace of H. The dimension of this eigenspace is called the multiplicity of the eigen-
value. Distinct eigenvalues have orthogonal eigenspaces (in the H scalar product, and
in the L? scalar product). Moreover (by a boot strap argument) the eigenfunctions are

always C*°(Q2) and, if Q is regular, also C* ().

e There exists a first eigenvalue, it is simple (that is its multiplicity is 1) and the related
eigenspace is composed of multiples of a function strictly positive in (2.
We will use the convention to order the eigenvalues in a nondecreasing sequence { A }x=12, .,
repeating each one of them according to its multiplicity, and to denote by ¢ one generator
of the corresponding eigenspace, chosen such that ¢1 > 0, ||¢g||;2 = 1 and < ¢, ¢, >2=0
for k # h.

Note that for the Neumann problem A\; = 0 and ¢; = const, while for the Dirichlet problem
A1 > 0.

Another important property is that the sequence of the above chosen eigenfunctions is an
orthogonal basis for the space H, that is, any v € H may be written in a unique way as
u =31 ¢;; with {¢;} € R. Moreover |[uf|7. = 325% ¢ and ||Vul|7: = 357 Mic?.

A classical result showing the importance of the interaction between the function f(x,u) and
the spectrum of the operator is the following linear result:

Theorem 2.18 (Frehdolm alternative).
Let f(x,u) = M+ h(z) with h € L*(Q), then we have

e if A & o, then there exists a unique solution of problem (2.1);

e if A\ € g, then solutions exist if and only if < f,¢ >r2=0 for all p € N(X); moreover if u
is a solution, then 4 + w is a solution too if and only if w € N()\).

We now give an example of what may happen in the nonlinear case:
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Theorem 2.19.
Consider problem (2.1) with f(x,u) = g(u) + h(x), g € CY(R,R), h € L*(Q), and such that

o lim, 4o 42 = )\ € R,

e there exists M > 0 such that |g(s) — As| < M VseR;

then

e if \ & o (nonresonant case) there exists a solution for any h € L?;
if moreover ¢'(R) No = () then the solution is unique (no interaction with the spectrum);

e if A\ € o (resonant case) then, splitting h = ht + hy with hy € N(A\) and ht € N(\)*,
one has that for any h', there exists a set S(h*) C N(X) such that a solution exists if and
only if hy € S(h*).

Moreover one can give sufficient conditions to have hy € S(h*) (nonresonance condi-
tions).

The simplest case of resonance is A = A, where one has the result (obtained in [LL70]):

Theorem 2.20.
1If:

e there exist and are finite M* = lim, 4 g(s) — A s,

o Mt <g(s)—As< M~ VseR;
then there ezists a solution of problem (2.1) if and only if —M~ fﬂ D1 < fﬂ h¢r < —M™T fQ o1,
that is S(h*) = {c¢1 such that c € (—M—,—M™) [, ¢1}.
2.3.1 Variational characterization of the eigenvalues

The eigenvalues of the Laplacian may be characterized variationally: we will describe here one
possible version of this characterization, because it is the one which will be adapted later to
obtain new results.

The first eigenvalue may always be characterized as

AL = inf{/ |Vul|? : we H; ull2 = 1} . (2.21)
Q

For the other eigenvalues, if we consider a point a € (\g, Ax+1) and the functional J, : H — R

Jao(u) :/Q|Vu|2—a/ﬂu2 ) (2.22)

we have a natural splitting H = V @ W, where V = span{¢1, .., ¢r}: taking 0Br2 to be the
boundary of the unit ball in L? norm in H, one obtains that there exists > 0 such that

Jo(u) < —p <0  foralluedBpNV (2.23)
Ja(u) > pllul|f; >0 forallueWw (2.24)



18 SECTION 2. Short introduction to the calculus of variations

and that the two sets link.
The existence of this structure allows to characterize the eigenvalue Ax1q as

Met1 =a+ inf  sup Jg(u) , (2.25)
7€ uery (BK)

where the family I' is defined as

F={y: B¥ — B2 continuous s.t. Yogr @S an homeomorphism onto 0Br2NV}
(2.26)
and B¥ = {(x1...,2;) € RF s.t. Zle r? <1}

2.4 The multi-Laplacian operator

Let us consider now a higher order problem: instead of the operator —A we consider an integer
power of it, namely (—A)™:; in dealing with such problems we will use the notation V**u = APy
and V#tly = v(Ahy).

Here the natural definitions of solution will require more regularity than with the Laplacian,
in particular:

e a classical solution must be at least C>™(£), in order to compute A™ pointwise,
e a weak solution will be in H™(Q) so that the integral [, [V"™u|? is well defined;

actually multiplying (—A)™u by v, integrating by parts m times and supposing everything is
regular enough to give sense to the passages, one gets

/Q(—l)mVZmu v=(-1)™ 'm (_1)2‘—1/

(V2m_iuvi_1v) “Negt + / AVATAVA TN (227)
P 09 Q

For this problem one also has to give more boundary conditions: the natural sets of boundary
conditions are those that make zero the boundary terms coming out from the integration by
parts, then for each ¢ = 1, ..., m one may choose whether to impose

e when i is even V2" iy = 0 or Vi~ u - negy = 0;
e when i is odd V*" " - negr = 0 or Vi—lu = 0.

The choice to impose a derivative of order higher than m — 1 automatically makes zero the
corresponding term in equation (2.27) since these derivatives appear for the solution u, the other
choice appears for the test function v in equation (2.27), but being on a derivative of order lower
than m it may be imposed in the choice of the space which will then result to be

H™Q)={ue H™"(Q?) such that Bu=0}, (2.28)

where we call B the operator that maps u to the vector of the traces on 0f2 of the derivatives
of order strictly lower than m that we choose to impose.
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2.5 The p-Laplacian operator

Here we want to recall another largely studied operator: the p-Laplacian; we will consider, for
p > 1, the model problem

( —Apu:=-=V-[Y(Vu)] = f(z,u) in Q
ou
=0
on (2.29)
or n OS2
u=20
|s|P~2s s#0
where 9(s) = . Obviously for p = 2 we have again the usual linear operator
0 s=0

Laplacian, while for p # 2 this operator is nonlinear (actually —A,(au) # —aAyu).

If we want to do the same kind of work as done in section 2.1 for the Laplacian we are led to
define as weak solutions of problem (2.29) those functions v € W (where W = W1P(Q) in the
Neumann case and WO1 P(Q) in the Dirichlet case) such that

/w(Vu)Vv:/f(x,u)v for all ve W, (2.30)
Q Q
the space W is chosen in order to give sense to the integral in the left hand side, while as

before some more hypotheses on the growth at infinity of f will be needed to guarantee the
wellposedness of the right hand side.

The “natural” eigenvalue problem for this operator is

V- [(Va)] = A(u) in
du _
on , (2.31)
or in 09
u=~0

actually the two sides of the equation have the same degree of homogeneity and so if @ is a
nontrivial solution then so is tu for each ¢ € R. In this sense we will call “i-linear” the rate of
growth of ¢ and “i-superlinear” (resp. “i-sublinear”) the higher (resp. lower) rates of growth.

Much less is known about this operator than in the case p = 2. Actually we lose many
useful properties we had for p = 2: W is no longer a Hilbert space and so we have no notion of
orthogonality, and while any multiple of an eigenfunction is still eigenfunction, this is no more
true for the sum of two eigenfunctions related to the same eigenvalue.

For the Dirichlet problem it is known (see [Ana87] and [Lin90]) that there exists a first
eigenvalue A\; for (—Ap, W), that it is simple and isolated and that the related eigenfunction ¢;
does not change sign.

This first eigenvalue may be characterized as

A1 = inf {/ |Vul? : weW; |ull,,= 1} . (2.32)
Q
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Then there exists a diverging sequence of eigenvalues which may be characterized variation-
ally (see [MPO1]), but it is not clear in general whether this sequence constitutes all of the
eigenvalues or not.

The one dimensional case is studied in [Dra92], where is shown that both the usual and the
Fuéik spectrum has the same qualitative shape as in the linear case (p = 2); this is due to the
possibility of using here too the uniqueness for the solution of the initial value problem.
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3 Jumping nonlinearities and the Fucik spectrum

In this section we will give some results about the main theme of our work. In particular we will
discuss the Fuc¢ik spectrum and problems involving the Laplacian operator and nonlinearities
asymptotically linear at both 400 and —oo but with different slopes or asymptotically linear at
—o0 and superlinear at +oc.

The notion of Fuéik spectrum was introduced in [Fu¢76] and [Dan77]; it is defined as the set
¥ C R? of points (AT, A7) for which there exists a non trivial solution of the problem

—Au=Atut = X"u=  in Q
ou
du _
on , (3.1)
or in 0N}
u=20

where u™(z) = max{0, u(z)}, v~ (z) = max{0, —u(z)} and  is a bounded domain with Lipschitz
boundary.

For A* = A\~ the problem becomes linear and admits nontrivial solutions for At = A\~ = \;;
from these points arise curves belonging to the spectrum and in most cases it may be proven
that the whole spectrum is composed by such curves.

To know the Fucik spectrum is important in many applications, for example in the study of
problems with “jumping nonlinearities”, that is nonlinearities which are asymptotically linear
at both 400 and —oo, but with different slopes.

3.1 Computation of the Fuéik spectrum in dimension one

In the one dimensional case the Fucik spectrum may be completely calculated.

Let us start by considering the Dirichlet case: solutions to the boundary value problem
(BVP)

—u" = Xtut —X"um in (0,1)

u(0) =u(l) =0

(3.2)

may be sought considering the initial value problem (IVP) w(0) = 0, u/(0) = do, for which we
have existence and uniqueness of the solution.

Define 1) 4+ and 1) _ the solutions of the IVP with, respectively, dg = 1 and dy = —1, such
that any other solution will be dgy + for dy > 0 and doy — for dp < 0.

So ¥y 4 will be \/%sm( Atz)in [0, \/%] and then —\/%sin(\/ A (x— \/7;\7)) in [\/7;\7, \/7;7-1-
\/%] (such that it is differentiable in \/%) and then will continue with a sequence of analogous

positive and negative bumps. 1 — will be built in the same way, but starting with the negative
bump —\/%sin(\/ A~ x).

So the Fuéik spectrum will be composed by the points ¥ C R? such that Pr4(1) =0 or
¥y (1) = 0, which gives (for ¢ = 1,2, ..) the following curves:
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Figure 1: Fuéik spectrum for one dimensional Dirichlet problem.
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where >9; corresponds to solutions with ¢ positive and ¢ negative bumps, starting either positive

or negative, E;‘i_l corresponds to solutions with ¢ positive and ¢ — 1 negative bumps, starting

positive and X;;, ; to solutions with 7 — 1 positive and 7 negative bumps, starting negative.
VE

We plot in figure 1 this spectrum, where the axes have been moved to 2.
The Neumann case can be built from the IVP «(0) = ¢, v/(0) = 0 and seeking solutions with
u/(1) = 0, obtaining the curves in R?

> o At =0, (3.6)
X AT =0, (3.7)
(k—1m (k=17

N (3:8)

for k = 2,3, .., where Ef correspond respectively to the positive and negative constant solutions,

Xk
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Figure 2: Fuéik spectrum for one dimensional Neumann problem.

10

while 3, for k = 2,3, .. to solutions with (k—1) positive and (k—1) negative half-bumps, starting
either positive or negative.

This spectrum is plotted in figure 2, again with @ as axes.

Note that in both cases these spectra are composed by the two lines Ef : {AT = )\} and
Y1 : {A7 = A1} (corresponding respectively to the nontrivial solutions ¢; and —¢;), and then
by other curves, all lying in the quadrant {\* > \;}, arising from each point (\;,\;), j = 2,3, ..,
which are continuous, symmetrical with respect to the line {\*™ = A~} and monotone decreasing.

The asymptotes of these curves are located, for the Dirichlet case, at the values

AT =N for 5, Yo, X34, (3.9)
A =X for 3,1, Sai, X5, (3.10)

and for the Neumann case at

)\_:% for Xy, (3.11)
A*:% for %y. (3.12)

3.2 Fucik spectrum in higher dimension

In the case of higher dimension less is known: X is always a closed set symmetrical with respect
to the line {A\T = A~ }; the lines {\™ = A1} and {\™ = A1} are still in ¥ while it cannot contain
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Figure 3: Known parts of the Fu¢ik spectrum in higher dimension.

any other point with At < A\ or A~ < \y; moreover we still know (see for example [Dan77],
[Ruf81], [GK81] and [Ma90]) that in each square (Ap_1, \gtms1)?, Where \g_ 1 < Ap = ... =
Metm < Akt+ma1, from the point (Mg, A\g) arises a continuum composed by a lower and a upper
curve, both decreasing (may be coincident); other points in ¥ N (Ag_1, Mermy1)? can only lie
between these two curves (and hence in the open squares (Ar_1, A\x)? and (Arim, Meyme1)? there
never are points of ). Something more can be said about the lower part of the continuum
arising from (Ag, A2): see [dFG94].

In [BNFSO01] it is proved, under a non-degeneracy condition (which was first introduced in
[Mic94] and [Pis97]) that the whole spectrum is composed by curves arising from a point (Ag, \x),
never intersecting and going to infinity; this non-degeneracy condition is discussed in [Pis97],
where it is proved that it holds for ‘almost all’ (in a suitable sense) domains; however in general
it seems not possible to arrive at the same conclusion.

For a larger bibliography about the Fucik spectrum see also [Sch00].

We sketch in figure 3 the known parts of the Fuéik spectrum in the general multidimensional
case.
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3.3 Problems with jumping nonlinearities

Here we briefly discuss some results on the solvability of the nonlinear problem

[ Au=Atut —Au + g(u) 4+ h(z) in Q
ou
du _
on : (3.13)
or in 0f)
u=20

where |g(s)| < ¢1 + c2|s|” with o € [0,1) and h € L?().
Remark 3.1. If we call f(u) = ATu™ — X\"u™ + g(u) then the nonlinearity f(u) satisfies

im L) \- im 1) (3.14)

s——00 8§ s——+oo 8

and is usually called a jumping nonlinearity.

Consider the Dirichlet case and define Ty : Hy — Hy such that < Thu,v >p= A" f[outo -
A~ Jqu v note that for (AT,A\7) ¢ ¥ the equation u — Thu = 0 has only the trivial solution
and this allows one to define the Leray-Schauder degree d(u — Thu, Br(0),0) for any R > 0.
Dancer, in [Dan77], defines the following subsets of R?\X:

o A1 ={(\", A7) e RAX s.t. d(u — Thu, Bg(0),0) # 0},

e Ay = {(AT,A7) € RA\X s.t. Jh € L? for which problem (3.13) with ¢ = 0 has no
solutions},

and proves that

o A; N Ay =0, actually if the degree is not zero then one has a solution for any h € L?;

e Aj and A are open; A; is the union of components of R?\X, but is is not known whether
R2\Y = A; U A3 or not;

e all the components of R2\Y which contain a segment of the diagonal {A\* = A~} are in
Au;

e the two quarters of plane {A* > A\, A~ < Ay, } and {AT < A1, A= > Ay, } are in Ag;
actually the variational equation with test function ¢ gives [VuVg; — AT [uT¢y +
A Ju g1 = (M = A7) futdr + (A — A1) Ju"¢1 = [ he¢r and so (since ¢ > 0) the
assumptions on (AT, A7) imply a necessary condition on the sign of [ h¢.

Remark 3.2. Note that the same necessary condition on the sign of [ h¢1 arises if we
consider €% +\"u with A\~ < A1 in place of \Tu™ —X"u", that is a nonlinearity superlinear
at +0o and asymptotically linear at —oo with slope smaller that A;.

e if we add the sublinear perturbation g we have that:

— for (AT, A7) € A; there still exists a solution for any h € L2
— for (AT, A7) € Aj there still exists a h € L? s.t. the problem has no solution.

The same results may be extended to the Neumann boundary conditions.
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3.3.1 Dimension one

Going to the already seen one dimensional case one can deduce that

e in the Neumann case, only {\" > A\, A\~ < Ay, } and {AT < A\, A~ > Ay, } are in As, since
all the other components of R?\Y contain a segment of the diagonal,

e for the Dirichlet case

— the regions between X; and the upper part of Zifl or between Xo; and the lower
part of Zgzi 41 are in A; since they contain a segment of the diagonal,

— the regions between Z;_l and X, ; are in Ao.

Actually Dancer proves that:

Lemma 3.3. Whenever (A, A7) is such that ¢ 1+ (1)1x _(1) > 0 (which by the way corresponds
to the regions between X3, | and S5, ) there exists a h € L? such that problem (3.13) with g =0
has no solution.

Idea of the proof.
First one observes that 1y (1)¥ (1) > 0 implies that there exists zg € (0,1) such that

Uat(@)¥r—(2) >0 Va € [zo,1]; (3.15)

in fact if we consider a point between E;_l and X5, ; with AT > A\~ (the case AT < A~
analogous) we will have

(i—D)
At AL , (3.16)
A+ R <1

that is 1) + makes ¢ positive bumps, i — 1 negative ones and then a piece of a negative one, while

1,— makes i — 1 negative bumps, i — 1 positive ones and does not complete the last negative

) (i—1)mw
bump; so we have ¥4 (z) < 0 in (\/F T A 1.

Now let h = x([zg, 1]).

Since h(x) = 0 for = € [0,z0), any solution of the IVP uq(0) = 0, u/,(0) = d is exactly as in
the homogeneous case in [0, zo] and so satisfies uq(zo) < 0.

After this one proves that there exists 4 > 0 such that ugy(z) < 0 in (29, zo + &4) and finally
shows that in fact the equation implies ug(z) < 0 in (29, 1] Vd € R. O

3.4 The PS condition and the Fucik spectrum

Another important property related to the Fucik spectrum is the following: if we want to solve
variationally problem (3.13), we are led to consider the functional

:;/Q|Vu]2—)\2+/g(u+)2—/ /G / 7 (3.17)
whre G(s) = [; g(

We may prove that
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Lemma 3.4. The functional (3.17) satisfies the PS condition, provided (AT, A7) ¢ ¥

Proof. We take a sequence {u,} C H, and ¢,, — 0" such that

i [ [ [0 fm

o VeV = X* fo i o+ A Jou ) = foyaun)o = foho| < eu ol Yo H .
(3.19)
We will first prove that the sequence u,, is bounded in H: suppose the contrary, then we can
assume ||uy |y > 1, |uy||y — +oo and define z, = Hiﬁlﬁ’ so that z, is a bounded sequence in

<C (3.18)

H and then we can select a subsequence such that z, — zg weakly in H and strongly in L?.
<F/(un)7v>
llunll g

/QVzan—)\JF/Q(zf{)v—i-)\/ﬂ(zn)v

where the whole right hand side goes to zero and then taking limit and using the weak conver-
gence of z, one obtains

/QVzon — AT /Q(zar)v + A~ /Q(zo_)v

that is z¢ is a solution of the Fuéik problem, which implies zg = 0 if (AT, A7) ¢ X.
<F'(un),zn>

Then if we consider we get

| Jo 9(un)vl + | Jo hol + en [[0]l

<
[tnl| 7

, (3.20)

=0 Ywe H, (3.21)

But this is not possible since considering Tl We get
‘/ |V 20 |? —A*/(z;)Q —)\/(20_)2 -0 (3.22)
Q Q Q
which now implies [, [Vzp|? — 0, but this is a contradiction since it would give 1 = 2|3 — 0.

Thus u,, is bounded and so there exists a subsequence such that w, — u weakly in H and
strongly in L?.
Finally, with v = u,, — u we get

/QVunV(un —u) —/Q(ﬁu,t —A"u) ) (up — u) —/Qg(un)(un —u) —/Q h (un —u) — 0, (3.23)

where now all terms except the first go to zero.
We conclude that ||Vuyl||;2 — ||Vul/;2 and then u, — u strongly in H. O

3.5 The Ambrosetti-Prodi problem

One interesting and largely studied problem with jumping nonlinearities is the so called Ambro-
setti-Prodi problem, that is problem (3.13) with A~ < A\; < A*: when the nonlinearity interacts
with the first eigenvalue.

We have already seen that in this case there are functions for which there is no solution, but
one can find more.

The first results about this problem were obtained in [AP72]; later Dancer, in [Dan78§|,
extended such results proving by topological degree techniques that splitting h = h'- 4+t ¢1 with
(h*, ¢1) 12 = 0, one has that for any h*, there exists a #(h') such that
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e for t > #(h*) there exists no solution,
o for t = f(h') there exists at least one solution,
e for t < #(h*) there exist at least two solutions;

moreover if f(u) = ATu™ +X"u" + g(u) is strictly convex and A < Ao one obtains respectively
exactly one and exactly two solutions in the last two cases.
In [dF84] and [dFS84] the same kind of results are proved by variational techniques:

Idea of the variational proof. Consider the functional associated to problem (3.13) (let us con-
sider only the case g = 0):

J(u) = ;/w? - A;/(qﬁ)? - );/(u_)Q - /hu. (3.24)

Applying the derivative of the functional to ¢; one gets

o = [vavo - [wrorex [uo— [ (3.25)
_ ()\1—A*)/u+¢1+()\_—)\1)/u_¢1—/hgbl

and so it is clear that for [h¢; > 0 this component of the derivative is never zero, and so no
solution can exist.

For [ h¢1 < 0 a first solution is found using sub and super solutions techniques and is proved
to be a local minimum of the functional, then a mountain pass solution is found since one shows

that
)\+
Jim J(t6) = Tim [t2 (; Jiver-5 | ¢%> i f hqm] - (3.26)

- [ (2 ) 1 o] .

3.6 Problems linear at —oo and superlinear at +oco

Now we give a review of results about the case in which the nonlinearity is asymptotically linear
at —oo and superlinear at +o00; we will write the equation as

—Au = Au+ g(u) + h(x) (3.27)

=0 and limg_ 400 @

@ = 400, so that the behavior at —oo is given by the

where limg_,_
parameter .
The results of the previous section (that is with A < A1) may be extended to this superlinear
case, however Dancer’s approach needs strict hypotheses on the growth at 400, while the vari-
ational approach allows one to deal with superlinearities growing faster, but still requires some

technical hypotheses to guarantee the PS condition.
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Observe that this problem may be seen as the limiting case of the asymptotically linear
problem with coefficients (AT, A7) in the quarter of plane {\T > A1, A~ < Ay, }, when AT — +o0,
that is when the nonlinearity crosses all the eigenvalues. Remember that this quarter of plane
is a component of the set Ag, and so the existence of solution only for suitable forcing term h is
coherent with this interpretation.

A different problem is when the nonlinearity crosses all but a finite number of eigenvalues,
that is the case A € (Ag, A\g+1)-

There are several works in which particular cases are analyzed, so that one can see the kind
of phenomena that may happen.

e In [RS86Db] the authors analyze the equation (in dimension one) —u” = Au + (u™)P + t¢y
with Dirichlet boundary conditions, where p > 1; the result is

For A < A\ and t <0 there exist at least 2 solutions.
For A € (Mg, A\g+1) and t > 0 there exist at least 2k + 2 solutions.

In [dP89] a similar result is achieved for radial solutions in a ball.

e In [RS86a] and [CS85] the case g € C(R,R) and with h(x) = t is considered (still in
dimension one with Dirichlet boundary conditions), that is with constant forcing term;
the main result is

For any A € R, chosen n € N there exists t, such that for t < t, one gets at
least n solutions.

e Finally [dF88] considers the case A € (Mg, Ag+1) (here the nonlinearity g is a continuous
function of both z € [0,1] and v € R and the limits for © — +oo are supposed to hold
uniformly in x).

Splitting again h = h' + t¢1, he first proves that

If X > A1, then there exists a t(h™) > 0 such that problem (3.27) has a (negative)
solution for t > t(h*).

Then the problem in dimension N > 2 is treated variationally and so requires suitable
hypotheses on the behavior of the nonlinearity at both 400 and —oo to guarantee the
wellposedness of the functional and the PS condition; moreover the nonlinearity is required
to be C! and such that its derivative do no interacts with the eigenvalues ;...\ (that is
A+ ¢'(s) > A\ + ¢ for a suitable € > 0).

The result is

Under the hypotheses stated above, with X € (AgAry1), there ewists a t(h') >
t(h*) such that for t > t(h') there exist at least two solutions of problem (3.27).

Idea of the proof. The author analyzes a modification of the problem and proves the existence
of a linking structure for the functional associated to this modification.

In particular consider the splitting H& =V e W with V = span{¢;...¢x}: the author finds
suitable p > 0, L > 0, e € W such that
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e W NOB,(0) and the relative boundary of the k 4 1 dimensional rectangle {v + te with
veV, vl <L, t € 0,1]} link,

e J is positive and bounded away from zero on the first of the two sets and non positive on
the second;

this allows one to get another solution by the linking theorem.

However the point e € W must be an unbounded function and so its existence relies on the
fact that H} ¢ L, that is N > 2.
O

3.6.1 Existence for arbitrary forcing term

Note that all the results for superlinear problems of the previous section are just existence results
for suitable forcing terms.

Now we analyze other situations in which one may prove existence of solutions for arbitrary
forcing terms.

In [dFR91] the Neumann problem in dimension one is considered (here too the nonlinearity
g is a continuous function of both z € [0, 1] and v € R and the limits for u — £oo are supposed
to hold uniformly in z).

The result is the existence of a solution for any h € L? when A € (0, %2) = (A1, 2—2)

It is obtained variationally and so needs an additional hypothesis on the behavior of the
nonlinearity at +o0o in order to obtain the PS condition.

The solution is found as a mountain pass critical point: the functional associated to the
problem is such that:

e it is bounded from below in the set N = {u € H*(0,1) such that sup,c[o 1ju(z) = 0}, for
any A < %2,

o limy 1o J(td1) = —00, provided A > 0;

finally, since H*(0,1) C C([0,1]), the set N splits H'(0,1) into two components and +¢; lie on
the opposite sides of it, giving the required mountain pass structure. We remark that here is
where one uses the hypothesis of being in dimension one.

