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Abstract

In this paper we consider Positive Definite functions on products Ω2q × Ω2p of
complex spheres, and we obtain a condition, in terms of the coefficients in their
disc polynomial expansions, which is necessary and sufficient for the function to be
Strictly Positive Definite. The result includes also the more delicate cases in which
p and/or q can be 1 or ∞.

The condition we obtain states that a suitable set in Z2, containing the indexes
of the strictly positive coefficients in the expansion, must intersect every product of
arithmetic progressions.
MSC: 42A82; 42C10.
Keywords: Strictly Positive Definite Functions, Product of Complex Spheres, Gen-
eralized Zernike Polynomial.

1 Introduction

The main purpose of this paper is to obtain a characterization of Strictly Positive Def-
inite functions on products of complex spheres, in terms of the coefficients in their disc
polynomial expansions: these results are contained in the Theorems 1.1, 1.2 and 1.3.

Positive Definiteness and Strict Positive Definiteness are important in many applica-
tions, for example, Strict Positive Definiteness is required in certain interpolation prob-
lems in order to guarantee the unicity of their solution. From a theoretical point of view,
the problem of characterizing both Positive Definiteness and Strict Positive Definiteness
has been considered in many recent papers, in different contexts. More details on the
applications and the literature related to this problem will be given in Section 1.2.

∗Corresponding author.
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Let Ω be a nonempty set. A kernel K : Ω ×Ω → C is called Positive Definite (PD in
the following) on Ω when

L∑
µ,ν=1

cµcνK(xµ, xν) ≥ 0, (1.1)

for any L ≥ 1, c = (c1, . . . , cL) ∈ CL and any subset X := {x1, . . . , xL} of distinct points
in Ω. Moreover, K is Strictly Positive Definite (SPD in the following) when it is Positive
Definite and the inequality above is strict for c 6= 0.

If Sq is the q-dimensional unit sphere in the Euclidean space Rq+1, we say that a
continuous function f : [−1, 1]→ R is PD (resp. SPD) on Sq, when the associated kernel
K(v, v′) := f(v ·R v′) is PD (resp. SPD) on Sq (here “ ·R ” is the usual inner product in
Rq+1). In [36] it was proved that a continuous function f is PD on Sq, q ≥ 1, if, and only
if, it admits an expansion in the form

f(t) =
∑
m∈Z+

amP
(q−1)/2
m (t), t ∈ [−1, 1],

where
∑
amP

(q−1)/2
m (1) <∞ and am ≥ 0 for all m ∈ Z+.

(1.2)

In (1.2), P
(q−1)/2
m are the Gegenbauer polynomials of degree m associated to (q−1)/2 (see

[37, page 80]) and Z+ = N ∪ {0}. In [8] it was proved that the function f in (1.2) is also
SPD on Sq, q ≥ 2 if, and only if, the set {m ∈ Z+ : am > 0} contains an infinite number
of odd and of even numbers. This condition is equivalent to asking that

{m ∈ Z+ : am > 0} ∩ (2N + x) 6= ∅ for every x ∈ N. (1.3)

The complex case is defined in a similar way: if Ω2q is the unit sphere in Cq, q ≥ 2,
and D is the unit closed disc in C, then a continuous function f : D → C is said to be
PD (resp. SPD) on Ω2q if the associated kernel K(z, z′) := f(z · z′) is PD (resp. SPD) on
Ω2q, where “ · ” is the usual inner product in Cq. As proved in [31], a continuous function
f : D → C is PD on Ω2q, q ≥ 2 if, and only if, it has the representation in series of the
form

f(ξ) =
∑

m,n∈Z+

am,nR
q−2
m,n(ξ), ξ ∈ D,

where
∑
am,n <∞ and am,n ≥ 0 for all m,n ∈ Z+.

(1.4)

The functions Rq−2
m,n in (1.4) are the disc polynomials, or generalized Zernike polynomials

(see Equation (2.1)). The condition for f to be SPD was obtained in [17, 30]: f as in
(1.4) is SPD on Ω2q if, and only if, the set {m − n ∈ Z : am,n > 0} intersects every full
arithmetic progression in Z, that is,

{m− n ∈ Z : am,n > 0} ∩ (NZ + x) 6= ∅ for every N, x ∈ N. (1.5)

The characterization of SPD functions on the spheres S1, Ω2, S∞ and Ω∞ were also
considered in [29, 28, 17], obtaining similar results.
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Products of real spheres were considered in [18, 15, 19, 20]: a continuous PD function
on Sq × Sp, q, p ≥ 1, associated to the kernel K((u, v), (u′, v′)) := f(u ·R u′, v ·R v′), can
be written as

f(t, s) =
∑

m,k∈Z+

am,kP
(q−1)/2
m (t)P

(p−1)/2
k (s), t, s ∈ [−1, 1],

where
∑
am,kP

(q−1)/2
m (1)P

(p−1)/2
k (1) <∞ and am,k ≥ 0 for all m, k ∈ Z+.

(1.6)

For q, p ≥ 2, it is also SPD on Sq ×Sp if, and only if, the following condition, obtained in
[15], holds true: in each intersection of the set {(m, k) ∈ Z2

+ : am,k > 0} with the four sets
(2Z+ +x)×(2Z+ +y), x, y ∈ {0, 1}, there exists a sequence (mi, ki) such that mi, ki →∞.
In fact, this condition is equivalent to the following one:

{(m, k) ∈ Z2
+ : am,k > 0} ∩ (2N + x)× (2N + y) 6= ∅ for every x, y ∈ N. (1.7)

Again, when considering S1 in the place of Sq and/or Sp, similar (but not analogous)
results are obtained: see [19, 20].

1.1 Main results

The purpose of this paper is to consider the same kind of problem described above for
the case of the products Ω2q × Ω2p of two complex spheres.

The characterization of Positive Definiteness in this setting was obtained in [4, Theo-
rem 7.1] for q, p ∈ N, q, p ≥ 2: it was proved that a continuous function f : D× D→ C,
associated to the kernel K((z, w), (z′, w′)) := f(z · z′, w · w′), is PD on Ω2q × Ω2p if, and
only if, it admits an expansion in the form

f(ξ, η) =
∑

m,n,k,l∈Z+

am,n,k,lR
q−2
m,n(ξ)Rp−2

k,l (η), (ξ, η) ∈ D× D,

where
∑
am,n,k,l <∞ and am,n,k,l ≥ 0 for all m,n, k, l ∈ Z+.

