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In this paper we propose a counterexa pg.tp t‘Ha validity of the Com-
parison Principle and of the Sub and Super ntion Method for nonlocal
problems like the stationary Kirchl%%qu@ ion. This counterexample
shows that in general smooth boh\:\'%mains in any dimension, these
properties cannot hold true i TT@nQr.l near nonlocal term M (||u?) is
somewhere increasing Wit&ﬁi to the Hg-norm of the solution.
Comparing with existingwcesults, this fills a gap between known con-

ditions on M that guarantée or prevent these properties, and leads

to a condition gvhich is mecessary and sufficient for the validity of the

Comparison®rindiple.

It is %ﬂ% 1 é that equations similar to the one considered
V%aine interest recently for appearing in models of thermo-

ows of non-Newtonian fluids or of electrorheological fluids,
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Publishihg INTRODUCTION
In this paper we consider problems in the form

—M(Julli)Au = f(z,u) in Q, O
u=20 on 0,

\//’\

where Q C R” is a bounded and smooth domain, M is a nonfdggative function,
|-l ;; is the norm in H}(S2) and f is some nonlinearity. ‘;&

The main feature of this problem is the presencesof t ternt M (lull3,),
which is said to be non-local, for depending not only ‘en theﬁ)oint in  where
the equation is evaluated, but on the norm of th v‘;ho e solution.

The equation in (1) is usually called of Kirch typesactually a famous and
important example is the (stationary) Ki%’ﬂ% tion, originally proposed

in Kirchhoff!° as an improvement of t%g string equation, in order to
.

take into account the variation in th f the string due to the variation

in its length with respect to the dnstra ed?osition. In the Kirchhoff case the
proposed function M takes e% (1) = a + bt with a,b > 0, however,
different functions can be consideged, either for modeling different physical

phenomena (see examplés m‘%agglo , or for the pure mathematical interest

of the problem. For ore T literature about Kirchhoff type equations like

(1), we cite the orks lve{ Corréa, and Ma?®Cheng, Wu, and Liu%Corréa

and Figueire ong, Chen, and Tang'?*9Tang and Cheng'®, which

deal with the tence of solutions with various types of nonlinearities f and

use mainly vafiational methods.
It fs also worith noting that equations similar to (1), but with the p(z)-

érator in the place of the Laplacian, have gained interest recently

fo ppe&ing in models of thermo-convective flows of non-Newtonian fluids or
}f)lf&trorheological fluids, and in image restoring problems (see in Dai and
8 and the references therein). Other nonlocal problems, though of different

form with respect to (1), have great importance for their applications and also
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Publishi:h)g the mathematical challenges they present: we cite for example the “mean

field equation”
eu

AU — —

eru7

which appears in the study of turbulent flows modeled by the Euler equation:

Iturriaga?, where the authors obtained a nice counterexamp validity

of the Comparison Principle and of the Sub and Supersol@ (CP and

SSM for short) for the stationary Kirchhoff Equatiofi.“I'his«gounterexample

see Caglioti et al.®. /
The aim of this paper is related to the recent paper Ga@nd
to

shows how the presence of the nonlocal term may h théeffect of making
unavailable these techniques, largely used in th local-jase. The motivation
for such counterexamples was to clear up,some.results in literature which
claimed (and used) the validity of CP & W r problem (1) or for its

generalizations involving the p—Laplac ¢ p(x)—Laplacian, under the

assumption that M > mg > 0 is a ‘trs$eas function (we refer to Garcia-
o

Melidn and Tturriaga® for more‘\details,and references on this matter). In

fact, the result in Garcia-Me INKI’C riaga? shows that if the function M

increases fast enough, then the C oth in its weak and strong form) and the

SSM can not hold true%\;n a ball.

It is known that{P an hold true for the local problem where M is

constant, but alz( or t n{nlocal problem (1) if M > 0 is nonincreasing but

the product (‘bﬁt is fcreasing, as proved in Alves and Corréa'. The condi-

tion that M (¢)#ds increasing is easily seen to be necessary for the Comparison

Principle I{old/ ctually, if M(¢3)t; > M (t3)ty for some positive t; < ts,
-

taking ¢; as¢the first eigenfunction of the Laplacian in a set {2, normalized

= 1, then the functions ¢ = t3¢; and w = t,¢; satisfy

VAL = M)t Moy < M) thdr = —M(|w|3)Aw in Q,
on 0,

but ¢ > w in €.
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Publishing‘ )n the other hand, the result in Garcia-Melidn and Iturriaga® excludes
the validity of CP and SSM if M increases enough, however the authors only
consider the problem in a ball and they do not address the question whether
some growth condition on the nonlocal term could be enough to make these

properties available. In particular, it is worth noting that the hypo?(esis on M

required for their counterexample to work is such that the dime

would satisfy their condition only for N > 5.