A very similar result, with slightly different hypotheses, is given in [Vil98], where it is also
remarked that the same proof may work for the p-Laplacian analogs of the problem, giving a
solution for any h € LY (¢ being the dual exponent of p) provided A € (0, \*) for a suitable
A* > 0; moreover in the p-Laplacian case the result is still valid in dimension N < p, since this
is the condition that implies W1P(Q) C C(9).

The value %2 that limits the validity of these results is characterized as

. inf{fol /[ with u € H'(0,1); |[ull 22 + [ull30 = 1; [) udr =0 } in [dFR91],

.1 2
Jo U

17
o inf{f0 T with w € HY(0,1); u # 0; supgep,u(z) =0 } in [Vil9g],
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but the most interesting property is that it is the asymptote of the curve X5 of the Fucik spec-
trum, and so a natural interpretation of the result is to consider it as the limiting asymptotically
linear problem with coefficients between X1 and o, when AT — 4o00; actually we have already
seen that this asymptotically linear problem is solvable for arbitrary forcing term too.

In [dFR93] the analogous problem with periodic boundary conditions is considered and is
proved the existence of a solution for any h € L? when \ € ()}T’“, %)

Since the Fuéik spectrum of the periodic case is qualitatively the same of the Neumann one,
this means that A must lie between the asymptotes of two consecutive curves; then the result
may again be interpreted as the limiting asymptotically linear problem with coefficients between
Y and Xgy 1, when AT — +4o0.

Moreover the proof is indeed obtained through a variational characterization of the Fucik
spectrum, that furnishes the estimates needed to apply the deformation lemma and so to find a
critical point of the related functional.

Unfortunately this characterization makes use of the invariance of the eigenspaces of the

operator with respect to translation, and so may not be adapted to other boundary conditions.

Going back to Neumann boundary conditions, a small step forward is given in [Per00], where
it is proved that the same result of [dFR91] is still valid if A € (%2, A*) for a suitable \* > %2;
this A* is obtained by compactness argument and so there is no estimate about its value. To
prove this result the author finds a subset of N with codimension 2 in H, where the functional is
still bounded from below if A € ( %2, A*) and then finds a second set linking with the first where

it is lower.

To our knowledge no results of this kind for larger values of A\ are available.

We just cite [AV95] [Per00], where similar problems are analyzed, but where the existence
of a first trivial solution is guaranteed by more restrictive hypotheses and so the interest is in
finding nontrivial ones.

3.7 Variational characterizations of the Fuéik spectrum

As for the usual spectrum it is important to have a variational characterization of the Fuéik spec-
trum: this allows one to obtain interesting results for sublinear perturbations of the considered
problem, since these characterizations are stable under such perturbations.

We have already cited the variational characterization of the Fuéik spectrum in dimension
one with periodic boundary conditions given in [dFR93] and its application to the superlinear
problem.

In [dFG94] and [CAFGY99] the lower part of the first nontrivial curve of the Fucik spectrum is
characterized for, respectively, the Laplacian and the p-Laplacian; the characterization is then
used both to obtain a better description of the spectrum and to find existence results for a
nonlinear problem where the nonlinearity lies asymptotically in a square between (A1, A1) and
a point of the obtained curve.

In [Sch00] the lower and the upper curves coming out from an eigenvalue (A, A\;) are charac-
terized for the Laplacian in any space dimension, but just in the square (Ar_1, Agrmr1)? being
m + 1 the multiplicity of Ag, so that it may not be applied to superlinear problems.
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Finally in [MPO1] some pieces of the Fuéik spectrum of the p-Laplacian near to the diagonal
are characterized.
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4 A variational characterization of the Fucik spectrum

In this section we want to obtain a variational characterization of parts of the Fuc¢ik spectrum
for the Laplacian with Neumann or Dirichlet boundary conditions, in any spatial dimension.

Recalling the variational characterization of the eigenvalues of the Laplacian described in
section 2.3.1, what we intend to do now is to build suitable sets to play the same role played
there by 0B;2 NV and W, but now with the functional

Jo(u) :/Q|Vu\2—a+/g(u+)2—a/g(u)2 , (4.1)

with (o™, a~) € R?, constrained to the set

Qr = {u €H st. /Q(qu)2 +r(u)? = 1} ; (4.2)

with r € (0, 1].
This procedure will indeed result in the following characterization of a point in the Fucik
spectrum:

Theorem. 1.1. Suppose that the point (a™,a~) € R? with a™ > a~ is L-connected to the
diagonal between A\ and Apy1 in the sense of definition 4.1, then we can find and characterize
one intersection of the Fuéik spectrum with the halfline {(a™* +t,a™ +rt), t > 0}, for each value
of r € (0,1].

The new sets mentioned above will be obtained in section 4.1 as a deformation of the previous
ones, using a technique similar to the one described in [DR9S8].
Then the variational characterization will be done in section 4.2.

4.1 Construction of the linking structure
Let (a*,a”) € R? be Y-connected to the diagonal between Ay and A; 1, that is:

Definition 4.1. (at,a™) ¢ 3 is X-connected to the diagonal between N\ and \y1 if:
Ja € (Mg, Ar1) and a Ct function o @ [0,1] — R? such that:

a) a(0) = (a,a), a(l) = (a™,a™);
b) a([0,1])NXE = 0.
Remark 4.2. Since ¥ is closed and «([0,1]) is compact, definition 4.1 implies the property
b’) 3d > 0 such that Ny qNY =0, where Ny 4 = {p € R? such that d(p,a([0,1])) < d}.
This property will be used in the following proofs.

Now consider the Hilbert space H with the norm |u/|?, = Jo IVul® + [ ul?, and the func-
tional

Ta(u) = /Q Vul? — at(t) /Q (W)? — o (1) /Q (u)? (4.3)
= Jullf - (ot () + 1) /Q W =@ 0+ [ @)

Q
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where a(t) = (a(t),a™(t)); then splitting as in section 2.3.1 H =V & W with
V = span{¢1, .., dr}, we have

Jo)(w) < —pllulfy  VueV, (4.4)
Ja(O)(U) ZM”“H?—I VueW,

for some p > 0.
Our aim is to obtain an analogous property for J, ).
We first need a technical lemma:

Lemma 4.3 (from lemma 2.3 of [DR98]).
If (at,a7) is as in definition 4.1, we can find n € (0, ) and 6, > 0 such that:
Vt € [0,1], we H with |ul|y = 1:

Zf Ja(t) (U) S [_nan] then HvuJa(t) (u)HZ - <vu*]a(t) (U), U>Z > (577 .

Proof. Consider a fixed n > 0 and suppose by contradiction the existence of a sequence
{tn} € [0,1] and {uy,} C H, with ||u,||; = 1 such that

0 < ) (un) <0 and [ Vadag) ()3 = (Vadag) (), un)y; =0 (46)

as n — +00.
Define j, = <VuJa(tn)(un), un>H = 2Jo(t,)(un) € [—27n,2n]; from Pythagoras’ theorem
deduce that

2 .
||vu<]a(tn)(“n)”%{ - <vuJa(tn)(Un)7 un>H = HvuJa(tn)(un) - ]nunH%Iv (4.7)

then evaluating the norm in the right hand side considering the points in H as operators on H
one concludes that

(1 = §0) Uy V) g — (@ (t) + 1)/ wiv, 4+ (o (t,) + 1)/ u, vy — 0 (4.8)
Q Q
for any bounded sequence v, C H.
Up to a subsequence we may say that j, — j € [-2n,2n], t, — to € [0,1] and u,, = u € H
(strongly in L?); taking the limit of (4.8) with v, = u,, gives

1—j= (a+(to)+1)/

Q
where 7 < 219 < 1 and then v is not trivial.

From equation (4.8) with arbitrary test function and using the weak convergence of u,,, we
get

(W) + (™ (t0) + 1) / (w)? (4.9)

Q

(1—j)(u,v>H—(1—j)/QVqu+uv— <a+(t0)+1)/gu+v—(a<t0)+1)/ﬂuv, (4.10)

that is u is a solution of the Fué¢ik problem with coefficient (

Oﬁl(tf).“ O‘il(tfj)*j), but this con-

J J
tradicts remark 4.2 for small enough choices of 7, since |j| < 27, limj_,o(%) = a and t( takes
values in a compact set.

O]
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Then as in [DR98] we consider the ordinary differential equation for the unknown function
0:[0,1] x H— H : (t,u) — o¢(u):

d —
4y (u) = M Fy(oy(u)) 7 (4.11)
oo(u) = u

where
e M is a suitable positive constant, defined as M = 2K 52/ 0y, with
* K = supyepoq(Ja™ @) + [a=(@)']),
*S=(\+ 1)_% = SUPyc 1\ {0} %;
e F;: H — H is defined such that

* it is locally Lipschitz,
* there exists a constant L > 0 such that ||Fy(u)||; < L |lul|y for all t € [0,1], u € H,

*

Fi(u) = Vudo@y(u)  where LI010 >n/2

2
[l

(4.12)
_ Ja(t) (W)
Fi(u) = =VuJo@)(u) where “lE < —n/2
Ul
4.1.1 Construction of Fi(u)
Be S the unit sphere in H and
A = { , ) € [O, 1] xS Ja(t)(u) < —T]/Q}, 13)
Ay = {(bw)€[0,1]x S Jog(u) = n/2}; 114)
then define x : [0,1] x S — [—1,1] as
_ ( 5 )aAl) B d((tvu)vAQ)
x(t,u) = (6 ). Ay) + d((E ). Ay) (4.15)
so that
-1 for (t,u) € Ay
x(tu) =19 1 for (t,u)e Ay . (4.16)
s € (—=1,1) otherwise
Moreover

Lemma 4.4 (from lemma 2.4 of [DR98]).
X 1s Lipschitz continuous.
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Proof. All the distances are bounded and Lipschitz continuous, so we just need to prove that
the denominator in (4.15) is bounded away from zero.

If it were not so, we could get sequences {(t
Hun —u — 0; but this gives

} C A; (i = 1,2), with |t} — 2| — 0 and

n’ 'I'L)

nlly

NS o) (03) = o (uh) < [[a2lf7 = sl + Jnax {lo(r O |27 = el
< 2fJunllr = llunll | +2 max (oI} [lunll o = lfunll ] < €l = unlly =0 -
contradiction.
]
Now let
Fy(u) = X6 i )Vuda@wy (w) - for u#0 : (4.17)

0 for u=20

Lemma 4.5 (from lemma 2.5 of [DR98]).
Fis locally Lipschitz continuous in the two variables (t,u) € [0,1]x H and there exists a constant
L > 0 such that ||Fy(u)|| g < L||ully for allt € [0,1], u € H.

Proof. First note that both statements are true for the function V,Jq)(u) since it is linear in
uwand aft) € Cl([() 1]):

o |Vudawy (@)l = supjey,, =1(Vudaw (1), v) < (1+max cjo{lea(n)}) ullg = Ly [[ullz,
o let HuHH vl £ R and t,s € [0, 1], then

1V Ta () = Voo @) 7 < (Lﬂggﬁmvm)nu—wH+3ﬁ§wva4#u—ﬂ.

)

Now let 0 < [[ull; < ||vll; < R:

then Hi\lulﬁ ~ ol
H vllg

and so by lemma 4.4

(i) = ()| = (1)

Then we evaluate

I =B = [ (1 ) P = x (s ) Vot

(5 iy ) Tt =X (5 i ) Tt )

u v
= t77 - INTIRTEE V J
- ‘X< IIuIIH) X<S \|U||H>‘H o) (W]

+ [ Vada@ (1) = Vodags) (v

[ull g < llu =2l

H

M

— v
CLy (H o 7% + !ts) ull y + D(R)(lu— vl + |t — s]) .
H

IN
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which implies that Fi(u) is Lipschitz in sets where ||| is bounded.
The case u = 0 is equivalent to ||Fy(v)||y < L v 4.

Now by the given properties of F' it follows that (4.11) generates a continuous flow o;(u)
with the properties:

e 0,(0) =0 and o¢(u) # 0 Yu # 0,
e Vt, oy: H — H is an homeomorphism.
Moreover

Lemma 4.6 (from lemma 2.6 of [DR98]).
Defining O4(u) = W, we have that, firing u,
t H
©(u) is increasing (resp. decreasing) in the variable t in any interval [t1,ta] such that

n/2 < Oy(u) <, VEE [t1,ta]  (resp. —n < Oy(u) < —n/2, Vt € [t1,9]).
Proof. Consider the case /2 < O4(u) < n: then the flow is defined by

& o1(u) = MY Ty (00(u) (4.18)

for all t € [t1,t2].
Then we have (we will omit the dependence on u in the notation)

dO, 1 |:8Ja(t) (o) d d 1
- + (Vudaw (01), o) | + Ja@w(08) = | —=
dt ol L0t O Gy O3 \ ol
1 —_ —
N W |:_a+(t)/ /Q(O—;r)z -« (t)/ /Q(Ut )2 + <VU‘]a(t) (Ut)7 MVuJa(t) (Ut)>H:| -+
tilH
(Vuda)(01), 00) 1 ( 2 d )
+ - <Ut7 70‘t>H
2 ol dt
> _KSQ + M ||vu=]a(t)(0't)H%{ . <vuJa(t)(o't),o't>%{ - _KSQ s
- loe 17 ool = "

By the choice made above M > KS?/ 0y, the proof of the first part is done.
In the case —n < O¢(u) < —n/2 the proof follows the same ideas. O

Finally denote o1 (u) with 74(u) (to remember its dependence on «), to obtain

Lemma 4.7 (from equation (2.9) and lemma (2.7) of [DR98]).

Ja)(Ta(w) < —nlTa(u)l; for allueV ; (4.19)
Jay(Ta(w) =0 |Ta(u)|[7; for allue W ; (4.20)
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VR > 0, 7o(W) links with R7,(0BY) where BY. is the unit ball, in the H-norm, of V.

Proof. Equations (4.19) and (4.20) follow easily from lemma 4.6.
For the linking property we need to prove that:
Vy €' = {y: R1o(BY) — H continuous and s.t. y(u) =u for u € Ro(0BLY)}, there exists
a point @ € v(R7o(BE)) N 1o (W).
We start by proving that
Eralu) £ Ta(v) (421)

for any u € OBY, v € W and ¢ > 0: actually if it were not so, from equations (4.19) and (4.20)
we would get 7 [[7a(v)[|F < Jam)(Ta(v) = Jo@)(€7a(w) = EJaq)(Ta(u)) < —n€?||7a(w)ll;
which implies u = v = 0: contradiction since u € 8B‘k/.

Now define P to be the orthogonal projection of H onto V' and consider the map H; =
Poryto(1+ (R—1)t)7s: property (4.21) implies that H; # 0 on OB% for any t € [0,1] and
then deg(Hy, BY,0) = deg(Ho, BY.,0) = deg(Id, BY.,0) = 1.

Now for any v € I, deg(P o 7, 0y o R, B‘k/, 0) = 1 since on (‘?B‘k/ the function is exactly
Hy, and then there is a point p € Bf such that v(R74(p)) € Ta(W).

O

Finally we prove one more property that we will need later:
Lemma 4.8. Ifu eV oru e W, and £ > 0 then 74(&u) = E7o(u).

Proof. From lemma 4.6 and 4.7 and equations (4.11) and (4.12) we have that in these two cases
the equation just contains the gradient of J, ).
If we take u € V, then the flow is defined by

%at(u) = —MVyJy@(ot(u))

(4.22)
oo(u)=ueV
Consider then the change of variable o = k7 with k > 0: equation (4.22) becomes

kLm(u) = — MV yJop (kmi(u

fm(u) k(W) o)
kmo(u) =u eV

and considering the linear positive homogeneity of VJ,(;) it can be simplified to obtain

d
2m(u) = —MVoydom (me(u
() (t)(me(u)) | (4.24)

mo(u) =u/k eV

which is the same equation as (4.22) with a different initial condition: then oy(u) = kmy(u) =
koi(u/k).
The case u € W is treated in the same way. O
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Figure 4: Theorem 1.1.

4.2 Construction of the variational characterization

Here we use the results of section 4.1 to obtain a variational characterization of some parts of
the Fucik spectrum.

The result is the one stated in theorem 1.1, clearly the cases a™ < o™ and r € [1,+00) can
be done in an equivalent way.

Note that in the one dimensional case, since the spectrum is known, (a™, ™) may be taken
anywhere between the continuous curves arising from a point (\g, A\x) and the ones arising from
(Ak+1, Akt1) (see figures 1 and 2 on pages 22 and 23).

In the multi dimensional case one has to be more careful, but X-connection may be assured

at least for (a®,a™) in the square (Ag_1, Merms1)? (being \e_1 < Ap = oo = Mot < Megms1)
when it is not between (or on) the lower and the upper curve arising from (A, A;) (see figure 3
on page 24).

In figure 4 we sketch graphically, in the one dimensional Neumann case, the meaning of
theorem 1.1: the bold curve is «([0, 1]) and the dashdotted half line is {(a* +¢,a™ +7t), t > 0}
(we are considering A™ on the vertical axes and A~ on the horizontal one).

We will obtain the characterization imitating that of A;y1 described in section 2.3.1.
We fix a point (o™, ™) X-connected to the diagonal between A\, and A1 and with a™ > o™,
then we apply the results of section 4.1 obtaining the deformation 7, in H, we choose r € (0, 1],
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we split again H =V & W with V' = span{¢1, .., 1} and we consider:

e The set
Qr = {u €H st /Q(u+)2 +r(u”)? = 1} . (4.25)

e The radial projection on @, of the set obtained in section 4.1 by the deformation of dBE,
that is
Loy = P'(1a(0BY)) (4.26)

where P" : u

@ P 2

e The class of maps

To,={v:B" = Q, continuous s.t. v|ygr is an homeomorphism onto La,} ,
(4.27)
where B¥ = {(x1...,21) € RF s.t. Zle z7 <1}

e The functional

Jo(u) = /(Vu)2 —at / (ut)? —a~ / (u™)? . (4.28)
Q Q Q
The idea now is to consider

dor = inf sup Ju(u) (4.29)
’YEFQ,T ue,y(Bk:)

and to prove that it is assumed by a nontrivial solution of the Fué¢ik problem (1.2), which then
corresponds to a point in X.

We first have to prove that the above definitions are well posed and derive some properties
of the defined sets:

Lemma 4.9. For u € @), we have that 1 < fQ u? < 1/r.
Proof. 1= fout)? +r(u")? < fy(u)? + (W) = fyu? < ([t +r(w))/r=1/r. O
Lemma 4.10.

(i) The set Ly, is homeomorphic to OB¥.

(11) Loy C 10(V).

Proof. (i) Since 83{3 is homeomorphic to dB* and 7, is an homeomorphism, we just need to
prove that P" is an homeomorphism when restricted to Ta<8B‘k/).

T ON aB‘k} has the property (see lemma 4.8) that V& > 0, 74(§u) = {74(u), then P is one
to one on 7, (0B and so can be inverted.

Finally P" is continuous together with its inverse because, since 8B‘k/ is a compact set which
does not contain the origin, [, (u")?+7r [(u™)? is continuous, bounded and bounded away from
zero on it.

(ii) The second point is a trivial consequence of lemma 4.8.
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Lemma 4.11. 7,(W) links with L .

Proof. From lemma 4.7 7, (W) links with 7,(9BF).

Then the claim could be false only if for some u € Lq,, £ > 0, and v € 7,(W) we had
&u = v. But by the homogeneity property of 7, in V and W (lemma 4.8) this would imply
£(1a)"Hu) = (74)"1(v) and then u = v = 0, which is impossible since u € P"(7,(B})). O

In the next three lemmas are verified the conditions for the “Linking Theorem” which will
imply the criticality of d, .

Lemma 4.12. The functional J,(u) constrained to Q, satisfies the PS condition.

Proof. Consider the sequences {u,} C Q,, {3,} C R (Lagrange’s multipliers) and &, — 0" such

that
[ ot [@hr—a [
/QVuan —at /Q(u:)v +a” /Q(un)v—i- (4.31)

+ B (/g}uj{v—ru;v)

Since {u,} C Q,, it is a bounded sequence in L?, and then equation (4.30) implies that it is
also a bounded sequence in H. Then there exists a subsequence converging weakly in H and
strongly in L? to some w.

The L? convergence implies that u € Q,..

Taking v = u,, we get that

B+ < /Q (Vin)? — a* /Q ()2 = a- /Q (u,;)2> 0. (4.32)

Then, with v = u,, — u we have

| 05 =) = [ @i~ +a” [ () -+

— [ (Vun)® = [ (uf)? —a” [ (u)? (tyy = 7 ) (un — ) | — 0,
(oo frwir=er fa?) (] )

where all terms except the first go to zero. Then we conclude that ||Vuy,|;2 — [|Vul/;> and
then u, — wu strongly in H. O

<C (4.30)

< €”HU||H7 Yve H .

Lemma 4.13. sup,c,(opr) Ja(u) <0 Vy € Ty
Proof. By lemma 4.7, since 7(8B*) = Ly, C 7,(V) and then J,(u) < —5|ul/3 < 0. O
Lemma 4.14. +00 > sup,c gk Ja(u) > 1 > 0 for each v € T ;.

Proof. By lemma 4.11 there is always a point u € v(B¥) N 7,(W), and by lemma 4.7 we have in
that point J,(u) > 7 |ul/3; considering lemma 4.9 and that u € Q,, this becomes > 7.
Finally it is less than 4-occ since each v(B¥) is a compact set.
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At this point we can state the following standard “Linking Theorem”
Proposition 4.15. The level do, > 1 > 0 is a critical value for Jo(u) constrained to Q.
The importance of the criticality of the level d, , is clarified in the following proposition:

Proposition 4.16. The critical points associated to the critical value dn, are non trivial
solutions of the Fuéik problem (1.2) with coefficients (A\t,\7), where At — at = d,, and
AT —a =rda,.

Proof. Criticality of u implies that there exists a Lagrange’s multiplier § € R such that

/QVqu — a+/Q(u+)v +a” /Q(u_)v + (/Q utv — ru‘v) =0 YveH, (4.33)

but testing against u we get 8 = —d,, and so u solves
—Au=atu"—a u + damzﬁ —doyru” = (o™ + domn)u+ — (o +rdoy)u” (4.34)

in ), with the considered boundary conditions.
Finally u is not trivial since it is in Q),. O

Proposition 4.15 and 4.16 imply that the point (o™ +dy ., o~ +7d,,) belongs to the halfline
{(a™ +t,a” 4+ rt), t > 0} (since dy, > 0) and also to the Fucik spectrum; thus theorem 1.1 is
proved.

Up to this point it is not clear whether this point corresponds to the first intersection (that
is the one with smallest ¢) of the halfline with .
However this is the case when the problem is linear, that is for ™ = o~ and r = 1:

Lemma 4.17. If a = (a,a) with a € (Mg, Agt1) and r = 1, then do, = A\py1 — a, that is the
characterized point (™ + dor, o~ +1day) is indeed (N1, Met1)-

Proof. We just have to exhibit a map 7 € I'(44),1 such that sup,cspr) J(a,a) (W) = Ap41 — a.
Note that in this case @ is the boundary of the unit ball in norm L2, Lg,a),1 is simply

VN Q1 and Jigq)(u) = [o(Vu)? —a [ u?
Then if we consider the map

k k 3
:y\ : Bk — Ql : ([El, ,[Ek) — le¢l + (1 - Z]J?) ¢k+l (435)
1

1

we have:

e 7 € (gq), since for Zlf x? = 1 one has J(z1, ...,zx) € VN Q1,

o J(a,a) (u)h(Bk) < >‘k+1 —a, since a(Bk) - span{géh ooy d’k—f—l} N Ql-
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4.3 Properties of the variational characterization.

Here we want to prove some properties of the variational characterization obtained in the pre-
vious section.

We will make use of the continuity of the deformation 7, with respect to the variable o and
of the projection P, with respect to the variable r to prove the continuity of d,,; then since
when a™ = a~ and r = 1 the characterization was proven to give the eigenvalue \;,; we will
obtain:

Proposition 4.18. Having fized r € (0,1] and « as in definition 4.1, the point in the Fucik spec-
trum determined by the variational characterization in theorem 1.1, that is a(l)—i—(da(l),r, rda(1)7r),
lies in a continuum of ¥ which contains the point a(0) + (da(0),15 da(0),1), that is (Mkg1, Mkg1)-

Moreover, through the monotonicity of the projection P, with respect to the variable r, we
will prove:

Proposition 4.19. Having fized a as in definition 4.1, the curves in R*: (™ +dur, @™ +7do )
with r € (0,1], are non increasing.
Actually s > r implies dor > dos and rdg, < sdq .

4.3.1 Continuity

First note that looking at the definitions in equations (4.26) and (4.27), it is clear that the
projection map: P? : Q, — Qs : u+— NPT CRE gives a one to one relation between the

elements of the two families I'y , and 'y s:

P :Tor —Tas:y— Pion. (4.36)
Now we assert:

Lemma 4.20. Having fized o as in definition 4.1, the function of r: do, @ (0,1] — R is
continuous.

Proof. 1f we consider a sequence 1, — r, with r,,r € (0, 1], then we want to prove that for any
subsequence there exists a further subsequence such that d, , — da,r.

Having fixed the subsequence, up to a further subsequence, 3¢ € [0, 4+00] such that dq ,,, — ¢
we will prove that ¢ = d, ..

o Claim: do, = infyer, , SUp,cqy(pry Jal(u) > c.
Let us suppose that, contrary to the claim, there exists v € I'y ;- such that

d= sup Ju(u)<c. (4.37)
uey(BF)

Then consider

sup  Ju(u) = sup Ja(u)

: 4.38
u€P ™ oy(Bk) u€y(B*) Jouh)2 + 7y fo(um)? (438)
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since u € Q;, the denominator in (4.38) is 14 (r, —r) [(u™)? and then is bounded between
1 and 1+ (r, — r)/r, which tends to 1 for n — +o0; then, since P/" oy € I, ,,,, for any
e > 0 we could find 7 such that for n > n:

dorn < sup  Jo(u) <d+e (4.39)
u€P ™ oy(Bk)

which, if we choose € such that d + ¢ < ¢, contradicts that d, ., — c.

e Claim: dn, < c.