(1.8)

If p and/or q can take the values 1 or∞, a characterization of Positive Definiteness is also
known (see in Section 2.2), except for the case p = q =∞, which we address in Theorem
4.1. In fact, if we define R∞m,n(ξ) := ξ

m
ξ
n
, ξ ∈ D, then the characterization (1.8) holds

for q, p ∈ N ∪ {∞} , q, p ≥ 2.
Our main results are contained in the following theorems, where we characterize SPD

functions on the product of two complex spheres Ω2q × Ω2p, q, p ∈ N ∪ {∞}, in terms of
the coefficients in their expansions.

Theorem 1.1. Let q, p ∈ N∪{∞} , q, p ≥ 2. A continuous function f : D×D→ C, which
is PD on Ω2q × Ω2p, is also SPD on Ω2q × Ω2p if, and only if, considering its expansion
as in (1.8), the set

J ′ :=
{

(m− n, k − l) ∈ Z2 : am,n,k,l > 0
}

intersects every product of full arithmetic progressions in Z, that is,

J ′ ∩ (NZ + x)× (MZ + y) 6= ∅ for every N,M, x, y ∈ N. (1.9)
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It is worth noting the similarities between the characterizations of SPD in the vari-
ous cases described here. They can always be reduced to a condition on the intersection
between a set constructed with the indexes of the strictly positive coefficients in the ex-
pansion of the function, and certain arithmetic progressions or products of them: compare
the conditions (1.3-1.5-1.7-1.9).

When p and/or q can take the value 1, we obtain the following characterizations.

Theorem 1.2. Let 2 ≤ p ∈ N ∪ {∞}. A continuous function f : ∂D× D→ C, which is
PD on Ω2 × Ω2p, is also SPD on Ω2 × Ω2p if, and only if, considering its expansion as

f(ξ, η) =
∑

m∈Z, k,l∈Z+

am,k,lξ
mRp−2

k,l (η), (ξ, η) ∈ ∂D× D,

where
∑
am,k,l <∞ and am,k,l ≥ 0 for all m ∈ Z, k, l ∈ Z+,

(1.10)

the set {
(m, k − l) ∈ Z2 : am,k,l > 0

}
intersects every product of full arithmetic progressions in Z.

Theorem 1.3. A continuous function f : ∂D×∂D→ C, which is PD on Ω2×Ω2, is also
SPD on Ω2 × Ω2 if, and only if, considering its expansion as

f(ξ, η) =
∑
m,k∈Z

am,kξ
mηk, (ξ, η) ∈ ∂D× ∂D,

where
∑
am,k <∞ and am,k ≥ 0 for all m, k ∈ Z,

(1.11)

the set {
(m, k) ∈ Z2 : am,k > 0

}
intersects every product of full arithmetic progressions in Z.

We observe that the Theorems 1.2 and 1.3 will follow immediately from the same proof
as Theorem 1.1, after rewriting the expansions (1.10) and (1.11) in order to be formally
identical to (1.8) (see Lemma 2.2). This is a remarkable fact considering that, in the real
case, when the product involves the sphere S1 (see [20, 19]) one had to use quite different
arguments with respect to the higher dimensional case in [15]. We remark however that
Theorem 1.3 is not new, as it is a particular case of the main result in [14].

As a consequence of Theorem 1.2 we will also obtain the following result for the product
of S1 with a complex sphere, where the definition of PD and SPD functions is as always
given by associating the function with the kernel K̂((u,w), (u′, w′)) := f̂(u ·R u′, w · w′).

Theorem 1.4. Let 2 ≤ p ∈ N ∪ {∞}. A continuous function f̂ : [−1, 1]×D→ C, which
is PD on S1 × Ω2p, is also SPD on S1 × Ω2p if, and only if, considering its expansion as

f̂(cos(φ), η) =
∑

m,k,l∈Z+

âm,k,l cos(mφ)Rp−2
k,l (η), (φ, η) ∈ [0, π]× D,

where
∑
âm,k,l <∞ and âm,k,l ≥ 0 for all m, k, l ∈ Z+,

(1.12)



Characterization of Strict Positive Definiteness on products of complex spheres 5

the set {
(m, k − l) ∈ Z2 : â|m|,k,l > 0

}
intersects every product of full arithmetic progressions in Z.

This result represents a partial answer to an open problem stated in [16], where prod-
ucts of real spheres with a general set X were considered and a characterization of Strict
Positive Definiteness was obtained only for the spheres Sd with d ≥ 2: Theorem 1.4
provides a characterization for the case d = 1 and X = Ω2p.

By the same argument it is also possible to deduce, from Theorem 1.3, the character-
ization of SPD functions on S1 × S1 proved in [20], namely, that a continuous function
f : [−1, 1]× [−1, 1] → C which is PD on S1 × S1 is also SPD on S1 × S1 if, and only if,
considering its expansion as in (1.6), the set {(m, k) ∈ Z2 : a|m|,|k| > 0} intersects every
product of full arithmetic progressions in Z.

This paper is organized in the following way. In Section 1.2 we discuss some further
literature related to our problem. In Section 2, we set our notation and discuss some
known results that will be used later. Theorem 1.1 is proved in Section 3. In Section 4
we state and prove the mentioned characterization of PD functions on Ω∞×Ω∞. Finally,
Section 5 is devoted to showing how one can deduce Theorem 1.4 from Theorem 1.2.

1.2 Literature

Since the first results on Positive Definite functions on real spheres, obtained by Schoen-
berg in his seminal paper ([36]), such functions were found to be relevant and have been
studied in several distinct areas. In fact, they are both used by researchers directly inter-
ested in applied sciences, such as geostatistics, numerical analysis, approximation theory
(cf. [9, 10, 12, 34]), and by theoretical researchers aiming at further generalizations that,
along with their theoretical importance, could become useful in other practical problems.

