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Abstract

In this work, we consider an elliptic system of two equations in di-
mension greater than one, with nonlinearities which are linear at −∞ and
superlinear at +∞.

We prove, by variational techniques which involve a strongly indefi-
nite functional, the existence of two solutions for suitable forcing terms,
under a condition on the linear part which prevents resonance with the
eigenvalues of the operator.
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1 Introduction

In this work we consider the problem −∆u = au+ bv + (v+)p + f1 + tφ1 in Ω
−∆v = cu+ dv + (u+)q + f2 + rφ1 in Ω
u = v = 0 on ∂Ω

, (1.1)

where u+(x) = max{0, u(x)}, φ1 > 0 is the first eigenfunction of the Laplacian
with Dirichlet boundary conditions and Ω ⊆ RN is a smooth bounded domain
with N ≥ 2.

The nonlinearities will be assumed both superlinear and subcritical, that is,
1 < p, q < 2∗ − 1, where 2∗ = 2N

N−2 if N ≥ 3 and 2∗ =∞ if N = 2.
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the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
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Our concern with problem (1.1) is mainly motivated by the results in the
paper [1], where the scalar equation −∆u = λu+ (u+)p + f + tφ1 is considered,
and by the work in [2], where this result is extended to systems, but with
the terms (v+)p, (u+)q appearing in the second and first equation respectively,
instead of as they appear in (1.1). This difference, as will be shown in the
following, completely changes the variational setting of the problem, forcing us
to work with a strongly indefinite functional.

We may write (1.1) in vectorial form as −∆

[
u
v

]
= A

[
u
v

]
+

[
(v+)p

(u+)q

]
+

[
f1

f2

]
+

[
t
r

]
φ1 in Ω

u = v = 0 on ∂Ω
,

where A =

[
a b
c d

]
; we will assume that A has real eigenvalues ν1,2 = a+d

2 ±√(
a−d

2

)2
+ bc.

Throughout the paper, we will denote by 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λi ≤ ...
the eigenvalues of −∆ in H1

0 (Ω) and by {φi}i∈N the corresponding eigenfunc-
tions, taken orthogonal and normalized with ‖φi‖L2 = 1 and φ1 > 0; by σ(−∆)
we will denote the spectrum of the Laplacian, that is, the set {λi : i ∈ N}.

Our results are

Theorem 1.1. If A has real eigenvalues ν1,2 6∈ σ(−∆) and f1,2 ∈ Ls(Ω) with
s > N ≥ 2, then there exists (t0, r0) ∈ R2 such that if (t, r)t = (t0, r0)t + (λ1I −
A)(τ, ρ)t with τ, ρ < 0, then a negative solution (uneg, vneg) of problem (1.1)
exists.

For negative solution we intend that both uneg, vneg < 0 in Ω.

Theorem 1.2. In the same hypotheses of theorem 1.1, if moreover a = d, then
for the same vectors (t, r) ∈ R2, a second solution exists.

Remark 1.3. The assumption a = d in the last theorem is required in order
to work with variational techniques; observe that in this case the remaining
hypotheses on A may be written as

bc ≥ 0 and a±
√
bc 6∈ σ(−∆) .

1.1 Literature and techniques

The scalar counterpart of problem (1.1) is{
−∆u = λu+ (u+)p + f + tφ1 in Ω
u = 0 on ∂Ω

, (1.2)

and it has been considered in many works.

2



For λ < λ1 it is the so called Ambrosetti-Prodi problem (first considered
in [3]) and it has zero, at least one or at least two solutions, depending on the
forcing term; in particular, it has two solutions for large negative values of t and
no solution for large positive values.

For λ > λ1, we already cited the work [1], where it is proven that for a
continuous f there exist at least two solutions for large positive values of t,
provided λ is not an eigenvalue. In [4], an analogous result is proven for a larger
class of nonlinearities.

It is also interesting to cite the result in [5], where the case in dimension
one is considered, and it turns out that if λ ∈ (λk, λk+1), then at least 2k + 2
solutions exist for t ≥ 0.

Our theorems 1.1 and 1.2 look to be the equivalent of the results in [1], in the
sense that, provided no resonance occurs with the eigenvalues of the operator,
we find a region for the parameters (t, r) for which two solutions exist, one being
negative.

For the case of a system with the nonlinearities (v+)p, (u+)q appearing in
the second and first equation respectively, a result of existence of two solutions
for suitable values of the parameters t, r was obtained in [2]; the main condition
on the eigenvalues of the matrix A was ν1,2 < λ1 or ν1,2 ∈ (λk, λk+1).