Let us suppose that, contrary to the claim,

dor= inf sup Ju(u) >c. (4.40)
’YEFa,r uepy(Bk:)

Then for any £ > 0 we could find 7 such that for all n > 7n:

— da,r, < c+e (since do, — ©),

— there exists a 7., € I'a,r, such that

sup  Jo(u) < c+2e. (4.41)
UEYe n (BF)

Then consider (for each one of these n)

Ja(u)
sup Jo(u) = sup — (4.42)
UEPY, 072, (BF) weren(88) Jo(uh)? +7 [o(um)?
as before (since r, — r) we can find 72 such that for n > ng:
sup Jo(u) < ¢+ 3¢, (4.43)

u€P] ove n(BF)

but this, since P o7 € ['ap, is in contradiction with the definition of dy - if we choose
e such that ¢+ 3¢ < dqu .

Now note that the properties of the homeomorphisms 7, = o1 : H — H obtained in section
4.1, hold also for oy at any ¢ € [0, 1], that is lemma 4.7 and 4.8 are still valid using o; and J,)
in place of 74 and Jy(1).

Then we can think to make the variational characterization in each point along the curve
a(t) obtaining the corresponding critical values doy(t) -

Now we want to prove:

Lemma 4.21. Having fized r = 1 and the path o(t) as in definition 4.1,
the function of t, du )1 : [0,1] — R is continuous.
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Before giving the proof we need some preliminary lemmas; hereafter we will make estimates

using some constants which will all be denoted by C.
First we need the following estimate for the solution of problem (4.11):

Lemma 4.22. There exists a constant C such that
loe(u) = os(u)llg < Cllullg |t = s|
and
-1
[u—osoo ()|, < Cllully [t —s|
for anyu € H and t,s € [0,1].
Proof. Taking the norm of the differential equation in (4.11) gives

= M ||Fi(oe(u)) | g

oo,

and so

low(u) = os(u)ly < M P | Fr(or(u)llg [t — |-
T7€|0,

Taking the scalar product with oy(u) we get

—lloe(u) 3| = [2M (Fi(or(w), 0¢(w))| < 2M || Fy(oe(w)) |l loe(w)| g

d
dt

so that using the estimate ||Fy(u)||; < L |lull; we arrive at

d
—2M L |loy(u) 3 < 7 loe(u)ll3; < 2M L |o(u) |3

which implies by Gronwall’s lemma
e M loo(u)lly < llow(u)ll gy < e (oo -

Finally
sup || Fr(or- ()l < L sup |lo-(uw)llg < Le™ ully
T€[0,1] T€[0,1]
and so from (4.47)
low(u) — ou(w)lly < MLeM™ Jlully [t — 5] -

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

For the second inequality one simply uses the first one with o, 1(u) in place of u obtaining

Ju—ov0 07 @l < € llo7 )] 1t~

(4.53)

and then use the left part of equation (4.50) with o; ' (u) in place of u (remember that og(u) = u)

to obtain
o W], < ™ flully -

(4.54)
O
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Note that we also have the estimates

loe(w)llze = llos()ligz| < lloe(w) = os(w)llze < llow(u) — os(u)lly (4.55)
< Cllullg [t = s
and
lull 2 = [los 0 077 ()| 12| < C llullgr [t = sl (4.56)

Now note, considering again the definitions in equations (4.26) and (4.27), that given ¢, s €
[0,1] we may define a one to one correspondence between Lo, and Ly),1, considering the
map

T7 :Towyn = Do i = Ploggo O't_l oY, (4.57)

where P! : H — Qq : u+— —4—.
llull 2

Moreover we define the map
S; Q1 — Rium Jyy (Ptoosoo; M (u) — Jag) (w) - (4.58)

Lemma 4.23. Having fized a constant D > 1, let Ap = {u € Q1 such that ||ul|; < D}, then
for any t € [0,1] fized, we have St(u) = 0 and lims_; S§(u) = 0 uniformly in Ap.

Proof. Si(u) = 0 is trivial by the definition.
Now let u € Ap and write

Hu —Plooggo Ut_l(u)HH < Hu — 0y oat_l(u)HH + HUS o at_l(u) —Ploggo Ut_l(u)HH : (4.59)
e the first part is estimated in (4.45), from which

Hu—asoat_l(u)HH <CD|t—s| for uweAp; (4.60)

e the second part is
1

los oo (@)l |

Hasoat_l(u)HH 1-— (4.61)

where
— using (4.50) and arguing as for equation (4.54),
Has oa{l(u)HH < M Hafl(u)HH <M ||, <CD for we Ap;  (4.62)

1

— using that |1 — 1| < 2|z — 1] for |z — 1| < 1,

(4.56) we get

since 1 = ||ul|;» and using equation

1
1- = <2[flos ooy (W) 12 = llull g2 | < 2C [Jully [t = 5| < 2CDJt — 5|
los oo (W]

(4.63)
for [t — s| < 545 and u € Ap.
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So joining (4.60), (4.62) and (4.63) we get that

1 —1 2
|u—Ploosoo; (u)HH <Dt —s| for we Ap and |t—s|< 20D (4.64)
Moreover we deduce from (4.64) that
1
Ploosoo; (u) € Apyy if u€Ap and |t—s| < . (4.65)
C1D?

Finally Ja(t) (u) is

e continuous in the variable u for any fixed ¢, uniformly if we consider it in Apy; (actually
o (@) = Ja@ ()] < [ [ V(u+0)V(u = v)] + max{a™(t),a” ()} [(u + v)(u - v)| <
(14 max{a™(t),a” (1) }2(D + 1) [lu — vl y);

e uniformly continuous in the variable ¢ for any u € Q1 (actually [Jou)(u) — Jo(s)(w)| <
maxe(o,){|a” ()] + o™ (8) [} lull 2 [t — s| where [Jull 2 = 1);
then Jy(4)(u) is uniformly continuous in [0, 1] X Ap41 and then
Si(u) < Co(t —s|+ ||lu—Plooso U{l(u)HH) < Cy(1+C1D?)|t — s (4.66)
provided [t — s| < min{ﬁ, sap+ and u € Ap. O
Now we can give

Proof of lemma 4.21.

If we consider a sequence t, — t, with ¢,,t € [0,1], then we want to prove that for any
subsequence there exists a further subsequence such that dy,)1 — da),1-

Having fixed the subsequence, up to a further subsequence, 3¢ € [0, +-00] such that do(ty),1 —
c¢: we will prove that ¢ = dg () 1-

o Claim: dy ()1 = infyer, ), SUPuey(Br) Ja(r) (1) = c

Let us suppose that, contrary to the claim, there exists v € I'y ;)1 such that

d= sup Jyu)(u) <ec. (4.67)
uey(B*)

This implies that ||ul|; is bounded in «(B¥), that is v(B*) C Ap for a suitable D.

Then consider

sup  Jo,)(u) = sup Ja(tn)(Pl ooy, ooy H(u)) = sup (Jage) () + St (u)) -
ueT, oy (B*) u€y(BF) uery(Bk)
(4.68)
using lemma 4.23 we would get, since Ttt" o~(B*) e La(t,),1, that for any € > 0 we could
find 7 such that for n > n:

da(tn)n < sup  Jog,)(u) <d+e (4.69)
ueT{™ oy(B*)

which, if we choose € such that d + ¢ < ¢, contradicts that dy,),1 — ¢
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e Claim: dy ) < c.
Let us suppose that, contrary to the claim, dyy),1 = infvera(t%1 SUPyery (BF) Jalt) (u) > c.

Then for any € > 0 we could find 7 such that for all n > n:

— da(tn),l <c+e (since da(tn),l — c),

— there exists a yen € I'n(t,),1 such that

sup  Jo ) (u) < c+2e. (4.70)
UEYe,n(BF)

Again this implies that for a suitable D, ~.,(B¥) C Ap for all n > n.

Then consider (for each one of these n)

sup Joy(w) = sup  Jog(Plooroo, (u) = sup (Jaq,)(u) + 57, () :

u€T} ove,n(BF) ) UEYe,n (BF) UEYe,n (BF)
(4.71)
as before (since t,, — t) by lemma 4.23 we could find 75 such that for n > no:
sup Jo(p)(w) < c+ 3e; (4.72)

UETE ove,n(BY)

but this, since Tttn ©Yemn € T'a),1, is in contradiction with the definition of dy) if we
choose ¢ such that ¢+ 3¢ < dq),1-

Joining the previous lemmas we may conclude:

Proof of proposition 4.18.
One just uses lemma 4.17, 4.20 and 4.21, considering first to move along «([0,1]) with r =1
fixed and then to change r with a = (1) fixed.

O
4.3.2 Monotonicity
Proof of proposition 4.19.
By the infsup characterization we have that, for any € > 0, there exists 7. € I'y, such that
doy < zp = sup Jo(u) <do,+e; (4.73)
UE'YS(Bk)
now for s > r we get (since P o, € I'y5)
Ja(u)
das <zs= sup  Jo(u)= sup ; (4.74)
o ’ u€Psoye(BF) ¢ ueye(Br) 1+ (s —7) [(um)?
since for u € @, g = 1+18,‘r < 1+(S_T;[.(u,)2 <1, we get zrg < zs < 2.
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Then we conclude dy s < 25 < 2, < dor + € for any € > 0, that is do s < da -
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Now do the converse: by the inf sup characterization we have that, for any ¢ > 0, there

exists 7. € I'g s such that

doz,s <ws = sup Ja(u) < da,s + €,
u€ve (BF)

now for s > r we get (since P] o, € I'y)

Jo(u)
da,’r <wy = sup Ja(u) = sup —;
u€Provye(B*) u€ve (BF) 1+ (T - 5) f(u )2

. 1 1
since foru € Qs, 1< =) [ )? = T ==

= 7, we get now ws < w, < ws?.

(4.75)

(4.76)

Then we conclude rdy, < rw, < sws < s(da,s+¢) for any € > 0, that is rdy, < sdp,s. O
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5 The superlinear problem

Now, as announced in the introduction, we will consider the Sturm-Liouville equation in dimen-
sion one with Neumann boundary conditions:

—u" =X+ g(x,u) + h(z) in (0,1)

; (1.6)
W (0)=u'(1)=0
where
€ C°([0,1] x R),
geC] (] | ) . (1)
limg oo £2% =0,  limg oo £5% = 400
uniformly with respect to x € [0,1], and h € L?(0,1).
We will compare it to the Fuéik problem
—u”" =Xtut —A"u™ in (0,1)
(1.7)

w'(0) =4 (1)=0

and, taking advantage of the fact that in the one dimensional case the Fucik spectrum may
be exactly calculated, we will prove existence results for problem (1.6). The proof uses the
variational characterization of the previous section to make a comparison of these minimax
levels with those of the functional associated to problem (1.6), in order to prove the existence
of a linking structure for this last functional.

Some hypotheses on the growth at infinity of the nonlinearity g will be needed to obtain the
PS condition for the functional associated to problem (1.6): defining G(z, s) fo x,&)dE, we
ask

1
30 € <0, 2) , So>0 st 0<G(z,s) <Osg(r,s) Vs> sp; (H2)

ds; >0, Cop >0 st G(z,s) < %sg(ac s)+Cy Vs < —s7. (H3)
For certain “resonant” values of A the following hypothesis will be needed as well:
dpo >0, Mo eR sit. G(x,s)+h(x)s< My a.e. xze€[0,1], Vs < —pp. (HR)
The exact statement of the results is this:

Theorem. 1.2.Under hypotheses (H1), (H2) and (H3), if A € (Tk /\’“4*'1) for some k > 1, then
there exists a solution of problem (1.6) for all h € L*(0,1).

Theorem. 1.3.Under hypotheses (H1), (H2), (H3) and (HR), with h € L?(0,1), A\ = ’\’““ for
some k > 1, then there ezists a solution of problem (1.6).

Remark 5.1. The hypotheses (H1) to (H3) are satisfied for example by the function g(x,s) = e®;
in this case, in order to satisfy (HR) we will also need h(z) > 0 a.e.

Another example of a nonlinearity satisfying also (HR) and where there is some more freedom
on h, is when g behaves at —oo as |s|’ with § € (0,1), so that h may be chosen arbitrarily in
L>(0,1).

Remark 5.2. Observe that here again the result in theorem 1.2 may be interpreted as the limiting
asymptotically linear problem with coefficients between ¥y and Y1 when AT — +o00; actually
these problems too have a solution for arbitrary h € L?.
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Figure 5: The setting for the proof of theorem 1.2.

+ i (ata)
— = = {AT =)}
L D =Axt0)
: {)\—:%}

5.1 Proof of theorem 1.2

Consider the superlinear problem (1.6): the idea here is to prove the existence of a non con-
strained critical point of the functional

F(u):;/Ol(u’)2—;/01u2—/01G($,u)—/01hu , (5.1)

which corresponds to a solution of the problem.

We will follow a strategy inspired by [dFR93].

A key role in the proof will be played by the fact that H'(0,1) C C%([0,1]) with compact
inclusion (see, later, the estimate in equation (5.10)); moreover recall that in this case the
asymptotes of each ¥, with £ > 2 are at A\~ = )?Tk and that X lies entirely in A7 > ’\Tf (see
figure 2 on page 23).

This structure of ¥ implies that, having fixed A\ € (
find:

A Akt
40 4

), k > 1, it is always possible to

e a point (o™, o) X-connected to the diagonal between A\, and A\gy1 and such that = < A,

° a5>0suchthata_<)\—6and)\+5<%.

This construction is sketched in figure 5.
Now, using the notation of section 4.2, we define, for R > 0, the family of maps

FC}E,F = {~v*: B¥ = H continuous s.t. v |opr s an homeomorphism onto RL5} .
(5.2)
We want to prove that, for a suitable R > 0, the level
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f= inf sup F(u) (5.3)
€D - uey*(BF)

is a critical value for the functional F.

Remark 5.3. In the definition of Fgf the choice of 7 € (0,1] has no importance: it can be
chosen arbitrarily.

Since h € L? and using hypothesis (H1), we can find constants C;, Cy and C3 as follows:
e (1(d,h) such that

‘A%ugimﬁﬁ4m@m; (5.4)
e (5(d,g) such that
[ 6te. )| < i+ cats. 0 (5.5
e for any M, C3(M, g) such that
/01 G(z,ut) > % Huﬂ‘i? —C3(M,g). (5.6)

To find a Generalized Mountain Pass structure we first need
Lemma 5.4. VC € R we can find R > 0 such that

sup F(u)<C Vy*e I’ff. (5.7)
u€y*(0BF)

Proof. We evaluate, for u € Lo and p > 0,

F(pu) 1 /Ol(u/)2 A /01 u? — Jo G(z, pu) _ Jo hou

p2 2 2 p2 p2
. {fwy_A/whjﬁGmrw>y,$amwﬂ+yﬁmm
2/ 2 Jo P p? P
1/1 N2 /\/1 2 (5/1 2 02(579)>
< 3 w)y'—- [ v+ [ vt —5—
2 0( " 0 4 Jo p?
M [t Cs(M.g) 0 [t 5, Ci(d.h)
_<2/0(U)_ P2 >+<4/0u+ p? )
1/t A—4§ [! M [t C1(8,h) + Ca (0, Cs(M,
< 2/0(u/)2 > | u22/0(u+)2Jr 1(6,h) + 2(p29)+ 3(M, g)
1 A=0+M—at (1 5 A=0-a [' _,
= gl = 2= [ - 2 [

C1+ Cy+ C3(M, g)
+ 2 :
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Now if we fix M = a™ — o~ and consider that J,(u) < 0 and f01 u? > 1 on Ly, we get

F(pu) A—d—a” é((;,()[,g,h)
< — .
2 S 5 + 7 ) (5.8)
where the first part is negative by the choice made for 0 and then we can find the required R,
namely R > W. O
Next we need
Lemma 5.5.
sup  F(u) > —C1(6,h) — Ca(5,9) — 1 Vy* €TH,. (5.9)
uey*(BF)
Proof. Fix a y* € Fff.
Since v*(B¥) is a compact set in a space of continuous functions, we can find
b(v*) = max{|u(z)| : z € [0,1],u € v*(B*)} (5.10)
and then there exists j1y+ > 0 such that
Hyx 2 *
G(z,s) <1+ 5 for all s €0,b(~")] . (5.11)
Then
1 1 5 1
/ G(a:,u)+/ hu < / u? + C1(6,h) + (5.12)
0 0 4 Jo
1 e [ 1
+ / u® + Ca(8,9) + = / (u+)2+/ L,
4 Jo 2 Jo 0
and so

sup F(u) > % sup | </01(u/)2 —(A+9) /01 u? — fi /01(u+)2> + (5.13)

u€y*(BF) u€y*(BF

—C1(8,h) — Ca(0,9) — 1 .

Now if 0 € v*(B*) the sup in the right hand side is clearly nonnegative.
Otherwise we can rearrange the terms in the sup on the right, adding and subtracting
at fol(u+)2 +a” fol (u™)?, defining 7.+ = Mﬁ and collecting fol (ut)? + 1o fol (u™)? >0,

obtaining
su Ja(w) - —at 1u+2 Tyt lu_2
uE“/*(%’“) [(fol(u+)2+7"v* fol(u_)z Arotn )> </0 SR /0 ( )>]( 4)
5.1

Now if the sup of the first part is nonnegative, then is so all of the sup.
Jo (u) . .
is equivalent to sup,c,(pry Ja(u) for some v € T,y .

But SUPueq(84) Ty )
(compare equation (4.27) and (5.2), considering the definition (4.26)); then it is not lower than

the value of dq . . obtained in proposition 4.15.
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S S Y e
However by theorem 1.1, da . . = Ajs —a" = ——— where ()\,Y*,)\,Y*) is a point in X for
Y
A_*_ - .
some h > k+ 1 and ﬁ = Tyx, SO We obtain
ol
A —a”
sup  Jo(u) > Xvi_* —at =21 (5.15)
u€~(BF) Ty

Then remains the calculation
()\i* —at)—(A+6+pp—at) = (A —a7)=(A+d—a7))/ry = (A = (A+9)) /Ty, (5.16)
which is positive for the choice made for §, since the curves Xj with h > k + 1 have all points
with A~ > 2k,
To conclude note that in this way we lost the dependence on v* (and on the values which
depended upon it: 7., )\;ﬁ and /\;*) in the estimates, hence the lemma is proved. O

Remark 5.6. In the above proof we did not make use of the results of proposition 4.18; actually
the unique information that we really need about the characterized intersection between ¥ and
{(a™ +t,a” 4+ ryxt), t > 0} is that it belongs to a branch Xp, with h >k + 1.

The PS condition for F' was proved (using hypothesis (H2)) in [dFR91] for A € (0, %2), and
in [dFR93| (using also (H3)) for any A > 0 in the case of periodic boundary conditions, however
it can be extended to the Neumann case. The complete proof is given, in a more general setting,
in section 9.

Using lemma 5.4 with C' < —C1(9, h) — C2(0, g) — 1, lemma 5.5 and the PS condition, we are
in the conditions to apply a linking theorem that proves the criticality of the level f defined in
equation (5.3), and then theorem 1.2 is proved.

5.2 Proof of theorem 1.3

one has a kind of resonance which creates difficulties for some of the
estimates; actually the proof of lemma 5.4 can be done in the same way, choosing § > 0 such
that o= < A—4, but for lemma 5.5 it would not help to make the same estimates since no choice
of § > 0 would allow to conclude that the expression in (5.16) is not negative.

Thus in this case we need to impose also the hypothesis (HR) and we proceed using the
following estimates:

1
/ G(z,u) +hu < Mo/ 1,
u<—po 0

1 1
/ Gau)+hu < s Glas) / 1+ po / ] = Calhsg).
wE[—po,0] 0 0

s€ [_pO 70] »TE [071]

/L* 1 1 1 1 1 1
/ Gla,u)+hu < M /<u+>2+/ 1+/<u+>2+/ P, Vue (BY):;
u>0 2 Jo 0 2 Jo 2 Jo

then we get, in place of (5.12), that

1 1 /_1,*+1 1 ) 1 1 )
[ e+ [ b= B [t s cuthg) + 1+ [
0 0 2 0 2 Jo

For the values \ = %
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and then we can estimate the sup as done in (5.13) by

1 1 1 1
sup F(u) > 5 sup </ (u')? — )\/ u® — (p + 1)/ (u+)2> + (5.17)
uey*(BFk) uevy*(BFk) 0 0 0

1 1
My— 1= [P~ Cilhg)
0

After this, we make the same calculations we did before, now with r,« = /\ﬂf‘:ﬁ, to
Y

= r,+ such that the

A —a~
conclude that there is a point ()\;L*,)\;*) € Xy with h > k41 and )\1%

«—at

sup is not negative if the following expression is not negative too:
()\j* —at) = A+ py+1—at)= (A —a7) = (A —a7))/ry = (A = A)/ry= 5 (5.18)

but this is actually positive since all points in ¥ with h > k£ 4+ 1 have A= > .

5.3 One more property of the variational characterization in dimension one

Here we will use the same ideas used in the previous proofs to obtain one more property of the
variational characterization made in section 4:

Proposition 5.7. In the one dimensional case, with both Neumann and Dirichlet boundary con-
ditions, fixr € (0,1] and « as in definition 4.1, then the point in the Fucik specrtum determined
by the variational characterization in theorem 1.1, that is a(1) + (da(l)m,rda(l)m), s the first
intersection of the halfline {(a™ +t,a™ +rt), t > 0} with the Fucik spectrum, that is the one
with smallest t.

When there is only one curve coming out from the point (Ag11, Ag+1), that is in the Neumann
case and for k odd in the Dirichlet one, proposition 5.7 is a trivial consequence of proposition
4.18; in the Dirichlet case with k even, that is when two curves (Eﬁrl and X ;) come out from
(Mk+1, A1), we will show that if it were not the first intersection, then one could prove the
existence of a solution of problem (3.13) with (AT, A7) in the region between ZZ_H and X,

k+17
g =0 and any h € L?, contradicting the result of [Dan77] given in lemma 3.3.

Let us work, without loss of generality, with A™ > A~, so that the lower curve is E:H and
the upper one is ¥, |, and let us take (AT, A7) in the region between them.
Take any point (a™,a”) with a™ > o~ and:

e (o, a™) X-connected to the diagonal between A, and Ag.1,
o at < \E,

o 32 €(0,1].

Then choose a § > 0 such that:

o (AT 40,\7 +9) is still below the higher curve (X, ),

e \EF—§>at.
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Figure 6: The setting for the proof of theorem 5.7.

AN

This construction is sketched in figure 6.

Now define the functional associated to the problem:

Flu) = % (/(u/)2 At /(u+)2 e /(u_)2> - /hu , (5.19)

find C1(d,h), as in section 5.1, such that | [ hu| < § | ul[32 + C1(6, h) and use it as in lemma 5.4;
that is, one proves (for fixed 7 € (0,1]) that

Lemma 5.8. VC € R we can find R > 0 such that

sup F(u)<C Vy*e Fff. (5.20)
uEy*(0BF)
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Proof. As in lemma 5.4, for u € L, and p > 0:
F 11 + - ! 'h
Y G Ak AUa s
0 0 0
1t At Aot 5 [t C1(8,h)
< Z N2 _ 2 +2 _ A —\2 9 2 110,
- QAO” 2Lku) 2A(u)+<24u_% p* )
1t /\+—5/1 2 )\—5/1 - C1(6,h)
= - u)® — u')” — u +7
A M e R

< lJa(u) min{\t —d—at AT —d—a"} / C1(8,h)
2 2 2
in{A\T -5 —at AT -6 — C1(6,h
< ~ min{ a a”} N 1( ) )
2 p
and so again by the choice made for § the first part is negative and so we can find the required
R. O

Then notice that

Lemma 5.9. If the intersection of the halfline were a point (87,37) € Y1, then we could
prove that

sup F(u) > —Ci(0,h) Yv* € Ffif. (5.21)
uey*(BF)
Proof. With the same argument of lemma 5.5:
first estimate the sup as in equation (5.13):

su 1 su W) = (T w2 — (O w2 ) —
o Fzg s (fur-or s forr - 000 for) -aen  62)

then define r = :\\Jri% and consider as before (equation (5.14))

su Joe(u) N+ ot 1 ot 9 . 1 . )
uev*&k)[(fol(u+)2+7“fol(U‘)2 e )> ([ [ ))] (5.23)

But now we would have in place of (5.15)

sup Jo(u) > BT —a™ (5.24)
u€y(BF)
where (37, 37) is such that 2 7+ = r, and we are supposing it to be in ¥, ;, so that pE >

M+
So finally (5.16) becomes

BF—a") =\ +d-a")=(B"—a7 )=\ +d—a))/r=(B" (A +8)/r, (5.25)

which would be positive for the choice made for ¢, proving the lemma.
O

To conclude, since (AT, A7) is not in the Fu¢ik spectrum, F' satisfies the PS-condition (see
lemma 3.4) and then one could conclude by a linking theorem the existence of a solution for any
h € L?, giving the contradiction that concludes the proof of proposition 5.7.
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Figure 7: The setting for the proof of theorem 5.10.
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5.4 Non existence of solutions for superlinear problem in the Dirichlet case

In theorem 1.2, we proved that under hypotheses (H1) to (H3) the problem (1.6) had a solution
for any h € L?(0,1), provided A > A\; and not resonant.

Now we want to show, with a counterexample, that a similar result cannot be achieved for
the Dirichlet problem.

We first observe that (consider AT > A7) for any A # \; there always exists AT such that
the halfline Hy = {(A\*,\) with \* > AT} is contained in one of the zones between ¥; ; and
X1

This situation is sketched in figure 7.

Moreover if we fix, for the point (A+, \), the point 2 defined in the proof of lemma 3.3, then

this o satisfies (3.15) for all the points (\*,\) € Hy, since & + (i=m

is a decreasing function

VA VA
of A*; this implies that h = x([xo, 1]) gives nonexistence of solutions for every pair of coefficients

(A, A) € H,y.