One important motivation for characterizing Strictly Positive Definite functions comes
from certain interpolation problems, where the interpolating function is generated by a
Positive Definite kernel. Actually, the unicity of the solution of the interpolation problem
is guaranteed only if the generating kernel is also Strictly Positive Definite (cf. [26, 40]):
consider, for instance, the interpolation function

F (x) =
L∑
j=1

cjK(x, xj), x ∈ Ω,

where X = {x1, . . . , xL} ⊂ Ω is given and K is a known Strictly Positive Definite kernel in
Ω; then the matrix of the system obtained from the interpolation conditions F (xi) = λi,
i = 1, . . . , L, is the matrix [K(xi, xj)], whose determinant is positive, thus giving a unique
solution for the system. In particular, the case where Ω is a real sphere is very important
in applications where one needs to assure unicity for interpolation problems with data
given on the Earth surface (which can be identified with the real sphere S2). Also, the
case where Ω is the product of a sphere with some other set turns out to be of particular



6 M. H. Castro, E. Massa, and A. P. Peron

interest for its application to geostatistical problems in space and time, whose natural
domain is S2 ×R (see [34] and references therein). Immediate applications in the case of
complex spheres are less obvious: we refer to [27], where parametric families of Positive
Definite functions on complex spheres are provided. It is also worth noting that the
Zernike polynomials are used in applications such as optics and optical engineering (cf.
[35, 38] and references therein).

Motivated by these and other applications, several papers appeared dealing with the
theoretical problem of characterizing Positive Definiteness and Strict Positive Definite-
ness: along with those already mentioned in the introduction, we cite [32], where a char-
acterization of real-valued multivariate Positive Definite functions on Sq is obtained, and
[41, 21, 7], where matrix-valued Positive Definite functions are investigated.

In [6], the characterization in [36] is extended to the case of Positive Definite functions
on the cartesian product of Sq times a locally compact group G, which includes the
mentioned case Sq × R and also generalizes the result obtained in [18] about Positive
Definite functions on products of real spheres. Also, the Positive Definite functions on
Gelfand pairs and on products of them were characterized in [4], while those on the product
of a locally compact group with Ω∞ in [5]. In [4] it was observed that the characterizations
in (1.2) and (1.4) can be viewed as special cases of the Bochner-Godement Theorem for
Gelfand pairs, see [13].

Concerning the characterization of Strictly Positive Definite functions, we cite also the
cases of compact two-point homogeneous spaces and products of them ([1, 2]) and the
case of a torus ([14]).

2 Notation and known results

We first give a brief introduction on the disc polynomials that appear in the Equations
(1.4) and (1.8): for a real number α > −1, the function Rα

m,n, defined in the disc D =
{ξ ∈ C : |ξ| ≤ 1}, is called disc polynomial (or generalized Zernike polynomial) of degree
m in ξ and n in ξ associated to α, and can be written as (see [24])

Rα
m,n(ξ) = r|m−n| ei(m−n)φ P

(α, |m−n|)
min{m,n} (2r2 − 1), ξ = reiφ ∈ D, m, n ∈ Z+, (2.1)

where P
(α,β)
k is the usual Jacobi polynomial of degree k with respect to the weight function

(1− x)α(1 + x)β on [−1, 1], α, β > −1, normalized by P
(α,β)
k (1) = 1 (see [37, page 58]).

For future use we also define

R∞m,n(ξ) := ξ
m
ξ
n
, ξ ∈ D ,

R−1
m,n(ξ) := ξ

m
ξ
n
, ξ ∈ ∂D . (2.2)

Observe that R∞m,n is actually the limit of Rα
m,n as α→∞ (see [39, (2.12)]), while the

expression for R−1
m,n is identical to the restriction at ∂D of Rα

m,n, α > −1.
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It is well known (see [24, 23]) that the disc polynomials, as well as those defined in
(2.2), satisfy, for q ∈ N ∪ {∞}, ξ ∈ D, and m,n ∈ Z+,

Rq−2
m,n(1) = 1, |Rq−2

m,n(ξ)| ≤ 1, (2.3)

Rq−2
m,n(eiφξ) = ei(m−n)φRq−2

m,n(ξ), φ ∈ R, (2.4)

Rq−2
m,n

(
ξ
)

= Rq−2
m,n(ξ). (2.5)

Observe that, by (2.3), the series in (1.4) and (1.8) converge uniformly in their domain.
Moreover, the characterization in (1.8) implies that the functions (ξ, η) 7→ Rq−2

m,n(ξ)Rp−2
k,l (η)

are PD on Ω2q × Ω2p for all m,n, k, l ∈ Z+ (and, by (1.4), the functions ξ 7→ Rq−2
m,n(ξ) are

PD on Ω2q).
Another important property, proved in [17], is contained in the following lemma.

Lemma 2.1. Let 2 ≤ q ∈ N ∪ {∞} and{
ξ ∈ D′ if q > 2,

ξ ∈ D′\ {0} if q = 2,

where D′ = {ξ ∈ C : |ξ| < 1}; then

lim
m+n→∞

Rq−2
m,n(ξ) = 0 . (2.6)

In the special case q = 2, ξ = 0, one has

lim
m+n→∞
m6=n

R0
m,n(0) = 0 . (2.7)

2.1 Positive Definiteness on complex spheres

As we anticipated in the introduction, it is known by [31] that a continuous function
f : D → C is PD on Ω2q, 2 ≤ q ∈ N, if, and only if, the coefficients am,n in the series
representation (1.4) satisfy

∑
am,n <∞ and am,n ≥ 0 for all m,n ∈ Z+.

In the case of the complex sphere Ω2, when associating a continuous function f to a
kernel via the formula K(z, z′) := f(z · z′), one has that z · z′ ∈ ∂D for every z, z′ ∈ Ω2,
then it becomes natural to consider functions f defined in ∂D. The PD functions on Ω2

were also characterized in [31], namely, f : ∂D→ C is PD on Ω2 if, and only if,

f(ξ) =
∑
m∈Z

amξ
m, ξ ∈ ∂D,

where
∑
am <∞ and am ≥ 0 for all m ∈ Z.