The proof of the theorem 1.1 will be relatively simple, since for negative
solutions system (1.1) turns out to be a linear problem.

The theorem 1.2 will be proved by finding a critical point of a suitable
functional defined in section 3.2.

The techniques we will use are inspired by those in [1]. However, we will
need to adapt them to the characteristics of the functional (3.3) and of its
variational setting. For this purpose we refer to [6, 7] and we make use of
the minimax theorem for strongly indefinite functionals in [8]. Actually, one
important characteristic of systems like (1.1) is that, in order to treat them
variationally, one is led to work with a strongly indefinite functional, in the sense
that there exist two infinite dimensional subspaces of its space of definition such
that it is unbounded from above in one and from below in the other (see in the
lemma 3.4).

2 The negative solution

In this section, we will look for negative solutions, in the sense that both com-
ponents are negative: this is relatively simple since in this case the nonlinear
term disappears in (1.1).

We will need the following

Lemma 2.1. If A has real eigenvalues ν1,2 6∈ σ(−∆) and f1,2 ∈ Ls(Ω) with

3



s > N , then there exists a unique solution (u0, v0) of the problem −∆

[
u
v

]
= A

[
u
v

]
+

[
f1

f2

]
in Ω

u = v = 0 on ∂Ω
. (2.1)

Moreover, we have u0, v0 ∈ C1,α(Ω) for α < 1−N/s.

Proof. Since A has real eigenvalues it may be reduced to its Jordan form, this
means that the equations uncouple sequentially and reduce to scalar equations,
which are uniquely solvable provided each eigenvalue of A is not in σ(−∆).

The hypothesis f1,2 ∈ Ls(Ω) implies, by regularity theory, that u0, v0 ∈
W 2,s(Ω) ⊆ C1,α(Ω) for α < 1−N/s.

With this result we may obtain the negative solution:

Proof of theorem 1.1. Given f1,2, let (u0, v0) be the corresponding solution for
(2.1) and consider the problem −∆

[
u
v

]
= A

[
u
v

]
+

[
t
r

]
φ1 in Ω

u = v = 0 on ∂Ω
: (2.2)

by looking for a solution of the form

[
α
β

]
φ1 one obtains (λ1I − A)

[
α
β

]
=[

t
r

]
, and then, by superposition principle,

(λ1I −A)−1

[
t
r

]
φ1 +

[
u0

v0

]
(2.3)

is a solution of (1.1), provided it is non positive.
Since u0, v0 ∈ C1,α, there exist finite

α0 = sup {α : αφ1 + u0 < 0} , β0 = sup {β : βφ1 + v0 < 0} ;

so (2.3) is negative provided α < α0 and β < β0, that is,[
t
r

]
= (λ1I −A)

([
α0

β0

]
+

[
α− α0

β − β0

])
:

by setting (t0, r0)t = (λ1I − A)(α0, β0)t, τ = α − α0 < 0 and ρ = β − β0 < 0,
we get the conditions in the claim.

3 The second solution

From now on we want to apply variational techniques, for this we will be forced
to assume a = d in the matrix A. In this case the condition for having real
eigenvalues reads bc ≥ 0.

In order to simplify the computations of the proofs, we will exploit the
following lemma (whose proof is simply a change of unknowns).
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Lemma 3.1. If (U, V ) is a solution of −∆U = aU + bV/δ + (V +)p/δ + (f1 + tφ1)/δ in Ω
−∆V = cδU + dV + δq(U+)q + (f2 + rφ1) in Ω
u = v = 0 on ∂Ω

(3.1)

with δ > 0, then (u, v) = (δU, V ) is a solution of (1.1).

In view of this lemma, whenever b, c 6= 0, we will consider system (3.1) with
the choice δ =

√
b/c, so that the two out of diagonal coefficients become equal

to
√
bc, a rescaling occurs for the forcing term of the first equation, and two

new positive constants appear as coefficients of the nonlinear terms; also the
case b = c = 0 will fit in the following proofs without any need of the lemma
3.1, while in section 3.5 we will consider the remaining case in which one (and
only one) of the two coefficients b, c is zero.