Now we can prove:

Theorem 5.10. If X # A, AT such that {(\*, \) with \* > AT} is contained in the zone between
22+z‘—1 and X5;_;, then the problem

—w’ =ATwt —Aw + (e = 1) +h in (0,1)
w(0) =0 (5.26)
w(l)=0

has no solution for h = x([xo, 1]), with xg € ( “Tj + (i?})\)ﬂ, 1).

>
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Remark 5.11. If we set g(s) = (AT — N)sT + (5" — 1) then it satisfies the hypotheses from
(H1) to (H3) and the equation in (5.26) reads as in (1.6).

Then this is indeed a counterexample that shows that theorem 1.2 cannot have an analogue for
the Dirichlet problem; once again this result is coherent with the interpretation of the superlinear
problem as the limiting asymptotically linear problem when A\* — +oo; actually for the Dirichlet
problem if we fit X\ # A1, then the point (AT, \) lies, for XT big enough, in the set As, where
solutions exist only for suitable h € L?.

Proof. Consider the initial value problem wq(0) = 0, w};,(0) = d: we have that in [0, z¢] wq has
negative bumps of length % and positive bumps of a length between 0 and

AT
Actually consider a positive bump, that is compare

—w" = AFwt —Aw™ + (e —1)
w(0) =0 (5.27)
w'(0)=d >0
with
—u" = Atut — A~
u(0) =0 ; (5.28)
W(0)=d>0

™

AT

multiply the first by u, the second by w, integrate by parts in [0, | and subtract: since u > 0

in this interval, if we suppose that w > 0 too we get

/ / v7;+ wt
— = —1Du; 5.29
(v'w — w'u)| s /0 (e Ju ( )

AT

since u ( L > =0 and v/ <\/7;7+> = —d, we obtain (observe that w # 0 since w’(0) > 0)

T
VT
which contradicts the assumption w > 0 and so implies that the bump of w is shorter.

Now, whatever are the lengths of the positive bumps, they correspond to \/7;— for some

—dw(

) >0, (5.30)

A* > AT and so by the choice made of A* we still have wg(z¢) < 0 and then (since where w < 0,
the equation in (5.26) is the same as the one in (3.13) with ¢ = 0), one again concludes that
wq(l) <0 VdeR asin lemma 3.3. O
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6 Radial problem in higher dimension

Here we consider the same problem of section 5, in dimension greater than one:

—Au=Mu+ g(z,u)+h(x) in Q

(6.1)
% =0 in 00

where Q is the set Q = {x € RV : Ry < |z| < Ry} with Ry > Ry > 0, and h and g depend only
on |z| and wu.
If we seek radial solutions, this means that we are looking at the equivalent problem

(N ()Y = oY () + () + ()i (Ra, Ra) (62)

where §(|z|, s) = g(z, s) and h(|z]) = h(z).
In order to apply the same argument used in section 5 we need to find some space between
the asymptotes of the Fuéik spectrum originating from two consecutive eigenvalues.

6.1 The radial Fucik spectrum

The Fucik problem for this case is

=V () = N et () = ATum () dn (R, Ry)
u'(Ry) =u'(Rs) =0

; (6.3)

the spectrum has been calculated in [AC95] and [RW99]: we report here the results we are
interested in, from the second reference.
First consider the equation

—(T‘N_lu'(r))’ = rN_lx\u(r) in (Ri1,Rsg), (6.4)
and call

e AV the i eigenvalue of equation (6.4) with boundary conditions u'(R;) = 0, v/(R2) = 0
(this is also the i*" eigenvalue of the problem we are considering),

e \PP the ith eigenvalue of equation (6.4) with boundary conditions u(R;) = 0, u(Rz) = 0,
e AP the ith eigenvalue of equation (6.4) with boundary conditions u(R;) = 0, u/(R2) = 0,
e \VP the ih eigenvalue of equation (6.4) with boundary conditions u'(Ry) = 0, u(Rg) = 0.

It is known that these eigenvalues are all simple and that each one is related to an eigen-
function with ¢ — 1 simple zeros in the interior of the interval.

From the point (ANMN, AVN) arise as usual the two lines {A\T = ANV} and {A= = AV}
belonging to the Fuéik spectrum of problem (6.3); then from each point (AYY, ANN) with k > 2
originate two monotone curves whose asymptotes are:
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e in the case Ry > 0,let i =1,2,...

— if k=2i: APV and ANP,
— if k=2i+1: )\DD and >‘z+1’

e in the case Ry =0,let i =1,2,...

— if k=2i: ANMN and ANP|

— if k=2i+1: )\ND and )‘H—l‘

In the case Ry = 0, then the higher asymptote of the curves originating from (Ag, A\x) always
coincides with the lower one of those from (Agi1, Ak+1), hence we do not have the needed space
between them.

In the case Ry > 0, on the other hand, this space always exists:

Lemma 6.1. If Ry > 0 we have:
o MYV < (APN and AYD)

o (APN and MNP) < (APP and ANY) < (AEY and A% fori=1,2,....

Proof. As we noted before each eigenvalue ); is simple and related to an eigenfunction with ¢ —1
simple zeros in the interior of the interval.

Now consider the inequality )\D N < /\D D < /\Z g
e \PN corresponds to an eigenfunction ¢PV that we may choose to have PV (R;) = 0 and
¢PN(Ry) = 1, to have i — 1 zeros in (Ry, Re) and ¢PN(Rs) # 0 (if it were zero, since
(¢PN(R2)) = 0 then ¢PV would be identically zero).

° )\z 1 corresponds to an eigenfunction QSZ 1 that We may choose to satisfy the same condi-
tions in Ry, have i zeros in (Ry, Rz) and then ¢2Y (R2)¢PN (Ry) < 0 (since ¢PY has one
zero more than ¢PV).

Then if we consider the initial value problem

—(erlu'/\(r))’ = MN"luy(r) in (R, Rs)
U)\(Rl) = 0, u’/\(Rl) =1

(6.5)

with A € [APN, AP we have that uy(Ry) must be a continuous function of the variable A that
changes sign; then there exists a first zero in ()\DN A +1), which corresponds to a non trivial
solution of the equation in (6.5) with Dirichlet conditions at both ends; moreover this solution
must still have ¢ — 1 zeros in (0, 1) since for the continuity of the dependence on A and the
uniqueness of initial value problem, a zero may not appear or disappear from the interior of the
interval (remember that no nontrivial solution may be null with zero derivative in any point);
then this zero of uy(Rs) in (APY, )\Z-‘rl) is APD.
The same kind of considerations give the remaining inequalities.
O

We sketch in figure 8 and 9 the qualitative behavior of the spectrum in the cases Ry > 0 and
Ry = 0 respectively.
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Figure 8: Fuéik spectrum for radial problem on an annulus.

6.2 The superlinear problem

Solutions of equation (6.2) can be associated to critical points of the functional

L nvone A et s e N1 e Noig
F(u):5 T (uh) —3 r Ty — T G(ru) — r T hu . (6.6)

R1 R1 Ry Ry

Since r takes values in [R1, Ro] and so is bounded and bounded away from zero, the functional
is well defined in the space H!([R1, Rz]), where one can use the equivalent scalar product
< u,v >Z1: i rN=1(u'v' + uv); then all the work done in section 4 and 5 can be applied here
(use in L* the scalar product < u,v >Y,= [r¥~luy).

The above observations imply that we may obtain the same kind of result:

Theorem 6.2. Under hypothesis (H1-R), (H2) and (H3), with g and h depending radially on
r€Q={xcRY: Ry <|z|< Ry} and Ry > 0, if \ is such that

o MV <X < (APN and AYP)
or

° ()\iDN and )\ZND) <A< ()\,LDD and )\Z]\_f}f) or ()\ZDD and )\f\f}[) <A< ()\ﬁf\{ and )\f\_ﬁ))
for somei=1,2, ...,

then there exists a radial solution of problem (6.1) for any h € L2 (Q).

rad
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Figure 9: Fucik spectrum for radial problem on a ball.

Theorem 6.3. Under hypothesis (H1-R), (H2) (H3) and (HR-R) with h € L*(Q), g and h
depending radially on x € Q = {x € RN : Ry < |z| < Ra} and Ry > 0, if \ is such that

e A = min{A\PN; \ND

or
A= min{)\?D;)\f-\ﬂf ,
for some i = 1,2, ..., then there exists a radial solution of problem (6.1).

The new hypotheses introduced above reads:

eC'QxR),
g €C( ) (H1R)
limg_, oo 2 Z’S) =0, limsstco g(i’s) =400
uniformly with respect to = € Q;
dpo >0, Moy eR s.t. G(z,s)+h(x)s< My ae xz€Q, Vs<—pg. (HR-R)
Remark 6.4. In [RW99] it is shown that if one substitutes the equation in (6.2) with
—(rou/ () = r*Ou(r) + §(r,uw) + h(r)) (6.7)

for a > 0, then one has the same qualitative behavior of the Fucik spectrum; thus it is clear from
the above proof that the result still holds in this case, provided Ry > 0.



7 Problems of higher order

In this section we will consider the problems with the multi-Laplacian operator

(—A)"u = Au+ g(x,u) + h(x) in Q

ou _ 0Au __ _ oAy
Gn = gy == F5—=0 on 9Q

and
(—A)"™u = Au+g(x,u) + h(x) in Q
uw=Au...= A"y =0 on 0f)

with @ C RY a bounded domain of class C™, g € C(Q x RR) and h € L?(f).
We will assume for certain results the hypotheses:

N <2m so that H™(Q)CC%Q) with compact inclusion;

N <2(m—1) so that H™(Q)CCYQ) with compact inclusion;

in particular (HN) will be assumed for problem (7.1) and (HD) for problem (7.2).
We will still assume the hypotheses

g €C(QxR),

. x,s .
limg_. Ls) =0, limg . oY

uniformly with respect to z € Q;

36 e (O, ;) , So>0 st 0<G(z,s) <fOsg(x,s) Vs> s
where G(x,s) = [ g(z,£)d¢, and for some of the results also

ds1 >0, Co >0 st. G(zx,s) < %sg(w,s) +Cy Vs< —s1;

dpo >0, Mo eR sit. G(x,s)+h(x)s< My ae xz€Q, Vs< —pp.

Moreover for X\ equal to the first eigenvalue of the problem we will assume

g(x,s) >0, lim g(z,s)=0

S§——00

uniformly with respect to = € Q.

65

(7.2)

(HN)

(HD)

(H1-m)

(H2-m)

(H3-m)

(HR-m)

(HRO-m)

We choose the above sets of boundary conditions since, as will be clear in the following, they
allow us to use our approach; we will refer to the first type of boundary conditions as the case
(N) and to the second as the case (D), moreover we will usually write the results for the case

(N) and when needed remark in parentheses what is different for the case (D).

Let By (resp. Bp) be the operator that maps u to the vector of the traces on 9 of the
derivatives of order strictly less than m (as done in section 2.4) which are imposed in problem
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(7.1) (resp. (7.2)): then the problem in variational form will be
ue H"(Q) such that
/ V"'uV™y — /\/ uv — / g(x,u)v — / hv=0  for all ve H"Q), (7.3)
Q Q Q Q
where with H]"* we have denoted H}; or H}} when considering respectively (7.1) or (7.2), namely
HYy () ={ue H™(Q) such that Byu=0}, (7.4)

HE(Q) ={ue H™(Q) such that Bpu=0}; (7.5)

observe that for m = 1 these are Hx(Q) = HY(Q) and H}(Q) = H}(Q).
In order to find a solution of problem (7.1) (resp. (7.2)) we will consider the functional

F(u):;/Q]VmuIZ—;\/ﬂu2—/ﬂG(m,u)—/ﬂhu, (7.6)

defined on the space Hy(2) (resp. H()); actually F € C'(H™) and so if F/(u)[v] =0 Vv €
H"(Q) then u is a weak solution of problem (7.1) (resp. (7.2)).
7.1 Some useful lemmas about the spaces H]"(f2)

In this section we will obtain some results about the properties of the spaces we will work with,
in particular we will show that if the set  is regular enough, then the space H!(2) may be
normed with a norm which has the structure of the first part of the functional (7.6); this will
help in making estimates on this functional.

We remark that this result is a consequence of the particular sets of boundary conditions
chosen.

Lemma 7.1. Form > 1, if u € H™(Q)) and 2 is of class C' then
Jo IV™ul? = 0 implies u = const a.e;
in particular in the case v € HY(Q) this constant is zero.
Proof. For m = 1 the lemma reads:
if ue H(Q) (resp. u € Hj(Q)) and [, |Vul? = 0 then u = const a.e,

which is true for C' domains.
Now suppose m > 2 and the lemma to hold for m — 1, then compute

/ V7 ly)? = _/ Vmuvm2u+/ (V" V™) (7.7)
Q Q o0

where u € H}} (resp. H}}) implies that the boundary term is zero and then, if Vu = 0 a.e, also
V™~ 1ly = 0 a.e, which by induction hypothesis (since HY C Hﬁfl and Hfy C Hg‘*l) implies
u = const a.e.

O
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1
Proposition 7.2. If Q is of class C™, then (vaUH%Q + ||u|]%2) * is an equivalent norm for
HM (),

Proof. Since |V"u|? is the product of two finite sums of derivatives of u of order h, then |V"u|? <
C(h) X ja)=n (Du)? and so the claimed norm can be controlled by the usual one.

Let us show the converse: for m = 0,1 the lemma is trivially true since the claimed norm is
indeed the usual one.

Let us suppose m > 2 and the proposition to hold for m —2 and m — 1 and take u € H]*(£2),
this implies that Au € H™ 2(Q): that is u satisfies

( —Au=nh in Q
ou
u _
on (7.8)
or on 6Q
u=20

where h € H™2(Q).
Then (by the regularity of ) one may apply lemma 2.16 to obtain

lullFrm < CUPNGm—2 + [[ull72) - (7.9)
But using h = —Aw and induction hypothesis this reads
2 2 2
[ullZm < CUNV™ullz + [Vl + llull72) (7.10)

where (for m > 3):
IV2ul7 < € (i + V™ a7, ) (7.11)

by the assumption that the right hand side forms a norm for H™~! then as in equation (7.7)
we may estimate

[l P e Y A P (7.12)
1
< SV ulp + 5 IV ullzs (7.13)
and using again the induction hypothesis
1
[V allz < Ol + [V ul ) + 5 197 ulZe (7.14)

from which, choosing 0 < £ < CY/2 and collecting the terms HVm_luHiQ in the left hand side,
one gets
1 2
V™ ]2 < D([ull7z + V™ ull72) (7.15)

Joining the estimates (or directly from (7.10) in the case m = 2) we obtain that |u||%. can
be controlled by ||[V™u||7s + [|ul|3-
O
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7.2 The spectrum of the multi-Laplacian

In this section we will obtain a description and some properties of the spectrum of the operator
(=A)™ with the boundary conditions (N) and (D).
Namely consider the problem

(—A)"u = Au in Q
u_ oM _oantu
on on on . (7.16)
or on 0f)
u=Au...= A"y =0

we will prove in the following that

Proposition 7.3. Provided 2 is of class C™, the eigenvalues of (7.16) are the m-th power of
those of the Laplacian with Neumann (resp. Dirichlet) boundary conditions, while the eigen-
functions are the same of those cases.

Remark 7.4. In view of proposition 7.3, we will maintain the notation A\ for the eigenvalues
of the Laplacian so that those of (—A)™ will be \J*.

First observe that:

e If )\ is not real or negative then (7.16) cannot have nontrivial solutions: actually multiplying
by u and integrating by parts m times we get fQ V™ul? = A fQ u? which would imply u = 0
a.e.

e For A = 0 the same equation implies [, |V™u|? = 0 and then (by lemma 7.1) u is a
constant; in particular:

— in the case (N) 0 is an eigenvalue and its eigenspace has dimension 1,

— in the case (D) the constant must be zero and so 0 is not an eigenvalue.

To study the case A > 0 note that problem (7.16) may be written as

—Auy = pus in Q
—Aug = pus in
—AUp—1 = pu in Q
m—1 HUm (717>
— Ay, = pug in Q
8 8 m j—
an == on =0
or on 0N
UL = ... = Uy =0

with ™ = X and p > 0.
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Then we will compare problem (7.16) with the known problem

—Au=pu in
ou
du _
n . (7.18)
or on 89
u =0

\

Lemma 7.5. If p, u are eigenvalue and eigenfunction of (7.18) then u™, u are eigenvalue and
eigenfunction of (7.16).

Proof. Since u, u are eigenvalue and eigenfunction of (7.18), u is C* at least in the interior of
), and then we have

(=A)™u = (A" H(=Au) = p(~A) " tu= ... =p"™u VYreQ. (7.19)

Now if 2 has enough regularity we also have

—A)
6(8n)u :uhg—z =0 VxedQ for h=0,...m-—1 (7.20)
(resp. (=A)'u=plu=0 Yz ecdQ for h=0,..,m—1). (7.21)

If this is not the case, we need to prove that the boundary conditions in (7.16) are satisfied in
the weak sense, actually consider v € H"(2): we have by equation (7.19) that [,(—A)"u v =
um fQ uv, but integrating by parts m times we get the terms

/ V- (Vi v y) = / (V2= VD) ngy for i=1,.,m (7.22)
Q o0
that, using (7.19), are of the form
/ V(@™ 7uviy)  for i=2j (7.23)
Q
/ V- (@ Ivevi ) for i=2j—1 (7.24)
Q
and then give rise to the boundary terms
um_j/(uv(i_l)v) Mgt for i=2j (7.25)
Q
i / (VuVE D) - ngy for 1=2j-1 (7.26)
Q

which are zero by the choice of v or by the boundary conditions in (7.18) which are satisfied at
least in the weak sense.
So what remains is

/Vmuvmv:um/uv for all ve H(Q), (7.27)
Q Q

which is indeed the variational formulation of (7.16). O
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Lemma 7.6. If ™, u are eigenvalue and eigenfunction of (7.16) then u, u are eigenvalue and
eigenfunction of (7.18).

Proof. Since ™, u are eigenvalue and eigenfunction of (7.16), u is C* at least in the interior of
), and then we may define

Uy =u,
A ~A\"
Upt1 = 2 <> up for h=1,.m-—1, (7.28)
It [
and so obtain from (—A)™u = p™u that
—Aty, = puy Ve € Q. (7.29)
Then again if {2 has enough regularity we also have
h—1
—A
8uh:a(7) u:O Ve e dQ for h=0,..m-—1 (7.30)
on on T
_AN\AL
(resp. up = (M) u=0 VxedQ for h=0,..,m-—1). (7.31)

If this is not the case, we need to prove that the boundary conditions in (7.17) are satisfied
in the weak sense, actually consider v € H}(Q): we have by equation (7.28) and (7.29)

/Q(Ath ZM/QU[hHW (7.32)

(where we denoted by [h] the remainder class modulus m of the integer h).
But integrating by parts we get

/QVU}LVI/J — /QV - (Vupy) = u/ﬂu[hﬂ}@b (7.33)

where the divergence term may be written by equation (7.28) as

Lo (1G] o) = (] )

which then is zero by the choice of ¢ in the case (D) or by the boundary conditions in (7.16)
which are satisfied at least in the weak sense.
Then the vector (uy, .., u,) € [HL(Q)]™ satisfies problem (7.17) in the weak sense, that is

w> -n (7.34)

/ > Vup Vb, — M/ D upgn =0 V(1. m) € [HH Q)™ (7.35)
Qh=1 Qh=1

Now let 6 = e and consider equation (7.35) with test functions 1, = 08> 0~ uy:

/ P A (Z 9_qul> = u / > 0 up ) <Ze—lul> = (7.36)
Q Qh=1 I=1

h=1 =1

:/ (i@hvuh> <i9_qul> — Mg_l/ <i6[h+l]u[h+l]> (zm:e—lul> ) (737>
. =1 2 \h=1 =1

h=1
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Since the sums in [ are the conjugates of those in h, then the last equation reads

[0 v —not [1>0m, (7.38)
@ h=1 =1
which implies
ZHhVuh = Zﬁhuh =0 a.e. (7.39)
h=1 h=1

since otherwise the left hand side of (7.38) would be real and positive while the right hand side
would not be.

The above procedure may be repeated with 67 in place of 6 for any j = 1,..,m — 1, obtaining
the m — 1 equations Y 7" | 69"u;, = 0 a.e.

This may be written in linear system form Ax = b with

A = 7M1 m s (7.40)
z = {untn=1,.,m-1, (7.41)
b = *{um}hzl,...,m—l- (7.42)
Since Zzzll 67h = —1 for any j = 1,...,m — 1, the vector u; = up = ... = u,, solves the

system; in fact this is the unique solution since the matrix A is nonsingular: actually dividing
the 7™ row by 67 one obtains the Vandermonde matrix [67 (h_l)] j.h=1,..,m—1, Whose determinant

is [Tj<;(67 —6™) # 0.
Inserting u1 = ug in (7.35) with ¢1 € H*(Q) and ¢y, = 0 for h = 2,..,m gives

/ VU1V¢1 — N/ U1¢1 =0 Vl/)l S Hi (Q) (7.43)
Q Q

which is indeed the variational formulation of problem (7.18).
O

Now we may assert that all the properties claimed for the spectrum of the Laplacian are still
valid in this case, actually since we proved that the eigenfunctions are the same we still have:

e The first eigenvalue is simple and related to a positive eigenfunction,

e The eigenvalues are all real and nonnegative and form a discrete set unbounded from
above.

e To each eigenvalue corresponds a finite dimensional eigenspace,

e Eigenfunctions related to different eigenvalues are orthogonal in the L? scalar product.

Moreover it is easy to see that the eigenfunctions are orthogonal also in the H™ scalar
product and that they form a basis for it.



72 SECTION 7. Problems of higher order

Proof. By the variational equation for eigenfunction ¢; tested against ¢ we get
/ VoV gy = /\i/ i (7.44)
Q Q

so that the orthogonality in L? implies that in H™.

Since H™ C L? we have for any u € H™(Q) that u = ;of ci¢; in L?: we need to prove
that this is true in H™ too, namely that Hu — Zfil cii ym 0 for N — 4o0.

Since ||ul|5m = |V™ul|32 + ||ul|32, the condition u € H™ implies V™S CZQSZHLQ < +o00,

that is
. M N

(VS Y e, VMY Citi) o = Mg N foo <Vm doim1 G, VYL Cz‘¢i>L2;
now since the series are finite one may pass V™ inside and compute the product using
(Vi V™ i) 2 = A6, obtaining limay y— oo (zz’“f{M N 2Am) S A < foo.

On the other hand, reasoning in the same way,

N 2t 2 +oo 2.

‘U— D oie 1Cz¢z = H i= N+1 Ci‘biHHm =D ieN1 Gt 2N G
since it is the tall of a converging series with nonnegative terms it has to tend to zero for
N — 4.

O
For what concerns the variational characterization of the eigenvalues we still have
A" = inf {/ V™2 ue H'(Q); u|l2 = 1} , (7.45)
Q
actually we have A" > inf { [ [V™u|?} since [, |V™¢1|> = AT*; but any minimizing sequence

converges weakly to a minimizer satisfying, by the Lagrange’s multipliers rule, fQ VTuV™y —
ozfQ uv = 0 for all v € H]*, and as usual testing with v = u one gets o = inf {fQ |Vmu|2} and
so u is an eigenfunction, implying that inf { Jo \Vmu|2} > A\

For the characterization of the following eigenvalues, since we saw that the structure of the
space is the same as in the case of the Laplacian, one may proceed as in section 2.3.1 with

= / |V u)? — a/ u? (7.46)
Q Q
(see also the proof in lemma 4.17).

7.3 Variational characterization of the Fucik spectrum for the multi-Laplacian

Consider now the Fuéik problem

( (=A)My = ATut — A u~ in Q
u _ 0w . _ 0A™Tu _
on on on 7 (747)
or on 0f)
u=Au..=A""1y =0
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where u™ (x) = max{0,u(z)} and v~ (x) = max{0, —u(z)}.

In analogy with the Laplacian case we define the Fuéik spectrum as the set ¥ C R? of points
(AT, A7) for which there exists a non trivial solution of the above problem.

In section 7.1 and 7.2 we showed that, provided 2 is of class C™, the space H"(£2) equipped

1
with the norm (vauHig + HuH%) * has the same properties of H!(2) equipped with the norm

1
<||Vu|]ig + ||u||%2> ®: this implies that the same argument used in section 4 may be repeated

substituting the terms of the kind [, VuVv with the corresponding term [, V"uV"™v.
Then we may assert that

Theorem 7.7. Let ¥ be the Fuéik spectrum corresponding to problem (7.47), suppose that ) is
of class C™ and the point (a™,a~) € R? with o™ > o~ is X-connected to the diagonal between
ARt and Nl in the sense of definition 4.1, then we can find and characterize one intersection
of the Fuéik spectrum with the halfline {(a™ +t,a~ +rt), t > 0}, for each value of r € (0,1].

Moreover also the properties of the variational characterization proved in section 4.3 may be
extended to this case.

7.4 The superlinear problem under hypothesis (HN) (resp. (HD))

In this section we will show the existence of a linking structure for functional (7.6) in order to
prove the existence of a solution for problems (7.1) and (7.2), for suitable values of the parameter
A

The approach is inspired by the one used in [dFR91] and [Vil98] for the Laplacian in dimen-
sion one.

Given u € H*(?) with m satisfying hypothesis (HN) (resp. (HD)), we define:

c(u) = sup u(z)

zeq O1(z)

Remark 7.8. In the case (N), ¢1 is the constant function and so (suppose without loss of
generality |Q| = 1) c(u) = sup,eqlu(x)], which is finite by the inclusion H™(Q) C C°(€).

In the case (D), ¢1 is the first eigenfunction of the Laplacian, which is known to have the
property that inf,co0 8‘23; (x) > 0; this property and the inclusion H™(Q2) C CY(Q) implies that

c(u) is finite also in this case.