1 s to
be at least 3, and moreover the original Kirchhoff nonlocal teQ‘) =a+0bt

1n\ny dimension,

in general smooth bounded domains, and that fills the gap b tween the results

In this paper we obtain a new counterexample that hol

in Garcia-Melidn and Iturriaga® and those in Alvés and al , showing that

a necessary condition for CP and SSM to hol&%l eir standard form is

that the function M is nonincreasing. ‘\\

In fact, we prove the following
\

Theorem 1. Let ) be a smooth bouw domain in RY. Suppose M is not
nonincreasing, that is, there exis tivg t; < to such that M(t1) < M(ts).

Then the Comparison Princip in its weak and strong form) and the Sub

and Supersolution Meth Ag\not hold in Q, for the operator

M (JJullz) A

our sult shows that even in the original Kirchhoff model,

t) = a + bt, and the operator only involves the Laplacian
instead of«ghe’ p(:v -Laplacian, the results in literature claiming the validity of
CP a d§S heir standard form can not hold true, and so their consequence
stloned too. In fact, the simple assumption that M is increasing

SO ewhée is enough to make CP and SSM hold false.
qnparmg with the results in Alves and Corréa'!, Theorem 1 implies that
the condition that M is nonincreasing is in fact necessary for both CP and

SSM to hold true. Moreover, the two conditions that M is nonincreasing and
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Publishi_ﬁ{g ‘:2)75 is increasing turn out to be necessary and sufficient, at least for the

validity of the Comparison Principle.

Remark 2. It is worth noting that in Alves and Corréa? a Sub and Supersolu-
tions Method is developed, which can deal with problem (1) and an creasmg
function M. The result is obtained by using a kind of Minty- Brow eorem
for a suitable pseudomonotone operator, but in place of the gtibsolutio the
authors need to assume the existence of a whole family of fun hich sat-
isfy a stronger condition than just being subsolutions: this s ong condition
restricts the possible right hand sides in (1), so that, fordnstance, 1t could not
be satisfied for problem (3) below. 5

Another Sub and Supersolutions Method for 1@0 problems is obtained
in Alves and Covei? for a problem with a nonl%rm_containing a Lebesgue

norm, instead of the Sobolev norm that a in (1)

II. PROOF OF THE RESUL

In order to prove that thesS \ S persolutlon Method does not hold,

we will provide two functlons u ) and a number © > 0 such

that (in weak sense) %ML
< [i)du

< Ou m Q,
/ \M (lal|3)AT > ea in Q,
N (2
) u<u i Q,
£ u <0< on 0,
\

~M(||ul]3)Au=Ou in Q,

S\ u=20 on 0f).

he counterexample to the Weak (resp. Strong) Comparison Principle will

ﬂ
but t@gt no solution wu satisfying u < u < @, for the problem
ﬁ

(3)

be obtained by providing functions ¢,w € Hg(£2) N C(2) such that (in weak
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~M(|[L))Al < —M(Jwlz)Aw in
{ < w on 05,

but there exists p € 2 where {(p) > w(p) (resp, where £(p) = w(p)).

b

héfunctions.

Remark 3. As one can see in the proof below, the functions

fact smooth, while w and w are built as the gluing of two smo
By approximating with C? functions one can modify th «;31 rexample so

that all the functions involved are smooth and the equati
-_—

“are satisfied in
classical sense.

It would also be possible to generalize the counferex g'to the case where

a

one considers the p-Laplacian instead of the{l.a ci@ and the VVO1 P_norm
! -

instead of the Hj-norm in (1): actually, the "proof we only exploit the

homogeneity of the operator, not its lineari
\
The idea behind the three counte xegpl is similar: since the Comparison
N

Principles hold true for the Laplxn, it is necessary that ¢, w satisfying (4)

do not satisfy —Al¢ < —Aw. Kh:\mi\esas to exploit the larger value of M(ts)
er to

with respect to M (¢;) in ord vert the inequality and have (4) satisfied.

Since t; < to this mea th}5he |w||;; must be larger than |||, which is
obtained by choosi thﬁ fungtion w with a large gradient near the boundary.

The same str?t/egy 1 se(f for the counterexample to the Sub and Superso-
lution Metho

. J.éthl ase, inspired by the similar counterexample in Garcia-
i

Melidan and¢Itirifiga®, we considered a linear right hand side in (3) so that all

tions are known. We build the (strict) subsolution and
super@)ii such a way that they touch at the origin: this only leaves one
p@ssible lurblon between them. At this point, we can choose the coefficient ©
in‘such zbway that this is not a solution of (3).

ﬁﬂ}{} choice of the form of the two functions ¢, w (resp. w,u) was mainly

possible itive

led, by the need to have the first two inequalities in (2) satisfied. Actually, the

simplest way to obtain this is to use first eigenfunctions of the Laplacian, in

7
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Publishipgicular the function w in (4) (resp. @ in (2)) is defined as the minimum
between a large multiple of the first eigenfunction in ©Q (which provides the
required ”large” H-norm) with a first eigenfunction in a slightly larger set (see
equation (8)).

Below we give the proof of our result.