Thus, we consider from now on the system −∆u = au+ bv + C1(v+)p + f1 + tφ1 in Ω
−∆v = bu+ av + C2(u+)q + f2 + rφ1 in Ω
u = v = 0 on ∂Ω

, (3.2)

where C1, C2 are two positive constants.
We will prove the following proposition:

Proposition 3.2. Let a± b 6∈ σ(−∆), f1,2 ∈ Ls(Ω) with s > N ≥ 2 and (t, r)
as in the theorem 1.1; then there exists a second solution for system (3.2).

3.1 The minimax theorem

As anticipated in the introduction, we will find the second solution by using a
minimax theorem due to Felmer [8]. For sake of completeness, we report here
this theorem, in a form adapted to our setting.

Theorem 3.3. Let E = X ⊕ Y be a Hilbert space and F : E → R be a C1

functional satisfying the Palais-Smale (PS) condition and having the structure
F (u) = 〈Lu, u 〉E + b(u) where
1) L : E → E is a linear, bounded and self-adjoint operator;
2) b′ : E → E is a compact operator;
3) the linear operator PX exp(µL) : X → X is invertible for any µ > 0.

Suppose also that we have M > ρ > 0, R > 0 and z ∈ Y with ‖z‖E = 1 such
that
i) F (u) ≥ ξ > 0 for u ∈ S = {u : u ∈ Y, ‖u‖E = ρ};
ii) F (u) ≤ 0 for u ∈ ∂Q where

Q = {u = w + s z : w ∈ X , ‖w‖E ≤ R, 0 ≤ s ≤M}.
Then F possesses a critical point with critical value e ≥ ξ.

The purpose of the following sections will be to provide the structure required
for the application of this theorem.
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3.2 The variational structure

We consider the (Hilbert) space E = H1
0 ×H1

0 equipped with the scalar product

〈 (u, v), (w, z) 〉E =

∫
∇u ∇w +

∫
∇v ∇z ,

the related norm ‖(u, v)‖E and the bounded symmetric quadratic form

B((u, v), (w, z)) =

∫
Ω

∇u∇z +∇v∇w − a(uz + vw)− b(uw + vz) .

Let (t, r) be as in theorem 1.1 and (uneg, vneg) be the corresponding negative
solution for (3.2); then it is simple to see that the functional

F : E → R : u = (u, v) 7→ F (u) =
1

2
B(u,u)−H(u) =

=

∫
Ω

∇u ∇v − 1

2

∫
Ω

(
b(v2 + u2) + 2auv

)
+

− C1

∫
Ω

[(v + vneg)
+]
p+1

p+ 1
− C2

∫
Ω

[(u+ uneg)
+]
q+1

q + 1
(3.3)

is C1(E;R) and its critical points (u, v) are such that (u + uneg, v + vneg) are
solutions of (3.2), in particular, the origin is a critical point at level zero and
corresponds to the already found negative solution.

In order to find a orthogonal base for E which diagonalizes B, we consider,
in a way similar to what was done in [7], the eigenvalue problem

(u, v) ∈ E : B((u, v), (φ, ψ)) = µ〈 (u, v), (φ, ψ) 〉E ∀(φ, ψ) ∈ E :

this gives (use (0, φi) and (φi, 0) as test functions and let ui, vi be the Fourier’s
coefficients for u and v)[

a− λi µλi + b
µλi + b a− λi

] [
ui
vi

]
= 0 (i ∈ N) , (3.4)

so we get nontrivial solutions when µ is such that the determinant of the above
matrix is zero for some i ∈ N. This gives (λi − a)2 − (b+ λiµ)2 = 0 and so

µ±i =
−b± (λi − a)

λi
(i ∈ N) ;

from (3.4) we also get the related eigenvectors Ψ±i, which we choose such that
‖Ψ±i‖E = 1:

Ψ±i =
(φi,±φi)√

2λi
(i ∈ N) ;

observe that in the case a = λj , if it occurs, we get the double eigenvalue −b/a
and we may still choose as eigenvectors Ψ±j =

(φj ,±φj)√
2λj

.
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With this structure we have

〈Ψi,Ψj 〉E = δi,j , B(Ψi,Ψj) = µiδi,j , 〈Ψi,Ψj 〉[L2]2 = λ−1
i δi,j (i, j ∈ Z0) ,

(3.5)
so if we write (u, v) =

∑
i∈Z0 ciΨi, we get

‖(u, v)‖2E =
∑
i∈Z0

c2i , B((u, v), (u, v)) =
∑
i∈Z0

µic
2
i , ‖(u, v)‖2[L2]2 =

∑
i∈Z0

λ−1
i c2i .