(7.48)

Then we define
E = {u € H"(Q): / upy = 0} , (7.49)
Q

So={ue H"(Q): c(u)=0}, (7.50)
my, 2
~ = inf {‘% with u € So\{()}} . (7.51)

First we will prove some properties of the objects defined above:

Lemma 7.9. ¢: H"(Q) — R: uw c(u) is a continuous function.
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Proof. In the case (N) we have
[e(u) = ()] < [lu =2l pi@) < Cllu = vl o) (7.52)

by hypothesis (HN).
In the case (D) we have

le(u) — c(v)] < || . (7.53)
¢1 L>®(9Q)
To estimate the last norm, note that since ¢; is C'(Q) and vanishes on the C! boundary 9Q
and since 7 = infeepo a%; (&) > 0, we may estimate
o1(x) > gd(a:,xo) for d(x,z0) < 6(xp) (7.54)
where xg € 0L is such that d(x,0Q) = d(x, zo).
Then let
6= ggég(é(ﬁ)) (7.55)
and define
ws ={x € Q:d(x,00) >0}, 0Ns ={re€Q:d(z,00) <} (7.56)
and
p=inf $1(). (7.57)
§€ws
Now we may estimate for w € H}(Q)
Hw < Hw + Hw , (7.58)
¢1 Lo () d)l Lo (89s) d)l L (wg)
where, using w(z) < [|wl|¢1 () d(z, 09),
w lwller g
— < (7.59)
H P11l oo (a025) (n/2)
w
‘ w < [wlleoga ; (7.60)
$1 Lo (ws) K

then, since the constants d, 7 and p depend only on ¢; and hence only on €2, we conclude

u—uo

b1

|e(u) = ¢(v)] <

< i flu—vllery < Ca lu — vll g oy (7.61)
Lo ()

by the hypothesis (HD).
]

Lemma 7.10. The set Sy is homeomorphic to E, moreover Sy divides H"(2) into two compo-
nents containing respectively {t¢1 : t >0} and {t¢1: t <O0}.
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Proof. The map M : E — Sy : u — u — c(u)¢; is continuous by the previous lemma and has the
orthogonal projection on E as its inverse, so it is homeomorphism.

Moreover, it is clear by the definitions that H*(Q) is divided in the two components
{ue H"(Q): c(u) >0} and {u € H*(Q): c(u) < 0}. O

Jo [V ul?
Jau? -

Lemma 7.11. v > A" and there exists u € So\{0} such that v =

Proof. Let us take a minimizing sequence {u,} C Sp\{0}. By the homogeneity of the definition
of v and Sy we may assume [|u,|[;2 = 1; since [, [V™un|? — 7, up, is bounded in HJ"* and we
can extract a subsequence such that u, — u weakly in H” and strongly in L? and in C°(Q)
(resp. in C1(£2)) by hypothesis (HN) (resp. (HD)).

The strong convergences implies that ¢(u) = 0 and |lul/;2 = 1 and so u € Sp\{0}.

Then fQ |[V™ul? > ~ by the definition of +, but by the weak convergence this implies
Jo IV™u|? =~ and so u realizes the value 7.

Finally v > A" by the variational characterization of A\J* and if, by contradiction, v = AT",
then the minimizer would be a multiple of ¢, which is a contradiction since span{¢$; }NSp = {0}.

O

Now we proceed to prove the existence of the linking structure for the functional.
We will use the same estimates used in section 5.1 on page 53.

Lemma 7.12. lim,_. o F(pp1) = —

Proof. Remembering that ¢; > 0 in {2 we estimate

Flp¢1) a2 —2 [ z,p$1) [ hpd
. Am/ > ) /c?,Mg L .
e ek (e

2 P 7

then choosing M > A" — A+ J the lemma is proved. O

<

Lemma 7.13. If

o A >\
or

o A=\, [ hd1 <0 and hypothesis (HRO-m) holds,
then lim, o F(—pp1) = —

Proof. Estimating as before we now get for A > A"

Lg‘?l) _ /IV% ‘2_/¢1 / p¢1)_/ hpqﬁl
o P2
T et (e =) e (et 250

“A+T o) +Cals )
2 P> ’

IN

IN
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then choosing § < A — AT* the first part of the lemma is proved.
For A = A" we need a finer estimate.
Since lims—._ g(z, s) = 0 we may estimate:

for any € > 0 there exists C; such that
9(z.8)| S e+ Sp. Vs <0,

and then also

|G(z, s)] §5]5\+Lgc_—51‘, Vs <0.
Then ( )
G Zz, _Pd)l / Cs ( Os>
——— < | ep+— < |e+—)|Q 7.62
/Q p Q p(1+ pg1) p i e
and so
Glx. —
lim sup / Gla, =pd1) < el (7.63)
p—+oo |JQ p
for any choice of €, that is it is zero.
Then we conclude (o) \ \
. F(=po1 - /
| — + [ n 7.64
Jm = P L (7.64)

which for A = A" and fQ h¢1 < 0 implies that this last limit is negative and so the second part
of the lemma is proved too.

O
Lemma 7.14. For A\ <=, F|g, is bounded from below.

Proof. For u € Sy we have u(z) < 0 and [, |V™ul* > v |u|[32, then we may estimate:

Fu) = ;/Q|vmu|2 /u —/Ga: u /Qhu (7.65)

A 5 5
> L2l - (/ u® + Ca(9, g) (/ u? + C1(9, h)) (7.66)
2 4 Jqo 1 Jq
> 7_;‘_5/uQ—CQ(dg)—Cl(é,h) (7.67)
Q

and so it is enough to choose § < v — A to obtain F'(u) > —C4(6,g) — C1(0, h).

Finally in section 9.2 we will prove the following

Lemma 7.15. For Q of class C™, under hypotheses (HN) (resp. (HD)), (H1-m) and (H2-
m), with h € L*(2), the functional (7.6) defined in HW(Q) (resp. in HB(Q)) satisfies the PS
condition for A € (A",7).

Moreover under hypothesis (HR0-m) and [, h¢y < 0 it satisfies the PS condition also for
A=A
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The previous lemmas allow one to apply the generalized mountain pass theorem to get a
solution of problem (7.1) and (7.2).
In fact, define
f= inf sup F(u) (7.68)
YELR uey([0,1))

where
Fr={~:10,1] — H(Q) continuous s.t. ~v(0)=—R¢1 and ~(1)=R¢1}: (7.69)

provided R is large enough to have F(£R¢1) < —C2(6,g) — C1(8, h) where 6 is the value fixed
in the proof of lemma 7.14, one may apply the deformation lemma and then prove that f is a
free critical value for F'.

In particular, the condition fQ h¢1 < 0 for A = A" is necessary: considering the variational
equation with test function ¢ one gets

/Q V) - A /Q udy /Q gl u)n - /Q héy =0, (7.70)

that is — [ g(x,u)p1 — [o h¢r = 0 which by hypothesis (HRO-m) implies [, h¢y < 0.
Then the results achieved are:

Theorem 7.16. For Q of class C'™, under hypotheses (HN) (resp. (HD)), (H1-m), (H2-m) and
(HRO-m), if h € L?(2) and A\ = AT, then there exists a solution of problem (7.1) (resp. (7.2))
if and only if fQ ho1 < 0.

Theorem 7.17. For Q of class C™, under hypotheses (HN) (resp. (HD)), (H1-m) and (H2-m),
if X € (A\',7), then there exists a solution of problem (7.1) (resp. (7.2)) for all h € L*(Q);
where 7 is defined in equation (7.51).

Remark 7.18. In the case (N) hypothesis (HN) allows m =1 provided N = 1, actually in this
case theorem 7.16 and 7.17 correspond to the result in [dFR91].
In the case (D) hypothesis (HD) implies m > 2, even in dimension one.

7.4.1 The fourth order one dimensional case

In dimension one and with m = 2 we can find the minimizing functions of (7.51), and then the
value of 7; we will proceed in a way similar to [Vil98].
Let Q = (0,1): we will start considering the case (N):

e Claim: the minimizer of (7.51) satisfies u(z) <0 Vz € (0,1).

Proof of the claim. In dimension 1 we have that HZ%,(0,1) C CY([0,1]), so if u(zg) = 0
with 2 € (0,1), since u € Sp then z( is a maximum and so u/(zg) = 0; this implies that
uy(x) = u(xozr) and uy(z) = u(l — (1 — 20)(1 — )) with z € (0,1) are both in Sy, and it
fol |u//|2

.1 2 .
Jo ¥

can be seen that one of them realizes a lower value of
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Actually observe that

1 1 x0
/ up = — u?, (7.71)
0

i) 0

1 xo
/ WP = ad / Wi (7.72)
0 0

and analogous equations hold for u, with coefficients ﬁ and (1 — z)3.

So if u; or u, is identically zero then the ratio realized by the other is smaller by a factor
zg or (1 — x0)* than that realized by u.

If both u; and w, are different from zero, remark that given the reals a,b, ¢, d > 0 one has

b b

Zi_dzmin{z,d} : (7.73)
indeed suppose “ig < min {% %} then one obtain ‘”b < chd and “H’ < cgd and so 2 < %l

and 7 < ¢ which implies ¢ = % = ZTJFZ

So we have
fol ’u//‘Q B fé’vo |u//|2 + leo |u//|2 o
fol u2 - xo u2 + fl (7 )
3 "2 4 =3 1y, m2
U (1—=z U

xo fo u? + (1 — zo) fol u?

"2 Ty, m2
min {x04 f(} ] ,(1— :Uo)_4f0f1|ur2|} (7.76)
o Uf o Ur

and so, since xo € (0, 1), one of the two ratios in the minimum is strictly less than the left
hand side.

Y

O]

The previous claim implies that the minimizer needs to satisfy u(0) = 0 or u(1) = 0 and
so, by symmetry, we may look for a minimizer with u(1) = 0.

In particular we consider the problem

s—ined WP € HZ,(0,1)\{0} (7.77)
e o | |
where
H%0(0,1) = {u e H%(0,1): (1) =0} : (7.78)

if we show that the minimizer of (7.77) is in Sp\{0} then it is also the minimizer we are
looking for and so § =~y
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The minimizer of (7.77) must satisfy the eigenvalue problem
u"" = du in (0,1)
uw'(0) =u"(0)=0 ; (7.79)
u(l) =4/(1) =0

in fact by reformulating problem (7.77) as 6 = inf {fol W2 we H2y(0,1), [lu?= 1},
by Lagrange’s multipliers rule we get

1 1
/0 uv" = 6/0 uv Yo € H3,(0,1), (7.80)

where by a boot strap argument one gets that u is smooth and so integrating by parts we
get fol " = 6f01 uv + [u"v]§ — [u"v']§ where the conditions on v kills all the boundary
terms except v (0)v(0), and so equation (7.80) implies w/(0) = 0.

e Setting ¢* = & with ¢ > 0, the solutions of (7.79) are of the form
A cos(qr) + Bsin(gz) + C'sinh(gx) + D cosh(gz) ; (7.81)
from «'(0) = u"'(0) = 0 we get B = C = 0 and forcing the remaining conditions we get

A cosh(q) sinh(q)

= = ) 7.82
D cos(q) sin(q) (7.:82)
To have the minimal value of § we get the first positive solution of tanh(q) = — tan(q),
which is in (5, 7), so sin(q) > 0 and the resulting minimizer is
i = A (cos(qe) + cosh(ga) 29 A< (7.83)
= A [ cos(qx) + cosh(qx : . .
¢ ¢ sinh(q)
Observe that the zeros of @ are solutions of C;fl(&l;) = —C;i}{l((qqg;) and so since we chose ¢
to be the first positive solution of tanh(q) = — tan(q) we have no zeros in (0,1) and so

U € S()\{O}
We conclude that

Proposition 7.19. In the case (N), with m = 2 and Q = (0,1), we have v = ¢* where q is the
first positive solution of tanh(q) = — tan(q); moreover @ in (7.83) is a minimizer for (7.51).
An approzimate value for v is 0.327* (q = 0.7537).

Now consider the case (D):

e As before we have that the minimizer satisfies u(z) <0 Vz € (0,1); in fact, as before, if
it were not so we still would be able to find another function in Sy realizing a lower value
fol |u//‘2
of T
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e Since u < 0 in (0,1), but u € S implies that sup,¢(o1)(w(z) + ed1(z)) > 0 for any € > 0,
we deduce that v/ = 0 in 0 or in 1; then, by symmetry, we may look for a minimizer with
u'(1) = 0.

In particular we consider the problem

1

fl |u//‘2
§ = inf{ L = with u € Hpg(0, 1)\{0}} , (7.84)
0

where

H?0(0,1) = {u € HH(0,1): /(1) =0}. (7.85)
Again if we show that the minimizer of (7.84) is in Sp\{0} then it is also the minimizer
we are looking for and so § = .

Proceeding as in the case (N) one sees that the minimizer of (7.84) needs to satisfy the
eigenvalue problem

" = du in (0,1)
u(0) =4"(0) =0 . (7.86)
w(l)=u(1)=0

e Finally imposing the boundary conditions to (7.81) we obtain A = D = 0 by the conditions
u(0) = u”(0) = 0 and forcing the remaining ones

B _sinh(q) B _cosh(q)

C  sin(g)  cos(q)

: (7.87)

so we have to look for the first positive solution of tanh(q) = tan(gq), which will be in

(m, 2%, so cos(g) < 0 and the resulting minimizer is

u=1B <sin(qx) — Sinh(qx)c(;c;sh((qq))> ; B <O0. (7.88)

£ sin(qz) __ sinh(qz)

cos(q) — cosh(g) and so there are no zeros in (0,1)

Again the zeros of @ are solutions o
implying that u € Sp\{0}.

Then we conclude:

Proposition 7.20. In the case (D), with m =2 and Q = (0,1), we have v = ¢* where q is the
first positive solution of tanh(q) = tan(q); moreover 4 in (7.88) is a minimizer for (7.51).
An approzimate value for vy is 2.447* (q = 1.24997 ).

In figure 10, we plot the shape of the minimizers @ for the case (N) (on the left) and the case
(D) (on the right).

We remark that in both cases v € (A2, \2), which is (0, 7%) in the case (N) and (7%, 167%) in
the case (D).
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Figure 10: Minimizers of (7.51) in the fourth order one dimensional case (case (N) and case

(D).

7.5 Fucik spectrum for the fourth order operator on an interval

In this section we will discuss the Fuéik spectrum on an interval for the operator (—A)?, that is
the set ¥ C R? of points (A™, A7) for which there exists a non trivial solution of the problem

o =Xtut —A"um in (0,1)
[ /(0) = u”(0) =0
w'(1) =u"(1) =0 | (7.89)
u(0) =u”(0) =0
[ [ «(1)=4"(1)=0

where ut(z) = max{0,u(z)} and v~ (z) = max{0, —u(x)}; as before we will refer to the first
type of boundary conditions as (N) and to the second as (D).
The results of this section will allow us to extend the results in theorem 7.17 and 7.16 to
larger values of the parameter A, using the techniques of section 5 (theorem 7.34 and 7.35).
The case (D) has been considered in [CDO01]; in the following we will follow that work and
show the corresponding results for the case (N).

First observe that:
Lemma 7.21. Any weak solution @ of problem (7.89) is a classical solution too.

Proof. Let h = Atat — A\~a~: since & € H? we have h € H'; since it is a weak solution, & € H?2
satisfies

1 1
/ "¢ = / h¢ for all ¢ e H?. (7.90)
0 0
"

Define v = —4"” in the weak sense, that is

1 1
/a’q/;’_/ vy for all e H}; (7.91)
0 0
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since @ € H2, v € L? and then (7.90) may be written as

1 1
/ —v¢ = / h¢ for all ¢ € H}. (7.92)
0 0
Let now w € H} be a weak solution of — w” = h with the given boundary conditions,
that is
1 1
/ w'e = / hé¢ for all ¢ € H}; (7.93)
0 0

then for ¢ € H2? we may integrate by parts in (7.93) and subtract from (7.92) to obtain

1
/ (w—2v)¢" =0 for all ¢e H?; (7.94)
0

this means that (v —w)” = 0 in (H2)’, but since in the chain of embeddings H2 «— H}! <« L? —
(H}) — (H2) the function zero belongs to all of the spaces, this implies ||(v — w)"|| 72 = 0, and
S0 v — w = ax + b in H2, which is then an arbitrary constant in the case (N) and 0 in the case

(D).
Since w € H} this gives v € H} too and then integrating by parts (7.92), we may apply lemma
2.16 to get v € H? and then by (7.91) and using again lemma 2.16 one has % € H® C C*([0,1]).
]

To build the Fuéik spectrum we will first build a related set in R3: define, in the case (N),

(AT, A7, s) € R® such that the solution of the IVP
i:ﬁ: _ W= Tut = A u ’ (u,u',u”, u///)(o) _ (:l:l,o, s, 0) : (795)
satisfies /(1) =u"(1) =0

in the case (D) this will be

(AT, A7, s) € R® such that the solution of the IVP
ii — W = \Tut — N u ’ <u7u/,u//’ u///)(o) _ (0’ 41,0, S) . (7.96)
satisfies u(l) =u"(1)=0

Then we will denote by
St ={(AT, A7) eR? such that JseR: (AT,\7,s) e}, (7.97)

and so X =Xt UX".

In particular we only need to study one of the two components (say i*), since the other is
analogous if we exchange AT and A~

As usual it is simple to see that the lines {\* = A2} and {\~ = A2} are in ¥ (since the
eigenfunction ¢; does not change sign), while the rest of ¥ lies in the quadrant {\* > A2} and
corresponds to nontrivial solutions which change sign.
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7.5.1 Qualitative description

In the following we will try to describe > and ¥. In particular we will use the implicit function
theorem to describe them locally (lemma 7.23) and then we will give a qualitative but global
description making use of the local information obtained and of some topological properties of
these sets (proposition 7.27).

First observe that any solution of (7.89) which vanishes on a set of measure zero, may be
seen as satisfying the linear equation u”” = c(x)u where ¢(x) = A x50y (%) + A" X{u<o} (7) is 2
L*>(0,1), a.e. positive function (we denoted by x4 (z) the characteristic function of the set A).

Because of the above observations the following lemma will be useful:

Lemma 7.22. Let ¢ € L*(0,1), ¢(z) > 0 a.e.
Let u be a nontrivial solution of the boundary value problem (BVP)

u" = c(x)u in (0,1)
' (0) =u"(0) =0 ; (7.98)
u'(1) =4"(1)=0
then

e u(x) u'(x) <0 for x € {0;1};

e u(x) =0=u'(x) #0 forx € (0,1).

Similarly let w be a nontrivial solution of the BVP
U = c(z)u in (0,1)
u(0) =u"(0) = ; (7.99)

then
o u'(x) v (z) <0 for x € {0;1};
e u(z)=0=u(z) #0 forx € (0,1).

Proof. We will consider the first case, the second is similar and the proof is given in [CDO01].
Consider x = 0: if u(0) = 0 then »”(0) # 0 or u would be identically zero by uniqueness of
the IVP.
By linearity we may suppose u”(0) > 0, and then for some £ > 0

u(z) > 0 and v/(z) > 0 for all z € (0,¢).

Let ¢y be the first zero of v’ in (0, 1], then v > 0 in (0, tg) and integrating the differential equation
we get

to & &2
W (to) = u" (0)to + /0 at, /O dt, /0 o(&5)ulEs)des > 0 (7.100)

and so u may not satisfy u/(1) = 0.
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Then u(0) # 0, by linearity we may suppose u(0) > 0; using again (7.100) we get that if u
remains positive then u”(0) < 0 in order to satisfy u/(1) = 0, otherwise let now ¢y be the first
zero of u, then

2 to &1 &2 &3
0 = u(tg) = u(0) + 50 / d§1/ d@/ dgg/ c(&4)u(éy)déy (7.101)

and since the other terms are positive we get again v”(0) < 0 as claimed.

The case x = 1 is analogous.

Now let z € (0,1), u(z) = 0 and, by contradiction, v’(x) = 0: if «”(z) > 0 and u"'(z) > 0
then u,w’ > 0 until the first zero of v’ larger than z, but then for ¢t > x,

&1
W () = o (@)t — 2) + " (@ / d, / dé» / cE)ulEs)des >0 (7.102)

and so u may not satisfy «/(1) = 0; in the case v’ (x) > 0 and u”’(z) < 0 we obtain the same
kind of contradiction, actually u,u > 0 between x and the first zero of «’' smaller than x, but

then for ¢ < «x,
&1 &2
/ at, / dt, / (E)ulEs)des <0 (7.103)

and so u may not satisfy u/(0) = 0; the remaining combinations are analogous by linearity. [J

o' (t) =u"(2)(t —x) + " (z

Now we may prove:

Lemma 7.23. Given (A\T,\,3) € S+ with AT, AT > A2, then St s locally of the form
(AT(A7), A7, 8(\7)), where (for a suitable € > 0) AT, s : (A= —e,A\~ +¢) — R are analytic
functions of A~

Moreover the related nontrivial solutions have all the same number of (simple) zeros.

Proof. Again we will give the proof for the case (N), which is similar to that for the case (D)
which was done in [CDO01].
We will denote by u[AT, A7, s] (x) the solution of the IVP

" = Atut — ATu in (0,1)
(7.104)
(u, v/, u”,u")(0) = (1,0,s,0)
and we will apply the implicit function theorem to the system
w AT, A7,s] (1) =0
| 1 (7.105)

W AT AT s] (1) =0

that is we want to solve locally the set of its zeros with respect to the variable ™.

We remark that v’/ [AT, A7, s] (x) and v [A\*, A\, s] () are C! functions of the four variables
(AF,A7,5) € N and z € [0, 1], where N is a suitable neighborhood of the point (AT, A=, 3); actu-
ally the derivatives may be calculated through the differential equation, where the nonlinearity

ATut + A"u~ is a C! function of the variables \*.
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Denote by ©w = u {)\T, A, E}; since its zeros are simple by lemma 7.22, we may restrict the
neighborhood N such that this property is maintained for all the u AT, A7, 8] with (AT, A7, s) €
N. We remark also that @ changes sign since A, A\~ > \2,

Now let ¢(z) = )‘TX{H>O} + )\TX{E@}: u satisfies

" =c(x)u in (0,1)
(u,w',u",a")(0) = (1,0,3,0)

(7.106)
Then let v(z) = %u [)\j, A, E} (x): differentiating (7.106) with respect to s we get (the
dependence on s is just in the boundary condition):

V" =c(x)v  in (0,1)

(v, ;0" 0")(0) = (0,0,1,0)

(7.107)

note here that v(xz) > 0 and ¢'(x) > 0 in (0, 1], by the same argument used in lemma 7.22.

Now multiply the equation by u and integrate by parts four times obtaining from
[ " = [ c(x)vu

1 1
/ " 4 " — "7+ VT — va")) = / c(x)vu : (7.108)
0 0

since @ is solution of the BVP too, it satisfies
0

(7.109)
0

and so in equation (7.108) only the following term survives
(W"u+"u") (1) =0. (7.110)

In the same way let w(z) = a/%u [)\T, A, 5} (z): differentiating (7.106) with respect to A™

we get (the dependence on AT is in the coefficient ¢(z)):

w" = c(z)w +ut in (0,1)

(w,w',w”, w")(0) = (0,0,0,0)

(7.111)

again multiplying the equation by @ and integrating by parts four times we obtain from
[w"w = [ c(x)wu+ (ut)?

1 1
/ wi" + [w"a — w"a + w'w’ —wa")y = / c(x)wa + (@h)?, (7.112)
0 0
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where using the boundary conditions the only term which survives is
1
(0" + w'a")(1) = / @2 >0. (7.113)
0

We deduce by the above computations that the vector (v/(1),v”(1)) is not null and is or-
thogonal to (@”(1),w(1)), while (w'(1),w"” (1)) is not orthogonal to it; then

ger | T WD (7.114)

Uﬂ(l) U/H(l)

which is indeed the condition we need to apply the implicit function theorem.

Now we need to prove that the obtained functions are also analytic.

Having fixed € > 0 small and such that @ has no other zero in (1,1 + €], by redefining N we
may guarantee that for all those u [AT, A\™, s] with (AT, A7, s) € N that have a zero in [1,1 + €],
these are simple too.

Since the zeros of u[A\T, A7, s] are simple and between two zeros the equation in (7.104) is
analytic, then the coordinate of each zero is an analytic function of (AT, A, s); we also deduce
from this that the number of zeros in [0, 1+ ¢] does not change in N and so it is constant along
the piece of X1 we are solving.

This also implies that u [AT, A7, s] (z) is analytic in the four variables in a neighborhood of
the points where it is not zero.

For the boundary conditions (N) this is sufficient to conclude that the system (7.105) is
analytic since by lemma 7.22 u(1) # 0.

For the boundary conditions (D) one needs to proceed as in [CD01], modifying the definition
of w[AT, A7, s] such that in a neighborhood of 1 it satisfies v”” = au instead of the nonlinear
equation in (7.104), where a is chosen to be AT if w(17) > 0 or A~ in the opposite case.

In this way the system

uwAT, A7, 8] (1) =0
u AT, AT, s] (1) =0

(7.115)

becomes analytic but the set of its zeros does not change. O

Lemma 7.24. Let AY(\™) be the function found in lemma 7.23; then Zi—f()\_) < 0.

Proof. Let y(z) = &\i,u {)\T, A, E} (x): differentiating (7.106) with respect to A\~ we get

"

y" =clx)y—u"  in (0,1)
(v.y',y",y"")(0) = (0,0,0,0)

(7.116)

again multiplying the equation by @ and integrating by parts four times we obtain from
Jy"a= [ e(x)ya— (@)

1 1
/ yﬂ"" + [y///ﬂ - y”ﬂ' + y’ﬂ” - yﬂ”’](l) _ / c(:):)yﬂ + (ﬂ—)Q ’ (7'117>
0 0
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where using the boundary conditions the only term which survives is

1
("7 + g7 (1) = /O @2 >0. (7.118)

Now differentiate the system (7.105) with respect to A, remembering that we defined v(z) =
%u [)\T,)\T,E} (z), w(x) = a/%u [)\T,)\T,E} (z) and y(x) = a)\ u [)\ A } (x):

V(1) ' ()BE +y/(1) =0

. , (7.119)
v///(l)dzi% + wm(l)gii— + y///(l) =0

where the derivatives d‘f\s_ and gi_ are calculated in the point A~.