(2.8)

In order to write this formula as (1.4), and then to be able to use the same expansion for
all q ∈ N, we use the polynomials R−1

m,n defined in (2.2) and we rearrange the coefficients
in (2.8) so that

f(ξ) =
∑

m,n∈Z+

am,nR
−1
m,n(ξ), ξ ∈ ∂D, (2.9)
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with the additional requirement that am,n = 0 if mn > 0, implying that{
am,0 := am, m ≥ 0,

a0,m := a−m, m ≥ 0.

In this way, f is PD on Ω2 if, and only if, it satisfies the characterization (1.4) with
am,n = 0 for mn > 0 and ∂D in the place of D.

The complex sphere Ω∞ is defined as the sphere of the sequences in the Hilbert complex
space `2(C) with unit norm. In [11], it was proved that a continuous function f : D→ C
is PD on Ω∞ if, and only if, it admits the series representation

f(ξ) =
∑

m,n∈Z+

am,nξ
m
ξ
n
, ξ ∈ D,

where
∑
am,n <∞ and am,n ≥ 0 for all m,n ∈ Z+,

(2.10)

which becomes analogous to the characterization (1.4) if we use the definition of R∞m,n in
(2.2). It is also worth noting that f is PD on Ω∞ if, and only if, f is PD on Ω2q for every
q ≥ 2, as it is shown in [6] for the real case.

2.2 Positive Definiteness on products of spheres

From now on, in order to simplify the exposition, we will use the symbol Ξ to designate
either ∂D or D, depending if we are considering, respectively, the sphere Ω2 or a higher
dimensional sphere.

When considering products of spheres Ω2q×Ω2p, q, p ∈ N∪{∞}, a continuous function
f : Ξ × Ξ → C is said to be PD (resp. SPD) on Ω2q × Ω2p, if the associated kernel

K : [Ω2q × Ω2p]× [Ω2q × Ω2p] 3 ( (z, w), (z′, w′) ) 7→ f(z · z′, w · w′) (2.11)

is PD (resp. SPD) on Ω2q × Ω2p.
In this section we will justify the following claim:

Lemma 2.2. A continuous function f : Ξ ×Ξ → C is PD on Ω2q×Ω2p, q, p ∈ N∪{∞},
if and only if, it admits an expansion in the form

f(ξ, η) =
∑

m,n,k,l∈Z+

am,n,k,lR
q−2
m,n(ξ)Rp−2

k,l (η), (ξ, η) ∈ Ξ × Ξ,

where
∑
am,n,k,l <∞ and am,n,k,l ≥ 0 for all m,n, k, l ∈ Z+,

(2.12)

adding the requirement that am,n,k,l = 0 if q = 1 and mn > 0 (resp. p = 1 and kl > 0).

Lemma 2.2 is a generalization of the characterization (1.8) to include the cases when
q, p can take the values 1 or ∞, replacing D with Ξ and redefining the coefficients in the
series, where p or q is 1, as we did in Equation (2.9).

In order to justify the claim, we will use results from [4] and [5], which are stated in a
more general setting. Let U(p) be the locally compact group of the unitary p×p complex
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matrices. A continuous function Φ̃ : U(p) → C is called Positive Definite on U(p) if the

kernel (A,B) 7→ Φ̃(B−1A) is Positive Definite on U(p) (see [3, page 87]).
The following remark will be useful to translate from this setting to the case of complex

spheres in which we are interested (see also [4, Section 6]).

Remark 2.3. Let Φ : Ξ → C and Φ̃ : U(p)→ C be related by Φ̃(A) = Φ(Aep · ep), where
ep = (1, 0, . . . , 0) ∈ Ω2p.

Then Φ̃(A) depends only on the upper-left element [A]1,1 and it can be seen by the

definition of Positive Definiteness that Φ̃ is PD on U(p) if, and only if, Φ is PD on Ω2p.

Moreover, Φ̃ is continuous if, and only if, Φ is, since M : U(p) → Ξ : A 7→ [A]1,1 is
continuous and admits a continuous right inverse

M− : Ξ → U(p) : ξ 7→M−(ξ) such that [M−(ξ)]1,1 = ξ .

Now Lemma 2.2 is obtained as follows:

1. When q, p ∈ N, q, p ≥ 2, the lemma is exactly the characterization (1.8).

2. When q = 1 and p ∈ N (or vice-versa) we can use Corollary 3.5 in [4], observing
that we can identify functions on Ω2 with periodic functions on R, and we can take
the locally compact group L = U(p), obtaining a characterization for PD functions
on Ω2 × U(p). Then we can translate the characterization from U(p) to Ω2p, using
Remark 2.3.

3. When q = ∞ and p ∈ N (or vice-versa) we can use Theorem 1.3 in [5], taking the
locally compact group L = U(p) and proceeding as above.

4. When q = p =∞ the claim is a consequence of Theorem 4.1 in Section 4.

3 Proof of the main results

In the following we will need to consider matrices whose elements are described by many
indexes: for this we will write

[bi,j,k,l,...]
k=1,..,K, l=1,..,L, ...
i=1,..,I, j=i,..,J, ... ,

where the indexes in the lower line are intended to be row indexes and those in the above
line are column indexes. Also, we will specify the indexes alone when their ranges are
clear.

Let q, p ∈ N ∪ {∞}. From (1.1) and (2.11), the definition of Positive Definiteness on
Ω2q × Ω2p, for a continuous function f : Ξ × Ξ → C, takes the form

L∑
µ,ν=1

cµcνf(zµ · zν , wµ · wν) ≥ 0 (3.1)
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for all L ≥ 1, (c1, c2, . . . , cL) ∈ CL and X = {(z1, w1), (z2, w2), . . . , (zL, wL)} ⊂ Ω2q × Ω2p.
As a consequence, if we define the matrix AX associated to the function f and to the set
X by

AX := [f(zµ · zν , wµ · wν)]µ=1,...,L
ν=1,...,L , (3.2)

then:

• f is PD if, and only if, for every choice of L, X, and ct = (c1, c2, . . . , cL),

ctAXc ≥ 0,

that is, AX is a Hermitian and positive semidefinite matrix (see [22, page 430]);

• f is also SPD if, and only if, for every choice of L and X,

ctAXc = 0⇐⇒ c = 0,

that is, AX is a positive definite matrix.