(3.6)
In view of this structure we may define

E+ = span {Ψi : µi > 0, i ∈ Z0} ,
E− = span {Ψi : µi < 0, i ∈ Z0} ,
E0 = span

{
Ψi : µi = 0, i ∈ Z0

}
,

and we have

Lemma 3.4. There exists ξ∗ > 0 such that

B(u,u) ≥ 2ξ∗ ‖u‖2E for u ∈ E+ , (3.7)

B(u,u) ≤ −2ξ∗ ‖u‖2E for u ∈ E− . (3.8)

Moreover, if a± b 6∈ σ(−∆), then E0 = {0}.

Proof. The claim is satisfied by setting

2ξ∗ := inf
{
|µi| : |µi| > 0, i ∈ Z0

}
:

actually this is strictly positive since limi→±∞ µi = ±1.
The condition a± b 6∈ σ(−∆) implies µi 6= 0 for any i ∈ Z0.

For later use, we also define ñ such that for i ≥ ñ we have λi − a > |b| and

Eh = span {Ψi : |i| ≥ ñ, i ∈ Z0} , El = span
{

Ψi : |i| < ñ, i ∈ Z0
}

:
(3.9)

we have the following

Lemma 3.5. (u, v) ∈ E+ ∩ Eh implies u = v and (u, v) ∈ E− ∩ Eh implies
u = −v.

Proof. It follows readily from the fact that for i ≥ ñ we have ±µ±i > 0 and

that Ψ±i = (φi,±φi)√
2λi

.

3.3 Estimates for the linking structure

In this section we will prove the estimates we need in order to apply the minimax
theorem 3.3.
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Lemma 3.6. There exist ρ, ξ > 0 such that

F (u) ≥ ξ for u = (u, v) ∈ E+ and ‖u‖E = ρ .

Proof. Let u be as above: by (3.7) and the continuous embedding of H1
0 in Lq+1

and Lp+1 we get

F (u) =
1

2
B(u,u)− C1

∫
Ω

[(v + vneg)
+]
p+1

p+ 1
− C2

∫
Ω

[(u+ uneg)
+]
q+1

q + 1

≥ ξ∗ ‖u‖2E − C1

∫
Ω

(|v|)p+1

p+ 1
− C2

∫
Ω

(|u|)q+1

q + 1

≥ ξ∗(‖u‖2H1
0

+ ‖v‖2H1
0
)− C(‖v‖p+1

H1
0

+ ‖u‖q+1
H1

0
)

≥ ‖u‖2H1
0

(ξ∗ − Cρq−1) + ‖v‖2H1
0

(ξ∗ − Cρp−1) (3.10)

where C is a positive constant. Since p, q > 1, for ρ, ξ > 0 small enough we
obtain the claim.

Lemma 3.7. There exists g = (g, g) ∈ E+
⋂
Eh with ‖g‖E = 1 and ‖g+‖L∞ =

+∞.

Proof. Since H1
0 is not embedded in L∞ (here is where we need the condition

N ≥ 2), there exists u ∈ H1
0 such that ‖u+‖L∞ = +∞; by removing the

components of u in the directions of the eigenvectors φi with i < ñ we maintain
this property since we simply subtract a finite linear combination of regular
functions, so we may assume that such components are zero.

Now we have that (u, u) ∈ E+
⋂
Eh since, for i ≥ ñ, Ψi = (φi, φi)/

√
2λi and

µi > 0.
Finally, we obtain ‖(g, g)‖E = 1 by a suitable rescaling of (u, u).

Lemma 3.8. Let g = (g, g) as in the lemma above.
Then there exist R, θ > 0 with Rθ > ρ such that F (u) ≤ 0 for:

a) (u, v) ∈ E−,

b) (u, v) = u = w + sg: w ∈ E−, ‖w‖E = R, 0 ≤ s ≤ θR,

c) (u, v) = u = w + sg: w ∈ E−, ‖w‖E ≤ R, s = θR,

Proof.

a) Let u ∈ E−: by equation (3.8)

F (u) =
1

2
B(u,u)− C1

∫
Ω

[(v + vneg)
+]
p+1

p+ 1
− C2

∫
Ω

[(u+ uneg)
+]
q+1

q + 1

≤ −ξ∗ ‖u‖2E ≤ 0 . (3.11)

8



b) Let w = (w, z) ∈ E− with ‖w‖E = R and 0 ≤ s ≤ θR: observe that g is
orthogonal to w, that is, 〈w,g 〉E = 0 = B(w,g); then we estimate, by
using again (3.8),