Multiplying the first line by @”(1) and the second by w(1) and then summing we get

d dxt
ﬁ(v’u”—kv'//U) (1) + 5= (" + w”7) () + (Y7 +y"5) (1) = 0, (7.120)

which, using equations (7.110), (7.113) and (7.117), becomes

axt ot [
0 0
this implies gi\‘ (A™) < 0 since @ changes sign.
In the case (D) the proof is analogous. O

Lemma 7.25. Given {(\}, n,sn)} C St with AE - )\i € R, there exists a subsequence
sn — 8o such that (A\J, Ay, 80) € st

Moreover if the sequence u,, of the corresponding nontrivial solutions is composed of functions
all with the same number of (simple) zeros, then zy too has this number of (simple) zeros.

Proof. As seen before u,, € H*(0,1) C C3([0,1)).
Let z, = : up to a subsequence z, — zy weakly in H4(0, 1) and strongly in C3([0,1]).

Tn e
The variational equation for z,, is fl " = fo (Af 2 — Az, )v for all v € HZ; taking the
limit, since A* are bounded, gives

1 1
/ 2" = / Az —XNgzg)v for all ve HZ, (7.122)
0 0

that is 29 is a solution of (7.89) with coefficients (A, Ay )-
Since the solution is strong too, we have

1 1
/ (20" — z6’”)2 = / ([()\j{z: A ()\Jrzo )\azg)]Q , (7.123)
0 0

where the right hand side goes to zero and so z,, — 2 strongly in H*; this implies that ||z ;1 = 1
and so it is a non trivial solution, that is (AJ, Ay, 20((0))) et
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We have z¢(0) > 0 since u,,(0) = 1, in fact zo(0) > 0 by lemma 7.22 since z({,(0) = 0; moreover
by the convergence in C3, z//(0) — 2{/(0) and 2,(0) — 20(0); since s, = u/(0) = ZE[O); its limit
exists and it is indeed zg((g)), so we proved the first part of the lemma.

To conclude, observe that z,(z) = un(z) 2,(0) and we saw that z,(0) is bounded away from
zero; this implies that if the sequence u,, is composed of functions all with the same number of
simple zeros then the same is true for z, and, by the C' convergence, also for z.

The case (D) is analogous.

Corollary 7.26. The set 7 is closed.

Proof. In fact the previous lemma implies that if a sequence {(Af,\,;)} € X7 is such that
AE = A\F € R, then (\J,)\;) € 7. O

Now we may obtain a first qualitative description of the set >t

Proposition 7.27. Let C' be a connected component of DA containing some point with \* > 22
then there exist A1, Ay, € [A}, +00) such that C is of the form C = {(AT(A7), A7, s(A7))} where:

1. At s: (Mg, +00) — R are analytic functions of A~

2. limy— - AT(A7) = +o0,

3o limy - o AT(AT) = AL,

4. the related nontrivial solutions have all the same number of (simple) zeros,
+ oy

5. Bo(A7) <0,

6. 31 A7 € (A\x, +00) such that AT (A7) = A7, that is Ay = A2 for some k > 2.

Proof. The fact that C' may be solved as a function of A~, that A~ and A*(A\™) take values in
open intervals and the points 4 and 5 follow from lemma 7.23 and 7.24.

Moreover point 4 implies that C' C {A* > A2} and then A1, A3, € [A}, +00).

Finally the other limits in points 2 and 3 need be 400 since the projection of C' in the plane
{(AT, A7) € R?} is a closed set too, by corollary 7.26.

The last property in the proposition is obvious since A*(A™) is continuous, monotone de-
creasing and has a vertical and a horizontal asymptote.

O

Remark 7.28. Since for a usual eigenvalue )\i there exists a unique value s such that the point
(A2, )2,s) € Ej and by lemma 7.23 through a point ()\+,)\_~, s) may pass only one connected
component of ¥, we have that any connected component in YT may be identified by the eigen-
value it passes through. Then we will use the notation Eg for the component corresponding to
A2 and X7 for its projection in the plane {(AT,\7) € R?}.

Obviously the same holds for ¥~ and so through a point ()\%, /\i) € R? may pass at most two
curves in : Ez and ¥, which may or may not coincide.
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7.5.2 Asymptotic behavior

Now we intend to find the asymptotic behavior of the curves in 3. In order to do this we
will analyze the behavior of the nontrivial solutions corresponding to a point (AT, A7) € Ef
when this point moves toward the asymptote of the curve. In particular we will prove that one
may define a “limiting function” wu., whose properties will give us the value of the limits A% in
proposition 7.27.

In the following we will call a “positive bump” (resp. “negative bump”) of the function u,
an interval (a,b) such that u > 0 (resp. u < 0) in (a,b) and u(a) = u(b) = 0.
Lemma 7.29. Let {(A\[,A\;)} C S or £ for some k > 2, let {\™ = A3} be its asymptote
and X\, — Ay (and so N} — +00) and finally let u,, be the related nontrivial solutions chosen
with ||up||; = 1.

Then there exists a subsequence u, — Us in C2([0,1]) in the case (N), while in the case (D)
the convergence is in C*([e, 1 —€]) NCY([0,1]) for any e > 0.

Moreover us 1s such that:

(1) oo < 0 but uss # 0;

(i) uoo satisfies ull = A\ uco where us < 0;
n

moreover in the case (N) also satisfies the boundary condition ul, (p) = 0 at the boundary
points p where uso(p) < 0;

(i1i) {x €1]0,1]: wus(z) =0} does not contain intervals, and hence the positive bumps of the
uy, collapse to points;

(iv) us has the same number of negative bumps as the wuy, in the sequence;

(v) in the case (D), if the u, in the sequence start with a negative bump then the claimed
convergence is in fact in C2([0,1 — €]) and if the u, end with a negative bump then the
claimed convergence is in fact in C*([e, 1]).

Proof. In this proof we will denote by F a positive constant whose value may be increased during
the course of the proof.
Testing the differential equation with ¢ we get

fol Up @y = /\% fol Und1 = A fol utdr — A, fol u,, ¢1, that is
1 1
(A — X‘f)/ Uy 1 — (A, = Af)/ Uy, 1 =0; (7.124)
0 0

here { fol u,, qﬁl} is bounded by f01 ¢1 and so (since {\,, } is bounded) we conclude that
{(A; - A2 fol ugqﬁl} is bounded too, in particular

1 1
/ |uz |61 =/ Nrut + Auy ) < B (7.125)
0 0

e in the case (N), since ¢; is a constant function, {u/”} is bounded in L'(0,1):

1
/0 luy'| < E, (7.126)
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e in the case (D) we have the same rsult but only with bounds in L'(g,1 —¢) for any ¢ > 0
since ¢; goes to zero in 0 and 1:

1—¢
/ luy| < E. (7.127)
3

Now we want to estimate u/ through Green’s formulas (see section A.4). Observe that
—(=u)" = XNut — Xju,; and (ul)'(0) = (u)) (1) = 0 (resp. w2 (0) = /(1) = 0), that is (—u))
satisfies the second order problem above with Neumann (resp. Dirichlet) boundary conditions.

Observe that equations (A.11) and (A.8) imply that

G(z,y)| < Koi(y) (7.128)

for a suitable K, both in the case (N) and (D).
Then we have from equations (A.10) and (A.7): in the case (N):

1
() = —ull(1) + /0 M (4) — Aum (1) Gla, y)dy (7.129)

in the case (D):
1
() = /0 (Fui (y) — Auz (1) Gl y)dy (7.130)

The integrals may be estimated using (7.125) and (7.128), to estimate /(1) observe that

since in the case (N) u),(1) = u/”(1) = 0 we have

(w _ 1)2 x &1 &2 &3
un(e) = wn(1) + (1)1 +/ dgl/ dég/ dgg/ W () dEx (7.131)
1 1 1 1
where u,(x) and the integral are uniformly bounded and hence so is u (1) is.
Then in both cases we conclude
unl o < E. (7.132)

n.

Now we estimate wu,, :

o for the case (N) |u))(z)| = |u/(0) + [y wy(£)d¢| <0+ E,

e in the case (D) we have |u)/(x)| = < |u(p)| + E, provided p,x €

W) + [Tl (€)de
[e,1—¢]: to estimate u!’(p) consider |u ()| = ’u%(p) +u(p)(p— ) + fpx dé, fpél ul (&2)d&s|:

n
n

this implies that u,’ (p) is bounded, since all of thr other terms are;

then we have, for any € > 0,

sup |ur(z)] < E  in case (N), (7.133)
z€[0,1]
sup |ul(z)|<E in case (D). (7.134)

z€le,1—¢]
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To conclude, since [uf,(z)| = |u},(0) + [y uj(£)d¢| and

lun(z)| = ‘un(O) + up (0)z + [ dé1 [3 ug(ﬁg)d&’, we have by the uniform boundedness of both

up, and u!r that of ul, too.
So we have now, for any € > 0,
lunllesoay < £ in case (N), (7.135)
[tnlles (=) + lltmlle2oay < E - in case (D) (7.136)

and then, up to a subsequence, strong convergence in C2[0,1] in the case (N) and in C%[e,1 —
g] N C0,1] in the case (D): we call us, the limit.

Now let us prove the claimed properties of uq.

(i) From equation (7.124) we have

1 - 2 1
A=A E
+ _'n 1 -
= — < —/—>—0 7.137
/0 tn 91 /\rT—A%/o 91 b= A2 ( )

and then fol ul ¢1 = 0, that is us < 0; however by the C° convergence ||uco|/ o = 1 and
so it is not identically zero, in particular inf ¢ 1) Uoo(z) = —1.

(ii) Let v € H2(0,1) and supp(v) C {x € [0,1] : uwo(z) < 0}. By the C” convergence we have

", __

un(x) < 0 in supp(v) for n > 1 and so fol upv” = fol A, u, v and taking the limit yields

1 1
/ ul v = / Ao Uo U - (7.138)
0 0

The same calculation may be done allowing v(0) # 0, in the case (N) if ux(0) < 0 (or
v(1) # 0 if use (1) < 0).

Then equation (7.138) with the chosen test functions implies the claim.

(iii) Suppose
* Uoo = 0 in the non trivial interval [a, b] C [0, 1),

* U < 01in (b,b+ ) for some e > 0;
(the symmetric case goes in the same way), then (since us is C? in a neighborhood of b)
Uoo (b) = ulo (b) = ul (b) = 0. (7.139)

But we have seen that if us, < 0 in (b,c) then it satisfies w2/ = A\ uc in (b,c) and so
it is also C*°(b, ¢); moreover since lim; o+ tuso(b 4+ t) = 0 we have lim,_ o+ uZ(b+t) =0
and this implies that there exists and is finite lim;_,g+ u’ (b+t) = —n; in fact n > 0 since

Uoo < 01n (b,b+¢€).
Now if 7 = 0 then ue is in fact C* in a neighborhood of b and

b+t &1 &2
’U,go<b +1t)= /b dfl/b d{g/b Aolioo(€3)dEs < 0. (7.140)
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Hence 1o, cannot satisfy us (1) = 0 nor ul (1) = 0, which is a contradiction since it is the

C! limit of functions satisfying one of the two.

If instead n > 0 then we have, for § > 0 small enough,

n o
oob 0 < -5 )
Uso(b+9d) < 56 <0

52
/ < _nho
U (b+0) = —55 <0,
u (b+6) < —gd<0,
u (b+6) < —g<o

and then
b+6+t

u,(b+4d+1) < /
b+6

which again gives a contradiction.

&1 &2
ds, / i / Atioo (€3)dE3 <0,
b+ b+6

(7.141)

(7.142)
(7.143)

(7.144)

(7.145)

To conclude, since we have CY convergence to a function that is non negative only in a
set which does not contain intervals, we have that the positive bumps need to collapse to

points.

(iv) Let us start by supposing that a negative bump collapses to an interior point (this implies

that there exists a positive bump both before and after this negative bump).

In particular let

Snytn — to € (0,1) such that u,(s,) = un(t,) =0 and uy, < 0 in (s,,ty).

Since ul,(s,) < 0 and u),(t,) > 0 there exists

My, € (S, tn) such that u),(my) = 0 and u!)(my) > 0;

moreover consider the following positive bump: there exists a maximum point M,, > t,

where u,(M,) = 0 and u/(M,) < 0 and hence there exists a point

Pn € [Mun, My] such that ul!(py,) = 0.

However, since the positive bump collapses, all these points converge to tg, and then by
the C? convergence un(tg) = ul (to) = u”,(to) = 0 which is a contradiction as seen before.

The same proof may be adapted to a negative bump near to the boundary in the case (N),
since in this case u/,(0) = 0 (the case in ¢t = 1 is analogous) and by the same argument if
tn, — 0 is such that u,(t,) = 0 and u, < 0 in [0,,) then us(0) = ul, (0) = w2, (0) = 0.

In the case (D) we do not have C? convergence near the boundary and so this argument

does not work: let us suppose
tn, — 0 such that u,(t,) = 0 and u, < 0 in (0,t,);
as before there exists

my, € (0,t,) such that u,(m,) = 0 and u] (m,) > 0:
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let us estimate u/ (m,) by Green’s functions:
1
0= —ufma) = [ (Fui(0) = s ()Gl )y (7.146)
0
1 1
> —/ Aty ()G (1, y)dy = —E/ G(mn, y)dy
0 0

where the last inequality comes from the boundedness of {\ w. }; now consider the se-
quence of functions G,,(y) = G(mu,y): by equation (A.9), since m,, — 0, we get G,(y) — 0
in CY(]0,1]) and so we conclude u!/(m,,) — 0.

Now multiplying the differential equation for u,, by u, we get u/""ul, — N wtul, + X\, u, ul, =

/ /
0, where ul"ul, = (ulful,) — wlful) = () — (“52)" and (ufug) = = (“52) so
) n “n — \"n"n n “n — \Yn Yn ) nly) = 5 ;

integrating we get

2upuy, — (up)® = AF (u)? = A5 () = G (7.147)
if we compute C,, in an absolute minimum we have u, = —1 and u], = 0, and so

Cn < =\, < —X2 <0, but if we compute it in m,, we get C,, — 0 since u//(m,) — 0 and
un(my,) — 0 by the C° convergence, giving a contradiction.

Finally we need prove that a negative bump may not split in two distinct bumps, actually

even if uxo (z9) = 0, if uy, < 0in a neighborhood of x(, then the argument used to prove that

Uso Satisfies ull = A\ uco still applies and so ueo(zg) = ul,(x0) = 0 gives a contradiction

as in lemma 7.22.

We have just seen that in this case the bump does not collapse, then u, < 0in (0,¢) (or in
(1 —£,1)) and so here too {u!”"} is bounded since {\; } is: then we get in place of (7.127)

01_6 |u'| < E or fal |u”'| < E , and then we may proceed as before to obtain the claim.
O
Now consider the problems:
u" =u in (0,A)
[ u(4) =u'(4) =0
" =u in (0,A)
u(0) =u"(0) =0 ; (7.149)
[ u(4) =u'(4) =0
u" =wu in (0,A4)
' (0) =u"(0) =0 : (7.150)
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each one of them admits a positive (or negative) solution for a unique value of A; let us call
these values respectively A, Ay and As.

The last two problems have already been analyzed (in a slightly different formulation) in
section 7.4.1: actually if we set v(x) = u(gz) we obtain for v the equation v"” = ¢*v with the
boundary conditions imposed in 0 and in 4; then with ¢ = A and § = ¢* we obtain equation
(7.79) from (7.150) and (7.86) from (7.149).

Then we may conclude that As is the first positive solution of tanh(As) = tan(As) and As
is the first positive solution of tanh(As3) = — tan(As).

To compute A; we may observe that, by the symmetry of the boundary conditions in (7.148),
the solution is symmetric and then satisfies u/(A/2) = u”’(A/2) = 0; this implies that it is
nothing but the solution of (7.150) joined to its symmetrical, giving A; = 2A4s3.

Remember also that we already saw that Ay € (m,3F) and Az € (3, 7); moreover a better

estimate gives that since tanh(A3) < 1, then tan(A4s) > —1 and so Az € (25, 7) and A; €
(37”,27r).

We may conclude then that
T< Ay, A3< Ay and Ay < Al <2A,. (7.151)
Now we may state:

Theorem 7.30. Let {)\* = Ak i} be the asymptote of the curve Zf:
then we have, for k > 2:

o in the case (N) A, o = (%Al)4 = ((k —1)A3)*;
e in the case (D)

— if k is even )‘;o,kz,i = (A2 + (% — 1) A1)4,
— if k is odd

* Aokt = (%Al){

Aol = (240 + (B —2) 4p)".
In particular we have

e in the case (N)
0=\ < Ao, = AL

00,2,— 7’
A Aok <AL A

cok+14+ — for k= 2;

00,k,+ = 00,k+1,—

e in the case (D)
M <Aas =A

Asod—14 < Asok—1,— < Aokt = Aoohm < Aokttt < Acopir,—  Jork =4 even.

00,2,—

00,3,— 7

<At <A

Proof. Consider the sequences {(\F, \,,)} and u, — s of lemma 7.29 and denote as there
A% = limy, oo Ar
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By lemma 7.29 the positive bumps and halfbumps in the sequence {u,} collapse to a point
for uo, the interior negative bumps (p1,p2) of us satisfy

n

5o = AsoUoo in (phpQ)
u(p1) = u'(p1) =0 , (7.152)
u(pz) = u'(p2) =0

u

and so p2 — p1 = A (A5,) V4
In the case (N) the boundary negative halfbumps of us, satisfy (we treat the case of the left
end point, the other case is analogous)

"

= A Uoo in (0,p2)
W' (0) =u"(0)=0 ; (7.153)

u(pe) = u'(p2) =0

u

and so py = Az(Ag)" V4

In the case (D) if the u, start (or end) with negative bumps we have seen that the C2
convergence is achieved up to the boundary and so since all u,, satisfy u!'(0) =0 and u/'(1) =0
we get that the boundary negative bumps of us, satisfy (again we treat the case on the left hand
end point)

"

= A Uoo in (0,p2)
u(0) =u”(0) =0 , (7.154)

u

u(p2) = u'(p2) =0
and so py = As(Ag) V4

Then we have:

e in the case (N) each u, in the sequence is composed of 2(k — 1) halfbumps of which k& — 1
are negative; since the negative halfbumps at the boundary tend to halfbumps of length

Az =243 we conclude
Vs r Vs

that each negative halfbump tends to a halfbump of length \/T giving the condition for

{o o}
3
s

the existence of a non trivial solution (k — 1) =1

e in the case (D)

— if k is even each u,, in the sequence is composed of % positive bumps and % negative
ones, of which one is at the boundary, then the condition for the existence of a non

trivial solution is (% — 1) 4‘4;_ + 4‘4;_ =1;

— if k£ is odd then

x if the u,, in the sequence start positive then we have k“ positive bumps and k

negative ones, all interior, giving the condition (%) 4‘41 =1,

Aso
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Figure 11: Sketch of the uq, for the case (N) with k = 2,3,4 (X1 above and ¥~ below).

x if finally the u, in the sequence start negative, then we have % positive bumps

and % negative ones, of which two are at the boundary, giving the condition
(M_ ) Ay +24A2 -1

s YE T s

The inequalities for the case (N) are trivial; let us see those for the case (D):

e M < Ao+ Blves T < Ag;

® Aoho14 <A1 gives %Al < 249 + (% — 2) Ay, which simplifying gives

A< 2A2;
o A < A2 ives 24y + (¥=UEL 9} 4y < Ay + (5 — 1) Ay, which simplifyi
0ok—1,— oo,k,+ 81Ves 2+ D) 1 < Ag + (2 ) 1, which simplifying
gives Ay < Aq;
® Aok < Akt gives Az + (% —1) A < (H;)_lAl, which simplifying gives again
AQ < Al;

e last inequality is analogous to the first.

Then all inequalities are verified by equation (7.151).
O

In figure 11 and 12 we sketch the limiting functions us for the first curves of the Fucik
spectra of the case (N) and (D) respectively.
7.5.3 Relationship between the curves Zf

To conclude the qualitative description of these Fucik spectra we prove two lemmas dealing with
the possible intersections between the curves Zf.

Lemma 7.31. If k # h then Sif N XF = 0.

Proof. Let AT(A™) describe X} or ¥t then AT (A?) = A? and since it is decreasing
AT(AZ,) < A2 < A2, then for A~ = A7, the curves ¥} are lower than the 37, .
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Figure 12: Sketch of the us, for the case (D) with k = 2,3,4,5 (T above and ¥~ below).

AVZVERVAVERVAV,
NZERVAVERVAVARVATAY

Then it is enough to prove that Zi N Efﬂ = () to imply the claim.

By contradiction, suppose (AT, A~ ) € Ei N Ek 1 then we have the corresponding nontrivial
solutions uj and ug41, where the second changes sign once more than the first one and so in
one of the two endpoints (suppose in 0) the sign is the same and we may choose them such that
uk(0) = ug41(0) and u,(0) = w4 (0).

Then let § = ug — ugs1: we have 6(0) = ¢’(0) =0 and

8" = (u, —ups)™ = AT =) = A (uy — ) (7.155)

= (M (@) + Ay (@) + @)X (@) + o)y (2)) 3,

where
Xi17i2 ($) = X{:I:1uk>0, :tguk+1>0} (':U)a (7156)
Ml + N u
ci(z) = b (@), (7.157)
Uy, + Up i q

S TR Sl T
ca(w) = ML Ay (@); (7.158)
_UZH — Uy

(7.159)

since the function in brackets is L°°(0,1) and positive a.e, by lemma 7.22 we get § = 0, a

contradiction since 6(1) # 0.
O

Lemma 7.32. In the case (N) X} =X, for all k > 2.
In the case (D)

° Z;‘ =X, for all even k > 2,
. E;: #X, for all odd k > 3.

Proof. If k is even we have nontrivial solutions which start positive and end negative or viceversa.
Then let (AT, A7) € E: and u, be the corresponding nontrivial solution: we already know
that (A7, A1) € ¥, since —u.(x) satisfies the equation with coefficients (A~,A") and starts
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negative; but in this case —u,(1 — x) starts positive and satisfies the equation with coefficients
(A7, A1), that is (A7, AT) € =} too.

This gives X C E;, the other inclusion follows in the same way.

If £ is odd we have that the nontrivial solutions which start positive end positive and those

52
which start negative end negative; moreover by equation (7.121) di—f()\z) = Jo )" Which in the

d - 1(¢+)2
case (D) changes if we choose ¢, starting positive or negative since it has af((iiffgrent number of
positive and negative congruent bumps, and so implies that E; X,

In the case (N) let (AT,A7) € X and u. be the corresponding nontrivial solution with
usx(0) = 1, then v(x) = u.(l — z) starts positive and is a nontrivial solution corresponding
to (AT,A7) too, however if we rescale it (if necessary) in order to have v(0) = 1 we obtain
v"(0) = u/(0) since otherwise we would have another branch of ¥; which is excluded by remark
7.28.

By uniqueness for the initial value problem this implies that v = u,, that is u, is in fact
symmetric and so u(1/2) = u}'(1/2) = 0; moreover u4(1) = u4(0) = 1 and u} (1) = «//(0), and
so we may consider the function @ defined in [0, 2] gluing u.(z) : € [0,1] to ux(z—1) : z € [1,2].

By the above considerations w(x) = a(x + 1/2) : « € [0, 1] is another nontrivial solution of
the problem; now we have:

e if 4(1/2) < 0 then w(z) is a non trivial solution starting negative and so —w(x) is a non
trivial solution starting positive corresponding to the problem with coefficients (A™, A ™),
that is (A7, AT) € & and so &, C .

e if 4(1/2) > 0 then we may conclude as before (since w is another nontrivial solution
starting positive corresponding to the problem with coefficients (AT, \7)) that in fact
@(1/2) = 1 and @”(1/2) = 4"(0) and so that @(1/2 — z) = a(x) for € [0,1/2], then
ul,(1/4) = u}'(1/4) = 0 and we may repeat the argument.

The procedure ends by finding a negative point of the form 1/2¢, and then proving that ¥, C E,j,
since otherwise we would prove the existence of infinitely many symmetries for wu,, which is a
contradiction for a function which has a finite (and non zero) number of zeros.

O]

7.5.4 Conclusion

By the information obtained in the lemmas of this section we get a good idea of the shape of the
Fuéik spectrum: in particular in the case (N) the shape is very similar to that of the Neumann
problem with the second order operator on an interval (see figure 2 on page 23); in the case (D)
the shape may be similar to that of the Dirichlet problem with the second order operator on an
interval (see figure 1 on page 22), but with the important difference that there is always some
space between the asymptotes of two consecutive curves in the spectrum; moreover we did not
prove whether the two distinct curves E;: and X, with k¥ odd have common points other than
(2, 22).

7.6 The superlinear fourth order problem in one dimension

Now that we know the qualitative shape of the Fué¢ik spectrum for the one dimensional case
with the fourth order operator and we have also its variational characterization (see theorem
7.7), we may apply the same ideas of section 5.
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Actually by the above lemmas we have that ¥; and 3,1 never intersect and have different
asymptotes at which they arrive in a monotone way, then any point between them is >-connected
to the diagonal between )\z and )\% 41 and so we may obtain existence results for problem (7.1)
and (7.2) provided A is between the larger asymptote of ¥; and the smaller one of ¥, or
corresponds to this last one with a suitable nonresonance condition.

In section 9.1 we will prove

Lemma 7.33. For Q of class C™, under hypotheses (HN), (H1-m), (H2-m) and (H3-m) with
h € L%(2), the functional (7.6) satisfies the PS condition in HW(Q) (resp. in HE(Q)) for any
A > AT,

With this lemma and the above observations we may state (the values A\__, , are those
obtained in theorem 7.30):

Theorem 7.34. Under hypotheses (H1-m), (H2-m) and (H5-m), if X € (A AL j1.4) for
some k > 2, then there exists a solution of problem (7.1) (resp. (7.2)) with Q = (0,1) and
m =2, for all h € L*(0,1).