Let now f be a continuous function, PD on Ω2q × Ω2p, which we can write uniquely
as in Lemma 2.2. If we define the set

J =
{

(m,n, k, l) ∈ Z4
+ : am,n,k,l > 0

}
, (3.3)

then, for a finite set X = {(z1, w1), (z2, w2), . . . , (zL, wL)} ⊆ Ω2q × Ω2p, we can write

AX =
∑

(m,n,k,l)∈J

am,n,k,lB
m,n,k,l
X (3.4)

where

Bm,n,k,l
X := [Rq−2

m,n(zµ · zν)Rp−2
k,l (wµ · wν)]µ=1,...,L

ν=1,...,L (3.5)

is the positive semidefinite matrix associated to X and to the function Rq−2
m,n(ξ)Rp−2

k,l (η).
With these definitions, the following lemma holds.

Lemma 3.1. The matrix AX is a positive definite matrix if, and only if, the equivalence

ctBm,n,k,l
X c = 0 ∀ (m,n, k, l) ∈ J ⇐⇒ c = 0 (3.6)

holds true.

Lemma 3.1 is a consequence of the following one.

Lemma 3.2. Let A =
∑

j Aj, where Aj are positive semidefinite matrices. Then A is
positive semidefinite and the condition that A is positive definite is equivalent to

ctAjc = 0 ∀j ⇐⇒ c = 0 .
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Proof. First, ctAc =
∑

j c
tAjc ≥ 0, then one has that A is positive semidefinite too.

If A is positive definite and ctAjc = 0 for every j, then of course ctAc = 0 and so c = 0.
Finally, if ctAc = 0 then (sum of nonnegative terms) ctAjc = 0 ∀j; if we assume that this
system implies c = 0 then A is positive definite.

In the following proposition we prove one of the two implications of Theorem 1.1.

Proposition 3.3. Let q, p ∈ N∪{∞}, f be a continuous function which is PD on Ω2q×Ω2p

and consider
J ′ =

{
(m− n, k − l) ∈ Z2 : (m,n, k, l) ∈ J

}
. (3.7)

If f is SPD on Ω2q × Ω2p then

J ′ ∩ (NZ + x)× (MZ + y) 6= ∅ for every N,M, x, y ∈ N . (3.8)

Proof. Assume J ′ ∩ (NZ + x)× (MZ + y) = ∅ for some N,M, x, y ∈ N. Without loss of
generality we may assume M,N ≥ 2.
Fix a point (z, w) ∈ Ω2q × Ω2p and take the set of points

X =
{

(ei2πτ/Nz, ei2πσ/Mw) ∈ Ω2q × Ω2p : τ = 1, .., N, σ = 1, ..,M
}

;

then, using the Equations (2.3-2.4), the matrix in (3.5) reads as

Bm,n,k,l
X =

[
ei2π(m−n)(τ−λ)/Nei2π(k−l)(σ−ζ)/M]τ=1,..,N, σ=1,..,M

λ=1,..,N, ζ=1,..,M
.

Observe that this matrix factors as the product Bm,n,k,l
X = b

t
b where b is the line vector

b =
[
ei2π(m−n)τ/Nei2π(k−l)σ/M]τ,σ

(we omit the dependence on X and (m,n, k, l) in the notation for b). Then each equation

of the system in (3.6) reads as ctBm,n,k,l
X c = ctb

t
bc = 0 and is equivalent to bc = 0.

At this point we take c =
[
e−i2πτx/Ne−i2πσy/M

]
τ,σ

, so that

bc =
∑
τ,σ

ei2π(m−n−x)τ/Nei2π(k−l−y)σ/M =
∑
τ

ei2π(m−n−x)τ/N
∑
σ

ei2π(k−l−y)σ/M . (3.9)

By our assumption, for every (m,n, k, l) ∈ J , either m− n− x is not a multiple of N or
k − l − y is not a multiple of M . This implies that one of the two sums in (3.9) is zero
and then bc = 0.
Then c is a nontrivial solution of the system in (3.6). We have thus proved that J ′ ∩
(NZ + x)× (MZ + y) = ∅ implies that f is not SPD.

The rest of this section is dedicated to proving the following proposition, which con-
tains the remaining implication of Theorem 1.1.

Proposition 3.4. Let q, p, f and J ′ be as in Proposition 3.3. If condition (3.8) holds
true, then f is SPD on Ω2q × Ω2p.
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First of all, we prove the following consequence of condition (3.8).

Lemma 3.5. If A ⊂ Z2 satisfies

IM,N,x,y := A ∩ (NZ + x)× (MZ + y) 6= ∅ for every N,M, x, y ∈ N , (3.10)

then, for every N,M, x, y ∈ N, the set

{min {|α|, |β|} : (α, β) ∈ IM,N,x,y}

is unbounded and IM,N,x,y is infinite.

Proof. Suppose {min {|α|, |β|} : (α, β) ∈ IM,N,x,y} ⊆ [0, C].
Let (x̂, ŷ) ∈ (NZ + x) × (MZ + y) with x̂, ŷ > C and D be a multiple of M and of N
such that x̂−D, ŷ −D < −C. Then (DZ + x̂)× (DZ + ŷ) ∩ IM,N,x,y = ∅ and

(DZ + x̂)× (DZ + ŷ) ⊆ (NZ + x)× (MZ + y).

As a consequence (DZ + x̂)× (DZ + ŷ) ∩ A = ∅, which contradicts (3.10).

The next step will be to prove that we need verify Strict Positive Definiteness only on
certain special sets X ⊆ Ω2q × Ω2p (see Lemma 3.9).

In view of Lemma 2.1 and Equation (2.4), when calculating Rq−2
m,n(zµ · zν) and consid-

ering the limit for m + n → ∞, the obtained behavior is quite different depending on
whether |zµ · zν | < 1 or |zµ · zν | = 1. In particular, we will have to treat carefully the
cases when |zµ · zν | = 1. This happens either if zµ = zν (observe that the points in the
set X must be distinct but they can have one of the two components in common), or if
zµ = eiθzν with θ ∈ (0, 2π). In this last case we say that the two points zµ, zν ∈ Ω2q are
antipodal. Our strategy to deal with antipodal points is inspired by [17]. We will say that
a set of (distinct) points Y = {(zµ, wµ) : µ = 1, . . . , L} in Ω2q×Ω2p is antipodal-free if the
following property holds:

(AF) if µ 6= ν then |zµ · zν | < 1 unless zµ = zν and |wµ · wν | < 1 unless wµ = wν .