F (u) =
1

2
B(u,u)− C1

∫
Ω

[(v + vneg)
+]
p+1

p+ 1
− C2

∫
Ω

[(u+ uneg)
+]
q+1

q + 1

≤ 1

2
B(w + sg,w + sg) =

1

2
(B(w,w) + s2B(g,g))

≤ −ξ∗ ‖w‖2E +
1

2
s2B(g,g) . (3.12)

From this we may conclude (let Bg := 1
2B(g,g) and observe that it is

positive by equation (3.7))

F (u) ≤ R2(−ξ∗ + θ2Bg) . (3.13)

By fixing θ <
√
ξ∗/Bg, such that the last term is negative, the claim b)

is proved.

c) Consider now ‖w‖E ≤ R, s = θR, and let

Plw = (σ1, σ2) , Phw = (δ1, δ2) ,

where Pl, Ph are the orthogonal projections onto the spaces El and Eh
respectively (see the definition in (3.9)). In this way, Phw ∈ E−

⋂
Eh and

then it is of the form Phw = (δ1,−δ1), by lemma 3.5.

Write now∫
Ω

[
(z + θR g + vneg)

+
]p+1

= Rp+1

∫
Ω

[(
σ2 − δ1 + vneg

R
+ θg

)+
]p+1

,(3.14)

∫
Ω

[
(w + θR g + uneg)

+
]q+1

= Rq+1

∫
Ω

[(
σ1 + δ1 + uneg

R
+ θg

)+
]q+1

;(3.15)

since uneg, vneg are fixed and bounded, and σ1, σ2 are a linear combination
of a finite number of eigenvectors of the Laplacian, there exists a constant
C such that

|uneg|, |vneg| < C/2 and |σ1|, |σ2| < C ‖w‖E /2 ≤ CR/2 ;

so, for R > 1,
|σ1 + uneg|

R
,
|σ2 + vneg|

R
< C .

Moreover, since g and θ have already been fixed and ‖g+‖L∞ = ∞, we
know that

Ω∗ = {x ∈ Ω : θg > C + 1}
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has positive measure; we observe that θg > C + 1 implies

max {θg ± δ1/R} > C + 1

for any function δ1 and any R ∈ R: then Ω∗ ⊆ Ω∗+ ∪ Ω∗−, where

Ω∗± = {x ∈ Ω : θg ± δ1/R > C + 1}

(observe that both Ω∗± depend on w and R, but Ω∗ does not).

Then either |Ω∗−| ≥ |Ω∗|/2 or |Ω∗+| ≥ |Ω∗|/2 and, as a consequence, for
any w as assumed and R > 1, one of the following two inequalities hold:

∫
Ω

[(
σ2 − δ1 + vneg

R
+ θg

)+
]p+1

≥ |Ω∗|/2 (3.16)

∫
Ω

[(
σ1 + δ1 + uneg

R
+ θg

)+
]q+1

≥ |Ω∗|/2 . (3.17)

We conclude from (3.14-3.15) and (3.16-3.17) that

−C1

∫
Ω

[(v + vneg)
+]
p+1

p+ 1
− C2

∫
Ω

[(u+ uneg)
+]
q+1

q + 1
≤ −C̃ Rmin{p,q}+1 ,

where now C̃ > 0 does not depend on R,w.

Finally, by estimating the first terms as in point b), we get

F (u) ≤ 1

2
B(w + θRg,w + θRg)− C̃ Rmin{p,q}+1

≤ −ξ∗ ‖w‖2E +
1

2
θ2R2B(g,g)− C̃ Rmin{p,q}+1

≤ R2
(
θ2Bg − C̃Rmin{p,q}−1

)
: (3.18)

since p, q > 1, we may choose R > 1 (and also R > ρ/θ) large enough to
make the last expression negative; this concludes the proof of the claim
c).

3.4 The second solution through the minimax theorem

Now, we may prove

Proposition 3.9. There exists a critical point u ∈ E for the functional F , with
F (u) ≥ ξ > 0 (and then u 6= (0, 0), so that it is a second solution).
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Proof. It is a consequence of the minimax theorem 3.3, by using the estimates
in the lemmas 3.6 and 3.8 and the PS condition in the lemma 4.1.