Theorem 7.35. Under hypotheses (H1-m), (H2-m), (H3-m) and (HR-m), with h € L*(0,1),
A=Al ki1y for some k > 1, then there exists a solution of problem (7.1) (resp. (7.2)) with
Q=1(0,1) and m = 2.

Remark 7.36. Observe that the asymptote Ao+ 18 in both cases the value we got for v in

section 7.4.1, then the case A € ()‘%’)‘go,27i) corresponds to theorem 7.17, where hypothesis
(H3-m) was not needed.
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8 Problem with the p-Laplacian operator

Here we intend to consider the problem

—[W(W)] = Mp(u) + g(x,u) + h(z) in (0,1)

(8.1)
w(0) =4 (1)=0
sP~2s s
where (s) = ‘0 | f 2 ;
g €C%0,1] x R), (H1-p)

—

limg oo &85 =0, lim,yoo 428 = o0

uniformly in [0,1] and h € L9([0, 1]) where 1/p+1/q = 1.
As for the Laplacian we will need suitable hypotheses on the growth at infinity of g in order
to obtain the PS condition: let G(z,s) = [; g(x, £)d¢, we ask:

1
360 € (0, ];),so >0 st. 0<G(x,s) <Osg(x,s) Vs>sp; (H2-p)

1
ds1 >0, Cy >0 st. G(z,s) < —sg(x,s)+Cyp Vs < —s1. (H3-p)
p
Moreover for some values of the parameter A we will need the nonresonance condition
dpo >0, My eR s.t. G(z,s)+ h(x)s < My ae. z€l0,1], Vs < —pg. (HR-p)

In order to study problem (8.1) we will consider also the following Fucik problem with
Neumann boundary conditions in dimension 1:

SO = XU =X w) i (0.1) o)
w'(0) =4/ (1) =0

where v (z) = max{0,u(r)} and v~ (z) = max{0, —u(z)}.

8.1 Some useful lemmas

As noted in section 2.5, in dealing with this kind of operator we are led to work in the spaces
WP (Q) or I/VO1 P(Q)), respectively in the Neumann and Dirichlet case; we will denote the space
considered by W.

Let us prove here some useful properties; from now on we will denote by ¢ = ]% the dual
exponent of p, that is the one such that 1/p+1/¢ = 1.

Lemma 8.1. u € LP(Q) implies 1p(u) € LI(Q).
Moreover |[(u)|| o = [[ull7, "
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p—1

Proof. 19150 = (fo W)Y = (Jo P '550) 7 = (o )7 = " =

Corollary 8.2. For u,v € LP(Q), we have )(u)v € L' and we may estimate (using Hélder’s

inequality)
‘ | wtwpe

Lemma 8.3. u, — u in LP(Q) implies [,V (un)v — [ (u)v for all v e LP.

—1
< Nl ol - (8.3)

Moreover

Proof. Since u, — w in LP, up to a subsequence we have convergence almost everywhere and
we may find a function k € LP such that |u,| < k a.e, so that |¢(u,)v| < |k[P~!|v| which is a L*
function by the previous lemma, and so the dominated convergence theorem gives fQ Y (up)v —
fQ ¥ (u)v. This procedure may be applied to any subsequence and then the result is true also
without passing to a subsequence. O

In the course of the following proofs we will use the known fact that the operator T': W — W*
defined by (T'u,v) = [, 1(Vu)Vu satisfies the following property S (see [Ne¢83]):

Definition 8.4. The operator T : E — E* has the property ST if
up = u and limsup,_ o (Tu, — Tu, up — u) <0 implies u, — u.

We remark that condition limsup,, ., . (Tun — T'u,u, —u) < 0 may be replaced by
lim sup,, , 4 oo (Ttn, up, — u) < 0 since by weak convergence lim,, oo (T'u, up, — u) = 0.
We give here the proof for sake of completeness, following [Nec¢83].

Proof of the property ST for the p-Laplacian.
The inequality above reads

limsup,,_ 4o [ (|Vun[P72Vu, — |Vu|P2Vu) - (Vu, — Vu) < 0.
First we claim that

for a,b € RY, (|ajP~2a — |[b|P72b) - (a —b) > 0
and one has equality if and only if a = b.

In fact:

(lalP~2a—[bP=2b) - (a—b) = |al” + [b]" — (|a["~ +[b]P~*)(a-b) > |a]P +[b]” — (|a]P~*+ [b]P~2)]al|b]
and one has equality if and only if a and b are collinear.

Now choose, without loss of generality, 0 < |a|] =c < c+ 6 = |b]:

al? 6P — (aP=> + P2allfl = &+ (40 — (24 e+ 0P e+ ) =
=  (c+0)P—cdcP 2 —clc+6)(c+oP 2 =
= (c+0)P2((c+0)?—c?—cb) —cdcP™2 =
= (c+6)P72(6% 4 ¢6) — c6(cP~2) =
= (c+6)P725% + c6((c+ §)P~2 — ¢P72) >0

and one has equality if and only if 6 = 0.
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So we get (|a[P~2a — |b|P~2b) - (a — b) > 0 where one has equality if and only if a and b are
collinear and |a| = |b|.

Note also that the expression is continuous in a and b and so
if we have b, — b then (|a|P~2a — |b,|[P~2b,) - (a — bn) — (Ja|P~2a — [b[P~2b) - (a — b);
this implies that:

if bp—b and (la/P"%a— |by|P"2b,) - (a —by) — 0 then a=b. (8.4)

Now suppose

U, —u in WH(Q), (8.5)
= (|Vun[P~2Vu, — [VulP~2Vu) - (Vu, — Vu),

hmsup/ fan<0. (8.7)

n—+o0o

Since f, > 0 we have [, fn — 0 and so there exists a subsequence, a set E with [Q\E| =0
and a function C(z) € L*() such that for any z € E:

folx) =0 and |fu| < C(x), (8.8)
Up () — u(x). (8.9)

From (8.6) and (8.8) we get
Vo ()P < C(z) = [Vu(@)? + [Vu(z) P~ Vun(@)] + [V (2) P Vu(@)] (8.10)

which implies |Vu,(z)| < D(z); so for any fixed z € E, given a subsequence there exists a
further subsequence which is convergent, and the limit has to be Vu(z) by (8.4), thus we have
that Vu,(x) — Vu(z) pointwise in E.

Using Young’s inequality ab < % + % we get, for arbitrary € > 0 and nonnegative a, b,
abP~l <ea? + C(e)WP,  aPlb < ea? + C(e)bP, (8.11)

and so from (8.10)
1
IVun|P < fr + |VulP + | VP Vu| + [VulP 7 Vu,| < f + §|vun|1’ + C|Vul?, (8.12)

that is |Vu, [P < F(z) € L' a.e.
Then by the absolute continuity of the integral we have that

Ve >0 30> 0such that [y [Vun(z)|P < [ F(z) <e VN; with [N;| < d:

note that here 4 may be chosen independently of n, and such that the same property holds for
st |[Vu(x)|P too.



104 SECTION 8. Problem with the p-Laplacian operator

Finally by Egorov’s theorem there exists a set N5 with |Ns| < ¢ such that Vu,(z) — Vu(z)
uniformly in O\ Ns; then

/ |\Vu, —VulP = / |Vu, — VulP +/ |Vu, — VulP (8.13)
Q O\N; N5
< / [Vu, — VulP 4+ 2 — 2¢
O\N;

for any choice of ¢, and so (since we already had u, — w in LP(Q)) this implies u, — u in
wWhr(Q).

As before, this procedure may be applied to any subsequence and then the result is true also
without passing to a subsequence.

O
8.2 The usual spectrum for the p-Laplacian
Here we deal with the problem
=V [p(Vu)] = Mp(u) in Q
ou
ou _ )
on : (8.14)
or in 0N
u=20
\

As noted in section 2.5 for the Dirichlet problem it is known (see [Ana87] and [Lin90])
that there exists a first eigenvalue A1, that it is simple and isolated and that the corresponding
eigenfunction ¢; does not change sign, so that we may take it to be positive and with ||¢1]|;, = 1.

Moreover this first eigenvalue may be characterized as

A1 = inf {/ |VulP weW; Jull, = 1} . (8.15)
Q

The same proofs may be adapted to work in the Neumann case.

Neumann case. Since any constant satisfies the equation V - [¢)(Vu)] = 0 we have that 0 is an
eigenvalue; actually it is the first since [, [Vul? = A [, [ul’ with X < 0 implies u = 0 a.e; then
equation (8.15) is trivially satisfied by A\; = 0.

Moreover this eigenvalue is simple since [, [Vul[? = 0 implies, for a function u € WP that
u = const a.e.

Finally the proof of the isolatedness of A} = 0 may be adapted from [Ana87]: suppose it
were not isolated, that is, that there exist sequences \, — 0% and {u,} € WP with \, # 0
and ||un||, = 1, such that

/w(vun)w = An/ Y(up)v Yo € WhH. (8.16)
Q Q

Taking v = u, we get that ||Vuy||;, — 0, then ||uy|y1., is bounded and so up to a subse-
quence we have u,, — u weakly in WP and strongly in L?.
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Taking v = u, — u we get
/ Y (Vup)V(up —u) = )\n/ U(up)(up, —u) — 0, (8.17)
Q Q

and so u, — u strongly in W by property S™.
This allows to take the limit in equation (8.16) using lemma 8.3 and so gives

/ Y(Vu)Vo=0 Yve Wh?, (8.18)
Q
which again implies u = const a.e. and this constant is not zero since |ju||;, = 1.

Taking v =1 in (8.16) we get

/ Y(un) =0 (8.19)
Q

which implies that all u,, must change sign.
Supposing now u > 0 and taking v = u,, in (8.16) we get

/ IVus [P = An / [P (8.20)
Q Q

Now choose any § > 0 such that WP C LP*9 with continuous inclusion, then by Holder’s

inequality with the dual exponents p%‘s and ;%5 we may estimate

_J0 _p_
- _ ptd \ P+ _,pES \ pHo
Hunu’zp:/g_mnws(/ﬂ_n) (/Q|u|) (8.21)

where €1 is the set where u,, <0, and so

[ |12 < C iz [Byi = CO A ) [, < OOt M) 19175 fur|[Fs . (3:22)

P
wip
from which (since we saw that ||u,, || # 0)

p+d _p+ts
5

Q.| > (CA+N\))" ¢ >(2C) 7. (8.23)

But the LP convergence implies quasi uniform convergence and since the limit is a positive
constant this implies that the u,, are positive outside of an arbitrary small set for n large enough,
giving a contradiction. O

8.3 Variational characterization of parts of the Fucik spectrum of the p-
Laplacian

The variational characterization of the Fu¢ik spectrum made for the case p = 2 fails for p # 2
since the deformation obtained in section 4.1 relied on the structure of Hilbert space of H.
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However we may recover a part of the result using different techniques.

We first consider the Fué¢ik problem in any spatial dimension with both Neumann or Dirichlet
boundary conditions, namely

;

=V [p(Vu)] = XY (u™) = A7P(u”)  in Q
gu =0
on . (8.24)
or in 09
u=20

We will need some preliminary lemmas.
Consider, for a given point (a*,a~) € R? and r € (0, 1], the functional

Ja(u):/Q\Vu|p—a+/9(u+)p—a_/g(u_)p (8.25)

and the manifold

Qr={ueW st. V(iu)= /Q(qu)p +ru )P =1}. (8.26)

Remark 8.5. Note that the functional (resp. the manifold) are of class C* for p > 2, C' but
not CH1 for p € (1,2), while for p = 2 they are C*', but not C* unless a* = a~ (resp. r =1).

Definition 8.6. For the derivative of the functional J, restricted to Q, we will consider the
norm || Jg(u)ll« = infeer [|Jo (w) — V' (u) ]|y

Lemma 8.7. When u € Q, we have that 1 < [ |uP < 1/r.
Proof. 1= [(u")P +r(u™)? < [(ut)P+ (v )P = [|ulP < (f(u)? +r(u”)P)/r=1/r. d

We will also need some sort of PS condition: for p < 2 we need a stronger property (see
[Bon93]), actually if @, is just of class C' we need to prove the existence of a converging
subsequence for any PS-sequence {u,} where u,, € Q%», 8, being any sequence such that 6, — 0

and
Qr ={uecW s.t. Jo@)P +r(u™)? =146,}.

Lemma 8.8. The functional J, constrained to Q, satisfies the PS condition.

Proof. We take two sequences 6, — 0 and &, — 0%, a sequence {u,} C Q,‘f” and a sequence

{Bn} C R, such that
19w - [y o [l

‘ [ovuve—at [uwhorar vt s, ([ o rw<u;>v)\ <
<enloly, VoeWw.  (8.28)

<C (8.27)
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Since {u,} € Q% it is bounded in LP, and then by equation (8.27) it is also bounded in W.
Then there exists a subsequence converging weakly in W and strongly in L to some wu.
The LP convergence implies that u € Q).
Taking v = u,, we get that

</|Vun|p—a+/ump—of/|u,;|p> (146,)8n — 0. (8.29)

Finally with v = u,, — v we have

/w(wn)wun Cuw)—at /w(u;:)(un W) +a /w(u;)(un —u) + (830)

= [ IVl —a™ [ fug? = a7 [ Ju, P (P(uy) — i (uy,) (un — u) —0
(frowr=ar frie=e fuar)(/ )

where (estimating with inequality (8.3)) all terms except the first go to zero and then we conclude
that wu,, — u strongly in W by the property S* for the p-Laplacian. O

Finally it will be crucial in the following that:

Proposition 8.9. The critical points at some level ¢ of J, constrained to Q, are non trivial
solutions of the Fucik problem with coefficients (o™ + ¢,a™ + rc), that is the criticality of ¢
implies that (o™ 4+ c,a™ +rc) € 2.

Proof. Criticality of u implies that there exists the Lagrange’s multiplier § € R such that

/ Y(Vu)Vo — oﬁ/ Puh)v+ a/ P(u”)v+ B </ Pu ) — r1/1(u)v> =0 YoeW,
Q Q Q Q

(8.31)
but testing against u we get § = —c and so u solves

—Apu=aP(u) —a P(uT) +ep(u’) —erp(u”) = (@ +)p(u’) — (a” +re)p(u”) (8.32)

in , with the given boundary conditions.
Finally u is not trivial since it is in Q). O

8.3.1 First nontrivial curve

First we will reformulate in a slightly different way the variational characterization of the second
curve of the Fuéik spectrum of the p-Laplacian, made in [CdFG99].

In this part, we can still work in any spatial dimension with both Neumann or Dirichlet
boundary conditions.

Consider

dy,»= inf  sup Jy (u), (8.33)
6€lx,r ues([0,1])

where

J,\l(u)—/Q\Vu]p—)q/Q]u]p, (8.34)



108 SECTION 8. Problem with the p-Laplacian operator

'y, »={0:]0,1] = @, continuous s.t. 6(0) = ¢1, §(1) = ——=}. (8.35)

We first have:
Lemma 8.10. sup,cs({o1}) Jx, (u) =0, V6 € 'y, ;.
Proof. One needs only to note that Jy, (¢1) = 0. O
Lemma 8.11. +00 > d, , = infser, r SUPyes(jo,1)) Ir (1) > 0.

Proof. Tt is less than +oo since each 6([0, 1]) is a compact set.

Proposition 8.9 implies that the only critical points at level 0 on Q, are z; = ¢1 and 25 =

—%: call d the distance between them.

Since Jy, (u) > 0 in @, by the variational characterization of \;, we have dy, , > 0.
Now suppose by contradiction that dy, , = 0: then for any sequence of positive reals £, — 0
there would exist a sequence {d,,} C I'y, , such that

sup  Jy, (u) <en, (8.36)
u€dn ([0,1])

and then also a sequence {u,} C @, such that
(1a) uy, € 6,([0,1]), and then Jy, (un) < &y,
(2a) |lup — 2illyy > d/4 for i =1,2.

Since inf,eq, Ji, (u) = 0 we are in the conditions to apply the Ekeland variational principle
(see theorem 2.9) to each u,, obtaining a sequence {w,} C @, such that

(1b) 0 < Jy, (wn) < Jx, (un) < £n,
(2b) up — wally < /En,
(3b) [}, (wa)lx < V/Zn.

But then w,, would be a PS sequence for J, on @), and so would have a subsequence converging
to one of the critical points at level 0 (21 or z2), which is impossible considering properties (2a)
and (2b).

O

Combining the previous two lemmas, the PS condition in lemma 8.8 and proposition 8.9, we
can assert, by a classical linking theorem, that

Theorem 8.12. The level dy, , is critical for Jy,(u) constrained to Q.. That is the point
()\1 + d)\hr,)\l + Td)mr) €.

As mentioned before, this is nothing other than a different formulation of the variational
characterization in [CAFG99], however it is in a useful form to be used in the following.
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8.3.2 Third (or higher) curve for the Neumann problem in one dimension

Now consider the one dimensional Neumann case: we want to make one more step in the
characterization of the Fucik spectrum.

For the properties of the Fué¢ik spectrum in this case we can refer to [RW99] and [Drd92],
where we see that it has the same qualitative shape of the case p=2 (see figure 2 on page 23),
with single curves (we will call them Yj) coming out from each (simple) eigenvalue (Mg, Ag),
and having distinct asymptotes. Moreover to each point in the spectrum correspond only two
families of nontrivial solutions: the positive multiples of the initially positive and of the initially
negative ones. In particular the nontrivial solutions corresponding to a point in the curve Yo
are composed by a positive half-bump followed by a negative one and viceversa.

The idea we are going to apply is to “build” a suitable set homeomorphic to 9B? to be used
as Lo, in equation (4.27) and so to repeat the characterization made in section 4.2.

8.3.2.1 Construction of the set L,
We fix a point a = (a™,a™) on the curve ¥y with a™ > a™.

We define r; = g;:ii = o5, we call u, one of the two solutions in @, of the Fuéik problem

(8.2) with coefficients (o™, a™), and u, the other one.
Then we consider the functional

Jofw) = [P —a* [ty —a [ (3.37)

Remark 8.13. Observe that for u € Q, we have:

Jo(u) = Jy, (u) — (o™ = A1) (8.38)

and so
inf sup  Jo(u) =dy, , — (@7 = A1) >0, (8.39)
O€L N ry u€d([0,1])
indeed, it is not less than zero since we chose o € Yo and so by theorem 8.12 dy, ,, > at —\i;
moreover we have

sup  Jo(u) = —(aT — A1) <0. (8.40)
ued({0;1})

Now we look for a particular 6 € T'y,,, such that Jo(u)lsqo,1) < 0: we will build the

SN —p1
image of this  as follows: take the path [ on Q,,: ¢10+ it uu(—u") (-4~ )——= where u = u,,
YT
+ -
~4+ Ugy ~— Ug, . . o .
T = —=— 14~ = —r>~—— and the arcs are taken projecting on (),, the segment that joins
[P vrifuall,, JECHIE O fom TRE E6 :

the two vertices (note that these segments never pass through zero).
Lemma 8.14. sup,¢;(Ja(u)) = 0.

Proof. Let us start by observing that the Fu¢ik equation in variational form
[(u )" =at [Yuf)v —a™ [¢(uy)v, with test functions v} and u, gives

[lwsre =o* [y, (3.41)
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that is J,(uZl) = 0; moreover the homogeneity of .J, allows us to ignore the projection on Q,,
in the proof.
Then we look at the four arcs:

—~ =
o $1ut: call v =td + (1 —t)u™ so that v/ = (1 —¢)(u™)":
v is everywhere non negative and then (since [t¢; + (1 — t)u™] > (1 — t)u™ everywhere):

Ja(v) = (1= t)p/l(tﬁ)’\p - a*/[tcm + (1=t

< (1-tPat /(u+)p —a—trat [ty =o0.

) ﬂ_)(jgbl/{'/ﬁ): in the same way: call v =t(—¢1) + (1 — t)(—u") so that
— (- )(-u )’

/
is everywhere non positive and then (since [t¢1 + (1 —t)u™] > (1 — t)u™ everywhere):

(

Jofo) = (=t 1wy =™ [lor+ @t
< (1-tPa- /(u—)p (-t /(u—)p ~0.

~~
e @ u: here v =tut + (1 —t)u =u" + (1 —t)(—u") : obviously u* and u~ are non zero on
disjoint sets, then
Jo(v) = Jo(uT) + (1 = t)PJ(u”) = 0.

—_—
o —i w: herev=t(—u")+ (1—t)u=(—u")+ (1 —t)(uh): as before

Jo(v) = Jo(u™) + (1 = t)PJu(u™) =0.
]

Now note that the functional J,(u) is invariant under the transformation x — 1 — z, and
that the path defined in the proof is composed by non symmetrical functions with respect to
this transformation, except for the two points in span{¢;}. Then we can consider the loop
Lo, C Qp, obtained joining [ with its symmetrical path.

In figure 13 are sketched (in a qualitative way) the eight functions used to build the set Lq ;.

Remark 8.15. At this point it is clear that the level dy, , defined in (8.33) corresponds to the
first intersection with the Fucik spectrum of the halfline {(A1 +t, \1 + r1t), t > 0}: it cannot be
lower (if it were it would give a new solution of Fucik problem that we know does not exist) and we
were able to give an example of a § € T'y, », where sup(Jo(u)) = 0, that is sup(Jy, (u)) = a™ =\,
and then dy, , = a™ — Ay, where (o, a™) was taken on the second curve.
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Figure 13: The functions used to compose Lq s, -

TNl L

-

8.3.2.2 Linking structure
Now define the class

Torm ={v:B*— Q,, continuous s.t. y|pp> is an homeomorphism onto Lg,} .
(8.42)
Then by construction we have that

Lemma 8.16. sup,c,(sp2) Jo(u) =0 Vy € Loy
Moreover
Lemma 8.17. +00 > dor, = infyer, ,, SUPyeq(p2) Ja(u) > 0.

Proof. It is less than +oco since each (B?) is a compact set.
Proposition 8.9 implies that the only critical points at level 0 on @), are z; = u, and 22 = TUgy:

call d the distance between them, and take d < d such that B i(ua) and Bj;(u,) are disjoint and
&1

r1°

Lemma 8.16 implies that d, ., > 0, so suppose by contradiction that d,,, = 0: then for any
sequence of positive reals €, — 0 there would exist a sequence {v,} C I'yr, such that

do not contain ¢ nor —

sup  Jo(u) < ep, (8.43)
uEyn (B2)

and then also a sequence of paths {d,} C I'y, ,, such that
(1a) 6,([0,1]) € v,(B?), and then 0 < SUPyes, ([0,1]) Ja(u) < &n (see equation (8.39)),

(2a) d(6,([0,1)),2) > d for i =1,2.
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Now we may apply to each §, the minimax principle derived from Ekeland’s variational
principle (see theorem 2.10).
In fact (see remarks 8.13 and 8.15),

inf sup  Jo(u) =dy, , — (@7 — A1) =0, (8.44)
0€lN u€d([0,1])
sup  Jo(u)=—(aT =) <0 (8.45)
ued({0;1})

and the sequence 6, above is minimizing for the value sup,c(o,17) Jo(u) with 6 € I'y, ;.
So we obtain a sequence {wy} C @, such that

(1b) —en < Jo(wy) < SUPye6,,(]0,1]) Ja(u) < en,
(2b) d(0,([0,1]), wy) < Ven,
(3b) ([T (wa)ll« < V/Zn.

But then w, would be a PS sequence for J, on @, and so would have a subsequence converging
to one of the critical points at level 0 (21 or z9), which is impossible considering properties (2a)
and (2b).

O

8.3.2.3 Characterization of a point above X,
Now, given a ry € (0,1] and considering P2 the radial projection from Q,, to Q;,, we define

Pars = (7= P20 st 5€Tap) (8.46)
and we get from the previous two lemmas, these corollaries:
Corollary 8.18. sup,c,9p2) Ja(u) <0 Vy € Tqy,.

Proof. The result of the projection is just multiplying by a positive scalar the point v and then
the effect on J,(u) is multiplying by the p;, power of this scalar, which does not change the
sign. O

Corollary 8.19. +00 >= inf.er,,, SUPycy(B2) Ja(u) > 0.

Proof. As before: the effect of the projection is just multiplying by a number that (on Q;,) is
positive, bounded and bounded away from zero, and then the result follows. O

From now on we can proceed as in the case of p = 2, that is we define

dor, = inf  sup Ju(u) >0, (8.47)
Y€ a,ry uey(B?)

we deduce that it is a critical level for J, constrained to @, and then that (o™ + dor,, 0 +
rodar,) € X: in particular we can assert:

Proposition 8.20. For any point (o™, a™) on X9 with o™ > o~ we can find and characterize
one intersection with the Fuéik spectrum of the halfline {(a™ +t,a™ + rot), t > 0}, for each
value of r2 € (0,1].

The above construction is sketched in figure 14.
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Figure 14: The construction for the variational characterization of a point above Xy for the
p-Laplacian.

\Y, : (aTa7)
—— = A{(aT +t,a” +mrat), t>0}
—_— = {()\1+t,>\1+’l“1t), t>0}

8.4 The “i-superlinear” problem

Since we reproduced the variational characterization as in section 4.2, we may apply it to the
“4p-superlinear” problem (8.1) when A is between the asymptotes of Yo and X3 or (resonant
case) coincides with one of them.