Of course, since the points in Y are distinct, if zµ = zν then |wµ ·wν | < 1 (resp. if wµ = wν
then |zµ · zν | < 1).

Remark 3.6. Note that two distinct points in Ω2 are always antipodal. So if, for instance,
q = 1, then, in an antipodal-free set Y in Ω2 × Ω2p, all the zµ are the same and then
|wµ ·wν | < 1 for µ 6= ν. When p = q = 1 then an antipodal-free set Y in Ω2×Ω2 contains
a unique point (z, w).

Consider now an antipodal-free set Y ⊆ Ω2q × Ω2p and two sets of angles Θ =
{θτ : τ = 1, . . . , t} and ∆ = {δσ : σ = 1, . . . , s} in [0, 2π). We define the enhanced set
associated to Y, Θ and ∆ as the set

X =
{

(eiθτzµ, e
iδσwµ) : µ = 1, . . . , L, τ = 1, . . . , t, σ = 1, . . . , s

}
. (3.11)

Observe that, by construction, the points that appear in X are all distinct (but now
there exist many antipodal points among them).

The following lemma provides a sort of inverse construction.
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Lemma 3.7. Given a finite set S ⊆ Ω2q × Ω2p one can always obtain an antipodal-free
set Y ⊆ Ω2q ×Ω2p and two sets Θ and ∆ of angles in [0, 2π), such that S is contained in
the enhanced set X associated to Y, Θ and ∆.

Proof. For a finite set X1 ⊆ Ω2q one can select a maximal subset Y1 not containing
antipodal points and then define the set Θ containing 0 and all the distinct θ ∈ (0, 2π)
that are needed to produce the remaining points as eiθzµ with zµ ∈ Y1.

For the set S ⊆ Ω2q × Ω2p one produces with this algorithm a maximal subset Y1 not
containing antipodal points along with a corresponding set of angles Θ from all the first
coordinates z in S, than a maximal subset Y2 not containing antipodal points along with
a corresponding set of angles ∆ from all the second coordinates w in S.

Then Y := Y1 × Y2 will be such that S is contained in the enhanced set associated to
Y, Θ and ∆.

The following two lemmas will make clear why it is useful to consider antipodal-free
sets.

Lemma 3.8. Let Y = {(zµ, wµ) : µ = 1, . . . , L} in Ω2q × Ω2p be antipodal-free. Then the
matrix

[Rq−2
m,n(zµ · zν)Rp−2

k,l (wµ · wν)]µν
is positive definite provided n 6= m, k 6= l and m+ n, k + l are large enough.

Proof. Actually, the diagonal elements of the matrix are all equal to Rq−2
m,n(1)Rp−2

k,l (1) = 1,
moreover, condition (AF) implies that if zµ · zν = 1 then |wµ · wν | < 1 and if wµ · wν = 1
then |zµ · zν | < 1. As a consequence, the non-diagonal elements converge to zero by
Lemma 2.1, when n 6= m, k 6= l and min {m+ n, k + l} → ∞. Then the matrix, which
is Hermitian and with real positive diagonal, becomes strictly diagonally dominant, thus
positive definite ([22, Theorem 6.1.10]).

Lemma 3.9. Let q, p ∈ N∪{∞} and f be a continuous function which is PD on Ω2q×Ω2p.
Then the following assertions are equivalent:

(i) f is SPD on Ω2q × Ω2p;

(ii) the matrix AX defined in (3.2) is positive definite for every finite set X being the
enhanced set associated to some antipodal-free set Y ⊆ Ω2q × Ω2p and two sets Θ
and ∆ of angles in [0, 2π).

Proof. First observe that (i) is equivalent to:

(iii) AS is a positive definite matrix for every finite set S ⊆ Ω2q × Ω2p.

The implication (iii) =⇒ (ii) is trivial. In order to prove that (ii) =⇒ (iii) observe
that, given S, one can obtain X as described in Lemma 3.7: since S ⊆ X, then AS is a
principal submatrix of the positive definite matrix AX and then it is a positive definite
matrix itself.



14 M. H. Castro, E. Massa, and A. P. Peron

At this point we can prove Proposition 3.4.

Proof of Proposition 3.4. Let X (finite) be the enhanced set associated to an antipodal-
free set Y ⊆ Ω2q ×Ω2p and two sets Θ and ∆ of angles in [0, 2π) and consider the system

ctBm,n,k,l
X c = 0 for every (m,n, k, l) ∈ J. (3.12)

In view of the Lemmas 3.1 and 3.9, all we have to do is to prove that this system implies
c = 0.

Using the property in (2.4), with the notation introduced in (3.11) for the elements of
X, we have

Bm,n,k,l
X =

[
ei(m−n)(θτ−θλ)ei(k−l)(δσ−δζ)Rq−2

m,n(zµ · zν)Rp−2
k,l (wµ · wν)

]τ,σ,µ
λ,ζ,ν

.

It is convenient to write this matrix as a block matrix as follows:

Bm,n,k,l
X = [Rq−2

m,n(zµ · zν)Rp−2
k,l (wµ · wν)Am,n,k,l]µν

where
Am,n,k,l = [ei(m−n)(θτ−θλ)ei(k−l)(δσ−δζ)]τ,σλ,ζ .

The vector c will be correspondingly split as

c = [cµ]µ where cµ = [cτσµ ]τ,σ .

We have then

ctBm,n,k,l
X c =

∑
µ,ν

Rq−2
m,n(zµ · zν)Rp−2

k,l (wµ · wν)cνtAm,n,k,lcµ.

As in the proof of Proposition 3.3, the matrix Am,n,k,l factors as Am,n,k,l = b
t
b where

b = [ei(m−n)θτ ei(k−l)δσ ]τσ ,

then we may write

ctBm,n,k,l
X c =

∑
µ,ν

bcν
t
bcµR

q−2
m,n(zµ · zν)Rp−2

k,l (wµ · wν) . (3.13)

Observe that since Y is antipodal-free we will be able to use Lemma 3.8 in order to
discuss this quadratic form.