Proof of theorem 1. First, we define a set slightly larger than @‘.
O = {zeRY: d(z,Q) <1}, )\
~

where d(-, ) denotes the distance in RY and 7 > 0 will bé taken small enough,
so that €7 is still a smooth domain. =,
Let ¢™, \™ be the (positive) first eigenfuncti n(ud,efg)nvalue for the Lapla-

cian in €2;, normalized with ||¢7]| = 1. Let als X1 be those in ©, again

normalized with ||¢q]| = 1. \

Observe that when 7 \, 0 one ha@. As a consequence of the
env:

variational characterization of the fi \e§ lue, this implies that \™ 7 A.

~
Then we can fix 7 > 0 such th‘i\\
M(t)
&3 M (ts) (5)
and O such that g‘\
£ (t1) < © < \"M(ty) . (6)

A1
Let now <\ /

e =inf{t: ¢ <td"|q in Q} :

one sees t/ Cr )>¢ since, by the normalization, ¢; > ¢” at the point where
ﬁ

¢, atfains it ximum. Also, since ¢7 is bounded away from zero in 2, the

two funcei ;¢ and ¢; must touch somewhere in €2, that is, there exists

5 &Q sudh that c.d7(5) = 61 (7).
H%,ge € (0,1], we define the set 27 and the function u. , as follows:

Or = {x €N: %dn(x) < chbT(x)} ;

8
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Publishing ¢ (x) if v e (QD)°,
Ue, 7 = (7)
hi(z) ifxeQr,

or, which is the same,

1
Ue,r = min {CT¢T7 _(Z)l} . / (8)
€ \
Observe that, by its definition, . , is a continuous functiothl’T = ¢

and the following items hold true:

e for every ¢ € (0, 1], one has 6‘“

Ue,r Z ¢1 in Q?
us+(p) = ¢1(p) at the point p € {Xﬁ (p) = ¢1(p);

[ ]
_AUE,T = /\TCT¢T KZXQK mn (QT)C7

—Au, ; = )\1% Tl . in QT

=
and then \\
\ in Q (in weak sense); (10)

|

>

=

Vv
/?\

2 1
Juer s g
QT
In orde ‘o)prove (11), let ¢ and d, be such that |V¢,| < ¢ and ¢, >
4 &0 4n (} Then for p € Q we may estimate ¢1(p) — 0 < {d(p, 0N).
@ |
- .
b W= {r € d(z, 09) < £6./C} C O

S ~Moreover, we may estimate

V4(112+cf/ C|V¢>T\2—>+oo fore — 0. (11)
Q1)

es that

5,
lwl| > 109 Z_C for € > 0 small enough

9
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Publishing (here |w| and [0€| denote, respectively, the N-dimensional and the (NN —
1)-dimensional measure of the two sets), actually, taking into account the

smoothness of €2, for small ¢, the set w! is just a smooth band of width

£d, /(¢ near 0.

Finally, by the properties of the first eigenfunction, there q[ ts a > 0
such that |V¢i| > a in 02, which implies that, for e r@‘%gh,

|[Voi] > a/2 in wl. As a consequence, \
2100
V|2 > a®|0Q|ed |

_— fore >0s enQugh,
ar 8¢ = -
and then (11) follows. b
Now let ( ’)

Eoc = 0@1 3 \L"’
then \\
Al = m, (12)

wal%\c: ill7 (13)
For our first counterexam@ =1, and we choose A > 0 such that

| ALy I3, = t1, then we choose ¢ stteh that ||Au. ||, = to: this is possible by

continuity, actually u ) ||Au1,7||12q = ||Al, |3, = t1 < t5, and by (11)
| Ate || ;; = oo whefl € i 0:

We obtain, bY/IO), i (12),

(
— M (|| A% AAL, = M(t)M\ AL, < OAL, in €,

| U’S,T”H)AAUE,T Z M(tZ)ATAug,T > @A’UJEJ m Q, (14)

u := Al, satisfy all the conditions in (2), moreover u(p) =
1, seed(9
e oay have to prove that no solution of problem (3) exists between u and

1. SActually, such a solution must be positive and then it must be a multiple

ik

of'¢1, but since u(p) = w(p) then the only possible choice would be w itself,
which is not a solution by the strict inequality in (14).

10
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PublishingObserve that the same functions w := Au., and ¢ := Al, satisfy (4) with
¢(p) = w(p), and then provide a counterexample to the strong form of the
Comparison Principle.

In order to get a counterexample to the weak form of the Comparison
Principle we only have to choose av > 1, so that we will have ¢, (]?/ > ue - (p),
then again choose in sequence A > 0 such that ||Al,|3, = t1, t such that

| Aue - || ;; = to: again this is possible in view of (11) and that now
||AU1T||H || AL, ||H/a <ty <ty (see (13)).
Remark 4. In dimension one, the construction of t, ons used in the

counterexamples is quite straightforward and can bek 1<31te1y In fact,
if Q = (—7/2,7/2), one has ( ,)
-

where L =1 + %7’.
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