Actually using now the following estimates in place of those in section 5.1:

e 3 C1(6,h) such that | [ hu| < & |[ull}, + C1(8, );
e 3 Cy(6,g) such that | [ Gle, —u")| < & llullh, + Ca(6, g);
o for any M, 3 Cs(M,g) such that [ G(z,u™) > % |ut]”, — C5(M, g);
o G(z,s) <1+ “%sp for all s €0,b(v")];
and in place of that in section 5.2
o Jo Gla,u)+ o hu < B2 [ty + Mo+ Calh,g) + 1+ % [ [l

we may prove the equivalents of lemmas 5.4 and 5.5, for the functional associated to problem

(8.1), namely:
1 M \ 1 1 1
F(u) :/ \u’|p—/ ]u|p—/ G(x,u)—/ hu . (8.48)
P Jo P Jo 0 0

Remark 8.21. In proposition 8.20 it is not specified whether the characterized intersection is
the first (that is the one with smallest t) of the halfline with ¥. However this information was
not needed in the proof of lemma 5.5, as observed in remark 5.6.
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Then we assert:

Lemma 8.22. For p > 2, under hypotheses (H1-p), (H2-p) and (H3-p) with h € L4(0, 1) where
% + é =1, the functional (8.48) satisfies the PS condition for any X > 0.

Proof. See section 9. O]

Finally if we call A7 the value of the asymptote of the curve ¥; of the Fucik spectrum, we
conclude that

Theorem 8.23. Under hypotheses (H1-p), (H2-p) and (H3-p), if p > 2 and A € (X5, \}), then
there exists a solution of problem (8.1) for all h € L%(0,1), where % + % =1.

and

Theorem 8.24. Under hypotheses (H1-p), (H2-p), (H3-p) and (HR-p), withp > 2, h € L4(0,1)
where % + é =1, if A= X fori=2 ori=23, then there exists a solution of problem (8.1).
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9 Proof of the PS condition

In this section we will prove the PS condition for the functional (8.48) with p > 2 (and then
also for the functional (5.1)).

This proof is adapted from that made in [dFR93] for the periodic problem on an interval,
with the Laplacian operator.

The exact statement of the result is

Lemma. 8.22. Forp > 2, under hypotheses (H1-p), (H2-p) and (H3-p) with h € L9(0,1) where
% + % =1, the functional (8.48) satisfies the PS condition for any \ > 0.

First note that from hypothesis (H1-p) one can always make the estimates:
for any £ > 0, s € R and M € R, there exist Cjs, C: € R (of course depending also on §) such
that

6(a,5) > My(s) — Cas for s> 5, (9.1)
lg(z,s)| <eyp(—s)+Ce for s<5. (9.2)
Let now {u,} € W'P(0,1) be a PS sequence, i.e. there exist T > 0 and ¢, — 07 such that

Flun)| = \;/0 |u;|P—;/01 |un|p—/olc<x,un>—/01hun
# ] = || el [ vt~ [ gt [

<enllvllyre, YveWhP (9.4)

<T, (9.3)

1. Suppose uy, is not bounded, then we can assume ||un || 1. > 1, ||ty — 400 and define

Zn = , so that z, is a bounded sequence in WP and we can select a subsequence

llunllyy1,p

such that z, — 2y weakly in WP and strongly in LP(0,1) and C°[0, 1].

2. Claim: zg9 < 0.

() =) |,

lunl?E,

+ 1 hat

oo - [1f
lualliis  Jo lunlfs

from which
/1 T, Up zO
lean By
Now for any # such that zj () > 0, we have that u,(z) > 0 for n large enough and then

we can use the estimate (9.1) to obtain

Proof of the claim. Consider

BN i PR

[

1 st | el e g

olfuun [y [ ot

I tn) sy (e (a)) - — (9.7)

[ [
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taking lim inf we get

> M (20(2)) (9.8)

for any choice of M and then

= +00 . (9.9)

Joining equations (9.1) and (9.2) with § = 0 and divided by HunHW1 , we get

79@ in) > Mip(zy,) — 701” where z, >0
||“n||W1p [l nlep
> —etp(—zp) — —==— where z, <0
[ nllWlp
and so
C
ortn) o ol - —e (9.10)
[ [ [

since 2, is uniformly bounded by its C° convergence and ||uy ||y, > 1, this implies that

the functions % are bounded below uniformly so that we can use Fatou’s Lemma
Un, W1 D

and get from (9.6) and supposing z; # 0
1 + 1 +
too = / lim 9805 hminf/ (@, un)2g (9.11)
0 motee flug |, T ot Huﬁfl
Wlp

2)(z0)

1 1 +
h en ||%
< liminf /+)\‘/ V(zn) 2 +/ 0 + "H 0HW1p ’
n—-+o0 0 ”unHW1p HuTLHWIp

but the right hand side can be estimated since the first two terms are bounded by
(I+X) ||anW1 EA le » < 14+ X and the last two clearly go to zero; then equation (9.11)
gives rise to a contradiction unless zg < 0.

O]

. Claim: Using hypotheses (H2-p) and (H3-p) we obtain a constant A such that

/ ung(x, un) <A Hun”Wl,p ) (9'12)
Un >S50

at least for n large enough.

For p > 2 this implies

/ ting (2, 1m) < A Jun|[Z72 (9.13)
Un >80
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1 1
/ —pG(z,up) + g(x, up)u, + (1 — p)/ huyn| < pT + ep |lun |l (9.14)
0 0
from which
/ g(x, up)up — pG(z,uy) < / pG(z,upn) — g(x, up)un + (9.15)
Un >S0 uUn <S8
1
0= V)| [ ol + 5T + 20 Junlyes
0
The right hand side may be estimated as follows:
[ ]
/ pG(x, up) —g(x, up)upn, < sup (pG(x,s) — g(z, s)s) , (9.16)
—s1<un<so z € [0,1],
s € [—s1, 50]
e using hypothesis (H3-p)
/ pG(x,up) — g(x, up)u, < pCy , (9.17)
Up <—81
1
d fo hup | < HhHLq HunHLP < HhHLq Hunlem-
For the left hand side we use hypothesis (H2-p) to obtain
1-90) [ glou)un< [ gloum)un— pGlu) (918)
Un, >80 Un >80
and then, since (1 — p#) > 0, joining all estimates from (9.15) to (9.18), we get
A A
/ 9(z, up)up < 9 ||un||W1,P + 9 <A ”unHWl,P (9.19)
Un >80
for some constant A.
Since we are supposing |[un/j1, > 1, this implies (9.13) for p > 2.
[
4. Claim: under hypothesis (H3-p),
1
lim / ’g(m’i;”fl)‘ —0 (9.20)
n=teeJo o un g,
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Proof of the claim. Fix € > 0 and k such that % <eand k > sg.
Estimate (9.2) shows that

1 p—1 p—l
u 0

n<k HunHWLP N Hunlep B Hun”wlp ||un||W1p

from which there exists 7 such that

/ Mg(c+1)e for n>m . (9.22)
un<k ||Un||W1p

Since k > so and using estimate (9.13), one has

[ Smm) [ s [ ) i A g

ok [unlBonty ™ Junsk lunl B, w>so |[unlBl,

Then we conclude that for n > n

/1 M < (24 0)e; (9.24)

([

by the arbitrariness of € the claim is proved.

O
. Claim: z, — 2o strongly in WP,
Proof of the claim. consider M :
lunl®
|/1¢}(2’)(2’ ) [ gl =z - [ LGz ) [ )
n n n n —1 =
0 0 0 [0 ot 0 [lunlfyrs
< enllon = Zollws (9.25)
[0 e
from which
2 - )| < (9.26)

En ||Zn ZOHwLp .
)

1 Ulg(a,u,
SA/ |w<zn>\|zn—20|+/ gt )l )y
0

[

/1 h(zn — 20) +
0 Nunllfye,s
but now all the terms on the right goes to zero (use equation (9.20) and the strong con-

vergence of z, in LP and C°), and then we conclude that z, — zo strongly in WP by the
ST property of the p-Laplacian. O

[ o

6. Claim: under hypothesis (H3-p), A > 0 implies zy = 0.
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(F (un)0) |.

Proof of the claim. For any v € WP we consider T

WIP

‘/d} s f v Hixutv)_/uulﬁw

from which
1 1 1
[ ot =a [ wte < [ ‘/
: : o i,

but now the right hand side goes to zero by equation (9.20) and so, taking the limit and
using lemma 8.3, we get

< lltlwe (g 97y
[t

€n ||UHW1 P (9 28)

9

||UnHW1p

1 1
/ Y(zp)v' — )\/ Y(z)v =0 for any veE WP . (9.29)
0 0

Finally v = 1 gives, with A > 0, that fol ¥(z0) = 0, but for a nonpositive function this
implies zg = 0.

]
7. Claim: u, is bounded.
Proof of the claim. Otherwise we get the contradiction 1 = ||z, ||yy1.0 — [|20/lyp1o =0. O

8. The PS condition follows now with standard calculations from the boundedness of wu,,.

In fact we now take a subsequence such that u, — u weakly in WP(0,1) and strongly in
L?(0,1) and C[0, 1].

Then consider |(F'(uy,), (u, — u))]:

'/ P(ul)(ul, —u') /zpun Up —u) — /Olg(:c,un)(un—u)—/olh(un—u)

< éenllun —ullyrp (9.30)

from which

up ) (uh, — ') (9.31)

(u,
0
< [ o+ [ |g<x,un>|un—u|+1/01h<un—u>

where now the right hand side goes to zero by the uniform boundedness of u,, and its LP
convergence, and then again the property S* for the p-Laplacian implies u,, — u strongly
in Whe.

+éenllzn — ZOHWl,p ;

Remark 9.1. The above proof may easily be adapted to the multidimensional Neumann problem
under the hypothesis p > N that guarantees the compact inclusion WP () C C°(Q).
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9.1 PS condition for the multi-Laplacian

Now we want to show that the PS condition may be extended also to the functional (7.6), that
is with the operator (—A)™ under the boundary conditions considered in section 7.

We have to change a little bit the proof of the claim zy < 0, since in equation (9.5) we tested
against zg which may not be in H™; however if we consider QT = {x € Q: z(z) > 0} and
v € C§°(QF) with v > 0 then 2§ v € H™(f2) and using it as test function with all possible choices
of v, we get the same results.

After this, in the case (N) with hypothesis (HN) the extension is straightforward provided
V™ ul|32 + ||ul|72 is a norm and one verifies the property S*; in the case (D) one arrives at
equation (9.29) and there one deduces that for A > A" and test function ¢; it implies fQ zop1 =0
and so again zg = 0.

We remark that for this proof it is just required H%(Q) C C%() and so we may assume
hypothesis (HN) instead of (HD) also in the case (D).

Then the reult is:

Lemma. 7.33. For Q of class C™, under hypotheses (HN), (H1-m), (H2-m) and (H3-m) with
h € L%(2), the functional (7.6) satisfies the PS condition in HW(Q) (resp. in HE(Q)) for any
A > AT

Proof of the property ST for the multi-Laplacian.
The property ST in this case is simple since we work in an Hilbert space: in fact u,, — « in H™
implies strong convergence in L? and limsup,, ., Jo V" (tn — w)V™(up — u) < 0 simply reads
V™, — V™u|| ;2 — 0 and so the convergence is strong too.

O

9.2 PS condition below the value ~

In [dFRI1] the PS condition was proven without hypothesis (H3), but only for A € [0,7) (see
the definition of v on page 73).

That proof may be useful to avoid (H3-m) for A € [A]",~) in the problem with the multi-
Laplacian treated in section 7.

The result is

Lemma. 7.15. For Q of class C™, under hypotheses (HN) (resp. (HD)), (H1-m) and (H2-
m), with h € L*(Q), the functional (7.6) defined in HW(Q) (resp. in H%(Q)) satisfies the PS
condition for A € (A", 7).

Moreover under hypothesis (HR0-m) and [ h¢y < 0 it satisfies the PS condition also for
A=A

We outline here the proof: one starts with a PS sequence {u,} C H]*(Q), i.e. there exist
T >0 and &, — 01 such that

1 A
’F(un” = ‘/ |vmu’2_ / |un|2_/G($>un) _/hun
2 Jo 2 Ja Q Q

[(F' (un), 0)| = | [ V"uV™0 = X [qunv — [o 9(z,un)v — [ hv| < (9.33)
SETL”vHHm, VUEHSL .

<T, (9.32)
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The PS condition follows as before if we prove that u, is bounded, then supposing
1 < ||up||gym — +o0 define z, = Mﬁv and extract a subsequence z, — zp weakly in H}"(Q)

and strongly in L?(Q2) and C%(Q) (resp. C*(Q)).

e Claim: z5 < 0.

Proof of the claim. As before, with zjv: v € C({z € Q:  z(x) > 0} in place ofzd, as
observed in section 9.1. O

e Claim:

limsup/ 9@ )z (9.34)
Q

n—too Jo llunllgm

Proof of the claim. We make the same calculations as before until equation (9.15), then
we use estimate (9.2) (once integrated and once multiplied by u,) to get a constant D,
such that

/ 2G(z,un) — g(x, un)un < /(EU% + Defun|) <& [unl72 + Dz [lunllz ; (9-35)
Un<sg Q

so in place of equation (9.19) we get

1
/ 9w )n < (A [tnll g + € llun 2 +2T) . (9.36)
U > 50 1—26

Then we have to estimate also (again using (9.2))

| gt um)un < e unllfs + e funlls (9.57)
un <80
Finally joining the previous two equations and dividing by ||, ||3;» we get (redefining the
constants)
2
A T
/ g tn)on o Mnllpe | Ae T ) (9.38)

taking the lim sup one concludes that

limsup/ 9, tn)2n < Ce (9.39)

n—too Ja |[tnllgm
for any choice of € > 0, from which follows the claim (9.34). O

e Claim:

limsup/ V"2,]2 < lim )\/ 2721:)\/ 2. (9.40)
Q Q Q

n—+400 n—+00
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Proof of the claim. Consider ’M :

llunll grm

[ [ L [
||un||Hm a llunllgm

from which
/ hzy,
+
a llunll gm

/’vmzn|2 < )\/ / aglx, Un Zn
Nl

where, taking the limsup and using equation (9.34), all the terms in the right hand side
20 to zero except the first which converges to A ||zo|| 2.

)

[[unl g7

[t | pm

O
Claim: if A € (A*,7) then zy = 0.

Proof of the claim. We will first prove that zp € Sp (see the definition of Sy on page 73).

Suppose by contradiction that sup,cq P (( )) < 0.

Since z, — 2 in C°(Q) in the case (N) and in C}(Q) in the case (D) we have that

;’1’<5;0<0forn>ﬁandthenun<0ianorn>ﬁ.

This allows one to use the estimate (9.2) to obtain that

g(x, Un) Ce

< elzn (@) + 77— (9.43)
l[wnll grm [[wnll grm
taking the lim sup we get
lim sup 9(@, tn) < glzo(z)] (9.44)
n—too | [|tn gm
for any choice of € > 0, and then
lim L&) | (9.45)
n—-+00 | |[tn|| gm
Now consider | (4n):01) |,
llun |l grm
n h n m
T Y R o R
) [unllgm — Ja lunllgm [[n| grm
from which
n h n m
) [[tn| grm o l[tn gm ([ grm

Since equation (9.43) also tells us that the functions in the sequence are dominated (for
n > n) by max,q |20| + 1 + C-—1, we can use dominated convergence to assert that

< lim/ ¢1:/ lim | 9(% )
n—-+o00o QO Qn—>+oo

[n | grm

9(x, un)
[[n [ z7m

g(:U, un)¢1

¢r=0. (9.48)
[[tn]| grm

lim
n—-+o0o
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Now we may take the limit in equation (9.47), to get
(™ — 2) / — (9.49)
Q

This, with A # AT, gives fQ zo¢1 = 0 which, since 2y < 0, would imply zp = 0: we conclude
that zg € Sy as claimed.

Finally this implies [, [V™20[* > 7 [, 23 by the definition of , which contradicts equation
(9.40) unless zp = 0 since otherwise, by the weak convergence,

/ |V 20)? < liminf/ V™2, |? < )\/ 2 < 7/ 2. (9.50)
Q n—+oo Jo Q Q
O
e Claim: if A = A", fQ h¢1 < 0 and hypothesis (HRO-m) holds, then zg = 0.
Proof of the claim. Equation (9.40) and the weak convergence of z, to zg imply
/\V%F <liminf/ V™2, 2 <)\’1”/ 22, (9.51)
Q n—+oo Jo Q

which implies that zg € span(¢1), that is zo = —p¢; for some p > 0.
Now consider |[(F'(uy), ¢1)|:

Lo =3 [ wor = [ oo~ [ no

from which

< enlloallgm » (9-52)

‘/ﬂg(%un)ﬁbl +/Qh¢1 <en o1l gm - (9.53)
Taking the limsup we get

limsup/ g(z,up) 1 = —/ ho1 >0, (9.54)

n—+oo JQ Q
but this implies zp = —p¢1 = 0 since otherwise

un(z) = 2n(&) [unll g < ~L61() [l — 00 Vi € © (9.55)
and so by hypothesis (HRO-m) the limit in the left hand side would be zero. O
e Claim: u, is bounded.

Proof of the claim. Equation (9.40) now implies 1 = |[V™2,|35 + ||zn]/72 — 0, a contra-

diction.
O
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A Appendix

We summarize in this appendix some basic definitions and results used throughout the work.

A.1 Sobolev Spaces

Let © C RY be an open set (bounded or unbounded) and 952 its boundary.

A.1.1 The spaces L?

For p € [1,4+00), let
LP(Q) ={u:Q — R such that / |ulP < +oo}, (A1)
Q

and define LP(Q) as the set of the equivalence classes of the elements in LP(£2) coinciding almost

1
everywhere, equipped with the norm ||ul|;, = ([ |uP)?.
Moreover let

L®(Q) = {u:Q — R measurable and such that 3C: |u| <C a.e.}, (A.2)

and define as above L>°(2) equipped with the norm |ul|;o = inf{C: |u| < C a.e.}.
It is known (see for example [Bre83]) that

e LP(9Q) is a Banach space for p € [1,4+00], moreover it is a Hilbert space for p = 2 with the
scalar product (u,v) 2 = [ uv.

o LP(Q) is reflexive and separable for p € (1,+o00) and its dual is L(€2) with % + é =1,
where the duality is given by (u,v) = [, uv.

e L'(Q) is separable, while L°°(£2) is not, and the dual of L*() is L>°(Q2) while the dual of
L>(Q) contains L'(2) but is larger, so that both are not reflexive.

A.1.2 The spaces WF»

Let L} .(Q) = {u : © — R such that u € L'(w) for all compact sets w C Q}; then, given
a function f € L], (), we say that g € LI (Q) is the distributional derivative of f with

loc
respect to the variable x; if:

Jog¥=—Jq f% for all ¢ € C§°(Q2) = {¢ € C*°(Q) with compact support contained in }.
Then we can define:

WHEP(Q) = {u € LP(Q) s.t. all distributional derivatives of u up to order k in LP(Q)},

equipped with the norm given by the sum of the L? norms of all the derivatives from order 0
to k (or, in an equivalent way, the norm at the p* power may be defined as the sum of the p*
power of the LP norms of all the derivatives).

We will usually denote H*(Q) = WH2(Q).

Just as in the case of the LP spaces we have
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e WkP(Q) is a Banach space for p € [1, +00], is a Hilbert space for p = 2 (that is the case
H*) with the scalar product (u,v)y« given by the sum of the L? scalar products of each
couple of corresponding derivatives.

o WkP(Q) is reflexive and separable for p € (1, +00), but merely separable for p = 1.

A.1.3 The spaces VVO1 P

VVO1 P(Q) may be defined as the closure of C§°(Q) in the norm of WP(2), equipped with this
norm.
One important property of these spaces is the Poincaré inequality:

Theorem A.1l. If Q is bounded, then there exists a constant C only depending on 2 such that
lull e < ClIVullpy for all u € Wy(Q).

This implies that in these spaces ||Vul|;, is a norm equivalent to the usual one.

Finally one has for these spaces the same conclusions for what concerns the reflexivity and
separability, and for the case p = 2, where the space is Hilbert and is usually denoted by H&(Q)

The Poincaré inequality has a useful version for the space W1P:

Theorem A.2. If Q is bounded and OS) is Lipschitz, then there exists a constant C' only de-
pending on Q such that ||u — |, < C||Vull, for allu € W'P(Q), where & = |[Q|™! [qu: the
mean value of u.

A.1.4 Other results

We give here some important properties of the above defined spaces.

Approximation by smooth functions

Theorem A.3. Provided 0) is C', given a function v € WHP(Q) (resp. u € Wol’p(Q)), there
exits a sequence {un} C CS(RN) (resp. {u,} C CS(Q)) converging to u in the WP norm.

Embeddings
Define the Banach space C**(Q) = {¢ € C*(Q) such that SUD, £y M@ -vwl - | for

lz—yl~
each 1) derivative of ¢ up to order k}, normed with the sum of the C*-norms and the given above
suprema.
Recall that we say that A C B,

e with continuous inclusion if:
there exists a constant C' such that [ju||z < C'[ju| 4,

e with compact inclusion if:
if u, — uwin A then, up to a subsequence, u, — u in B.

Then we have (with some hypotheses on the set €2 to avoid cusps on the boundary, for
example a sufficient condition is to have a Lipschitz boundary):
1 m * 1 m -1
. For;—ﬁ>0,bep :(E_W) :
wme(Q) < L)
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— for all ¢ € [p, p*] with continuous inclusion, if {2 is unbounded,

— for all ¢ € [1,p*] with continuous inclusion and also compact except for the limiting
case ¢ = p*, if Q) is bounded.

— for all ¢ € [p,+00) with continuous inclusion, if € is unbounded,

— for all ¢ € [1,+00) with continuous and compact inclusion, if  is bounded.

e for % - <0
Wm(Q) C L9(9)

— for all ¢ € [p, +0o0] with continuous inclusion, if  is unbounded,

— for all ¢ € [1,+o00] with continuous and compact inclusion, if € is bounded.

Moreover be k£ and « respectively the integral and decimal part of m — %, then one has:

— if a # 0 then W™P(Q) C C**(Q) with continuous inclusion (also compact if Q is
bounded),

— if @ = 0 then W™P(Q) C Ck¥~11(Q) with continuous inclusion, (also compact if 2 is
bounded).

A.2 Trace operators

Theorem A.4. Let Q) be of class C! and p € [1,+00).
Then there exists a bounded linear operator T, : WHP(Q) — LP(09) such that
if u € WHP(Q) N CO(Q) then Tru = ulsq.

T,u is usually called the trace of u on 92 and is sometimes denoted as u|gq.
Since a derivative of order k < m of a function in WP belongs to WP we also get that:

Corollary A.5. Let Q be of class C', m = {1,2,..}, p € [1,+00) and D, an operator of
derivation of order k < m.

Then there exists a bounded linear operator Ty, : WP (Q) — LP(0Q) such that
if u € WmP(Q) NCk(Q) then Ty,u = D.ulsg.

Then one may define such an operator in WP () for any derivative up to order m — 1.

This allows one to define linear closed subspaces of W?(Q) of the form W2 () = {u €™
(Q) such that T, gcu = 0}, being T, g an operator of the above type that maps u to a vector
of traces on 0f) of derivatives of u of order strictly lower than m.

A.3 TFréchet derivative

Given a functional I : E — R with E a Banach space, we say that
I is Fréchet differentiable in ug € F if

there exists I'(ug) € E* such that I(ug + v) — I(ug) = (I'(uo),v)E + o(||v] g) for ||v|z — 0.
Then we say I € C*(E,R) if the map E — E* : u— I'(u) is continuous.
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A.4 Green’s function method

Consider a solution u(z) € C?(0,1) N C'([0, 1]) of the problem

([ _u(z) = f(2) in (0,1)
W' (0) =4/ (1) =

(A.3)
or
u(0) =u(l) =0
Let

_ —le—yl ,

G(x,y) = 5 +a(z)y +b(z) : (A.4)
if we integrate over an interval (a,b) C [0, 1] with = & (a,b) we have:

0 = [ (Gl )~ Gyl )] dy = (4.5)

— [y yuly) - Glayd )], - /( , Gt vyuty) — Glapn )] dy.

Now let z € (0,1), 0 < e < d(x,{0;1}) and U, = (0,2 — e) U (xz + ¢, 1): making the same
integration over U, , we get:

1) Jo., Gy, y)uly) = Gla,y)u" ()] dy = [ Gla,y)[—u"(y)ldy since Gyy(z,y) = 0 in
[0,1] x Ug a;

(2) the boundary term is: [Gy(z, y)u(y) — Gz, y)u' (y)],—o — Gy (@, y)uly) — Gla, y)u/ ()]s 1%
taking limit for ¢ — O:

(1) becomes fol G(z,y)[—u"(y)]dy

(2) becomes [Gy(x,y)u(y) — Gz, )W ()], — u() [Gy(z,2T) — Gy(z,27)], where the last

y=0
term is simply u(z) since [Gy(x,27) — Gy(z,27)] = —1.
So we get
1
u(z) = = [Gy(z,y)uly) — Gz, p)u'(v)], _, +/0 Gz, y)[-u"(yldy =€ (0,1).  (A6)

Now observe that the first term contains the values of v and v’ in 0 and 1; then we distinguish
between the two kinds of boundary conditions.

e In the Dirichlet case u(0) = u(1) = 0, then of the boundary terms would remain only
G(z,1)u/(1) — G(x,0)u'(0): if we choose a(x) and b(x) such that G(z,0) = G(z,1) = 0 for
all z € (0,1) the equation simplifies giving

1
u(z) = /0 Gz, y)[—u"(y)]dy. (A7)
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Moreover we remark that
|G(z,y)| < d(y,{0;1}) (A.8)

and
G (z,y)| < d(z,{0;1}); (A.9)

actually with the above choices of a(x) and b(z) we have, for any fixed x € (0,1), that
G(z,y) is increasing in [0, x) with derivative smaller than 1 and decreasing in (z, 1] with
derivative larger than —1.

e In the Neumann case we can not eliminate all the boundary terms since no choice of a(x)
and b(z) would give Gy(z,0) = Gy(z,1) = 0, however we may for example choose to
impose G(x,0) = Gy(z,0) = 0 (obtaining then Gy(z,1) = —1) and so get

1
u(w) = u(D) + | Gla )" (y)dy (A.10)
0
and the estimate
G(z,y)| <1, (A.11)

since for any fixed x € (0,1), G(z,y) is zero in [0,z) and then decreasing with derivative
—1in (z,1].
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