We suppose now for the sake of contradiction that c 6= 0. Without loss of generality
we assume that c1,1

1 6= 0 and we first aim to prove that

bc1 =
∑
τ,σ

ei(m−n)θτ ei(k−l)δσcτ,σ1 6= 0 (3.14)

for certain (m,n, k, l) ∈ J .
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Actually, by the Theorem 2.4 and the Lemmas 2.5 and 2.6 in [20], which use the theory
of linear recurrence sequences, and in particular a generalization of the Skolen-Mahler-
Lech Theorem due to Laurent [25, Theorem 1] (see also [33]), we know that given the
angles θτ , δσ and the vector c1, with c1,1

1 6= 0, there exist N,M, x, y ∈ N such that the
function defined in Z2

L(α, β) :=
∑
τ,σ

ei α θτ ei β δσcτ,σ1

is not zero for all (α, β) in the set P := (NZ + x)× (MZ + y).
By Lemma 3.5 applied to J ′, there exists a sequence S := {(αi, βi)} ⊆ P ∩ J ′ such

that |αi|, |βi| → ∞. As a consequence, (3.14) holds true for every (m,n, k, l) ∈ J such
that (m− n, k − l) ∈ S.
Now we can select (m − n, k − l) ∈ S with |m − n|, |k − l| as large as we want (which
implies that m 6= n, k 6= l and that m+n and k+ l are also large). For the corresponding
(m,n, k, l) ∈ J , the equation in (3.12) cannot be zero in view of Equation (3.14) and
Lemma 3.8.

We have then proved that a nontrivial solution of system (3.12) cannot exist.

Remark 3.10. Observe that in the case p = q = 1, in view of Remark 3.6, the sum in
Equation (3.13) has only one term which is |bc1|2. Then the contradiction follows readily
after proving (3.14).

At this point, Theorem 1.1 is a consequence of the Propositions 3.3 and 3.4. The
Theorems 1.2 and 1.3 follow from the same two propositions after translating back from
the expansion in Lemma 2.2 to the usual ones in the Equations (1.10) and (1.11) (see in
the Sections 2.1 and 2.2).

4 Characterization of Positive Definiteness on Ω∞ ×
Ω∞

In this section we aim to prove the following:

Theorem 4.1. Let f : D×D→ C be a continuous function. Then f is PD on Ω∞×Ω∞
if, and only if,

f(ξ, η) =
∑

m,n,k,l∈Z+

am,n,k,lR
∞
m,n(ξ)R∞k,l(η)

=
∑

m,n,k,l∈Z+

am,n,k,lξ
m
ξ
n
ηkηl, (ξ, η) ∈ D× D,

where
∑
am,n,k,l <∞ and am,n,k,l ≥ 0 for all m,n, k, l ∈ Z+.

(4.1)

Moreover, the series in Equation (4.1) is uniformly convergent on D× D.

In the proof we will use ideas from [5] and we will need the following lemma, whose
proof is analogous to that of Lemma 4.1 in [5] and will be omitted.
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Lemma 4.2. Let q, p ∈ N ∪ {∞} , q, p ≥ 2 and f : D× D→ C be a continuous and PD
function on Ω2q × Ω2p. Given points w1, . . . , wL ∈ Ω2p and numbers c1, . . . , cL ∈ C, the
function F : D→ C defined by

F (ξ) =
L∑

j,k=1

f(ξ, wj · wk)cjck (4.2)

is continuous and PD on Ω2q.

Proof of Theorem 4.1. First observe that, as for a single sphere, f is PD on Ω∞ ×Ω∞ if,
and only if, f is PD on Ω2q × Ω2p for every q, p ≥ 2.

It is also easy to see that the function g(ξ) = ξ, ξ ∈ D, is PD on Ω2q for every q ≥ 2,
as well as its conjugate. By the Schur Product Theorem for Positive Definite kernels,
cf. [3, Theorem 3.1.12], one obtains that also h(ξ) = ξ

m
ξ
n

is PD on Ω2q for q ≥ 2 and
m,n ∈ Z+, and that ξ

m
ξ
n
ηkηl is PD on Ω2q × Ω2p for q, p ≥ 2 and m,n, k, l ∈ Z+. As a

consequence, any function of the form (4.1) is continuous and PD on Ω2q ×Ω2p for every
q, p ≥ 2, and then on Ω∞ × Ω∞ too.

Now let the continuous function f : D×D→ C be PD on Ω∞×Ω∞. For η ∈ D, c ∈ C,
consider the special case of (4.2) with L = 2, q =∞, p = 2, w1 = (η, w), w2 = (1, 0) ∈ Ω4,
c1 = 1, c2 = c, that is,

Fη,c(ξ) = f(ξ, 1)(1 + |c|2) + f(ξ, η)c+ f(ξ, η)c. (4.3)

By Lemma 4.2, Fη,c is a continuous PD function on Ω∞. Then, using a theorem due to
Christensen and Ressel, see [11], it can be written as

Fη,c(ξ) =
∑

m,n∈Z+

am,n (η, c) ξ
m
ξ
n
,

where am,n (η, c) ≥ 0 are uniquely determined and satisfy
∑

m,n∈Z+
am,n (η, c) <∞.

By using c = 1,−1, i and proceeding as in the end of the proof of [5, Theorem 1.2],
one obtains that

f(ξ, η) =
1− i

4
Fη,1(ξ)− 1 + i

4
Fη,−1(ξ) +

i

2
Fη,i(ξ) =

∑
m,n∈Z+

ϕm,n(η)ξ
m
ξ
n
, (4.4)

where

ϕm,n(η) :=
1− i

4
am,n(η, 1)− 1 + i

4
am,n(η,−1) +

i

2
am,n(η, i), η ∈ D ,

and then ∣∣∣∣∣∣
∑

m,n∈Z+

ϕm,n(η)

∣∣∣∣∣∣ <∞, η ∈ D. (4.5)
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Consider now p ≥ 2 and the function f̃p : D × U(p) : (ξ, A) 7→ f(ξ, Aep · ep), where

ep = (1, 0, . . . , 0) ∈ Ω2p. By construction, f̃p is continuous and PD on Ω∞ × U(p). By

Theorem 1.3 in [5], we can expand f̃p as

f̃p(ξ, A) =
∑

m,n∈Z+

ϕ̃(p)
m,n(A)R∞m,n(ξ) =

∑
m,n∈Z+

ϕ̃(p)
m,n(A)ξ

m
ξ
n
,

where ϕ̃
(p)
m,n are continuous PD functions on U(p).

By differentiation one has that

ϕ̃(p)
m,n(A) =

1

m!n!

∂m+nf̃p(0, A)

∂ξ
m
∂ξ

n

and

ϕm,n(η) =
1

m!n!

∂m+nf(0, η)

∂ξ
m
∂ξ

n , (4.6)

but by construction

ϕ̃(p)
m,n(A) =

1

m!n!

∂m+nf̃p(0, A)

∂ξ
m
∂ξ

n =
1

m!n!

∂m+nf(0, Aep · ep)
∂ξ

m
∂ξ

n = ϕm,n(Aep · ep).

By Remark 2.3 we deduce that ϕm,n is continuous and PD on Ω2p, for every p ≥ 2. As a
consequence, ϕm,n is PD on Ω∞ and thus we can again use the theorem by Christensen
and Ressel, in order to conclude that for every m,n,

ϕm,n(η) =
∑
k,l∈Z+

am,n,k,l η
kηl, η ∈ D ,

where am,n,k,l ≥ 0, for every k, l ∈ Z+, and
∑

k,l∈Z+
am,n,k,l <∞ . Thus,

f(ξ, η) =
∑

m,n∈Z+

∑
k,l∈Z+

am,n,k,l ξ
m
ξ
n
ηkηl ,

and then
∑

m,n,k,l∈Z+

am,n,k,l <∞.

5 From Ω2 to S1

In this section we aim to show that one can deduce, from the results obtained on the
complex sphere Ω2, corresponding results for the real sphere S1.

For instance, it is possible to relate the characterizations of SPD functions on Ω2

from [29], with that of SPD functions on S1 (see [29, 1]) and it is possible to obtain the
characterization of Strict Positive Definiteness on S1×S1 proved in [20], as a consequence
of Theorem 1.3.



18 M. H. Castro, E. Massa, and A. P. Peron

Actually, the known conditions for Strict Positive Definiteness on S1 exhibit more
similarities with the conditions we obtain here in the Theorems 1.1, 1.2 and 1.3 for the
complex spheres, where an intersection with every product of full arithmetic progres-
sions in Z is required, rather than with the known conditions for real spheres in higher
dimensions, where only progressions of step 2 are involved (see Equations (1.3) and (1.7)).

We will show here how to deduce Theorem 1.4 from Theorem 1.2. The two character-
izations mentioned above can be obtained in the same way.

First, we will show how one can establish a correspondence between PD (and between
SPD) functions on S1 and a subset of those on Ω2.

Lemma 5.1. There exists a bijection between PD (resp. SPD) functions on S1 and PD
(resp. SPD) functions on Ω2 which are invariant under conjugation, that is, f(eiφ) =
f(e−iφ), φ ∈ [0, 2π).

Proof. Let f : ∂D→ C be a PD function on Ω2 satisfying f(eiφ) = f(e−iφ), then it is real
valued and it only depends on the real part.
Consider the bijection

A : Ω2 → S1 : eiφ 7→ (cos(φ), sin(φ))

and the surjective map

C : ∂D→ [−1, 1] : eiφ 7→ cos(φ) ,

which admits a right inverse C− : x 7→ ei arccos(x). Then C ◦C− = id[−1,1] and since f only
depends on the real part,

f(C− ◦ C(eiφ)) = f(eiφ), eiφ ∈ ∂D. (5.1)

Also observe that

C(w · w′) = Aw ·R Aw′, w, w′ ∈ Ω2. (5.2)

Therefore, the bijection in the claim is the following:

B : f 7→ f̂ := f ◦ C− ,

whose inverse is given by

B−1 : f̂ 7→ f := f̂ ◦ C .

Actually, for kernels K and K̂ associated, respectively, to f and f̂ , it holds, by (5.1-5.2),

K̂(Aw,Aw′) = f̂(Aw ·R Aw′) = f(C− ◦ C(w · w′)) = f(w · w′) = K(w,w′),

then the definition of PD (resp. SPD) in (1.1) becomes equivalent for the two kernels.

Using the argument in Lemma 5.1 one can obtain
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Lemma 5.2. There exists a bijection between PD (resp. SPD) functions on S1×Ω2p and
PD (resp. SPD) functions on Ω2 × Ω2p that are invariant under conjugation in the first
variable, that is, f(eiφ, η) = f(e−iφ, η) φ ∈ [0, 2π), η ∈ D.

The bijection in Lemma 5.2 is given by

B : f 7→ f̂(M, η) := f(C−(M), η) ,

where C− is defined in the proof of Lemma 5.1.

Proof of Theorem 1.4. Let f be a function as in Theorem 1.2 which is also invariant under
conjugation in the first variable. This implies that am,k,l = a−m,k,l, m ∈ Z, k, l ∈ Z+ in
the expansion (1.10), then

f(eiφ, η) =
∑

m∈Z, k,l∈Z+

am,k,le
imφRp−2

k,l (η) =
∑
k,l∈Z+

Rp−2
k,l (η)

(
a0,k,l +

∑
m∈N

2am,k,l cos(mφ)

)

and the function f̂ corresponding to f in the bijection from Lemma 5.2 can be written as

f̂(cosφ, η) = f(C−(cosφ), η) = f(eiφ, η) =
∑
k,l∈Z+

Rp−2
k,l (η)

(
a0,k,l +

∑
m∈N

2am,k,l cos(mφ)

)
,

which can be rewritten as in (1.12), where the coefficients âm,k,l are such that

am,k,l > 0 (Resp. ≥ 0)⇐⇒ â|m|,k,l > 0 (Resp. ≥ 0), m ∈ Z, k, l ∈ Z+ (5.3)

and ∑
am,k,l <∞⇐⇒

∑
â|m|,k,l <∞ . (5.4)

As a consequence one obtains, from Lemma 5.2, both the characterization (1.12) for
Positive Definiteness on S1 × Ω2p (which can also be obtained from the results in [16])
and the characterization of Strict Positive Definiteness in Theorem 1.4.
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