Actually, we set
S =

{
u : u ∈ E+, ‖u‖E = ρ

}
,

Q =
{
u = w + sg : w ∈ E− , ‖w‖E ≤ R, 0 ≤ s ≤ θR

}
,

and then we just need to check that also the hypotheses on the form of the
functional that are required in [8] are satisfied. This is the case if we set L(u, v) =
1
2 (v, u): this is linear, bounded, self-adjoint and P− exp(µL) : E− → E− is an
invertible linear operator for any µ > 0: actually, it is simple to check that L is
diagonal with respect to the base we are considering, in fact,

LΨ±i = ±1

2
Ψ±i (i ∈ N) ;

then exp(µL) is diagonal too and takes the form

exp(µL)Ψ±i = exp(±µ/2)Ψ±i (i ∈ N) ,

which shows that it maps E− onto itself and is invertible on it.

Now, proposition 3.9 implies proposition 3.2.

3.5 The case b = 0 (or c = 0)

In order to complete the proof of theorem 1.2, we still need to consider the case
in which exactly one of the diagonal terms of the matrix A in system (1.1) is
zero (that is, when its eigenvalues coincide and are equal to a, but A is not
diagonal).

In this case lemma 3.1 allows us to choose the nonzero parameter (say b) as
small as desired. We will first forget about the term

∫
Ω
bv2, that is we consider

B((u, v), (w, z)) =

∫
Ω

∇u∇z +∇v∇w − a(uz + vw) (3.19)

and we make the same construction as in section 3.2 in order to diagonalize B;
then we obtain the corresponding value ξ∗ of lemma 3.4 and, by virtue of lemma
3.1, we may consider the equivalent system −∆u = au+ bv + C1(v+)p + f1 + tφ1 in Ω

−∆v = 0 + av + C2(u+)q + f2 + rφ1 in Ω
u = v = 0 on ∂Ω

, (3.20)

where we choose the rescaling parameter δ such that b = ξ∗λ1.
We will prove

Proposition 3.10. Let a 6∈ σ(−∆), b as fixed above, f1,2 ∈ Ls(Ω) with s >
N ≥ 2, and (t, r) as in the theorem 1.1, then there exists a second solution for
system (3.20).
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Proof. Actually, a solution of (3.20) will be a critical point for the functional

F : E → R : u = (u, v) 7→ F (u) =
1

2
B(u,u)− 1

2

∫
Ω

bv2 −H(u) =

=

∫
Ω

∇u ∇v − 1

2

∫
Ω

(
bv2 + 2auv

)
+

− C1

∫
Ω

[(v + vneg)
+]
p+1

p+ 1
− C2

∫
Ω

[(u+ uneg)
+]
q+1

q + 1
, (3.21)

where the term 1
2

∫
Ω
bv2 will be considered as a (small) perturbation which we

estimate as ∣∣∣∣∫
Ω

bv2

∣∣∣∣ ≤ ξ∗λ1 ‖v‖2L2 ≤ ξ∗ ‖v‖2H1
0
≤ ξ∗ ‖(u, v)‖2E :

then we obtain the new version of the estimates (3.7-3.8)

B(u,u)−
∫

Ω

bv2 ≥ ξ∗ ‖u‖2E for u = (u, v) ∈ E+ , (3.22)

B(u,u)−
∫

Ω

bv2 ≤ −ξ∗ ‖u‖2E for u = (u, v) ∈ E− , (3.23)

which allow us to use the same arguments as in section 3.3 for this case, and
then to obtain a solution for system (3.20) through the minimax theorem 3.3.

Finally, we may conclude the proof of the theorem 1.2:

Proof of theorem 1.2. The propositions 3.2 and 3.10 imply the theorem 1.2 by
virtue of the lemma 3.1.

4 The PS conditions

In this section we will prove the PS conditions, which was required for the
application of theorem 3.3.

Lemma 4.1 (PS condition). Under the considered hypotheses, the functional F
satisfies the PS condition, that is, let εn be a sequence of positive reals converging
to zero and {un}n∈N ⊆ E be such that

|F (un)| ≤ T , (4.1)

|F ′(un)[φ, ψ]| ≤ εn ‖(φ, ψ)‖E ∀(φ, ψ) ∈ E : (4.2)

then {un} admits a convergent subsequence.
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Proof. Equations (4.1-4.2) read

|F (un)| =

=

∣∣∣∣∣12 B̂(un,un)− C1

∫
Ω

[(vn + vneg)
+]
p+1

p+ 1
− C2

∫
Ω

[(un + uneg)
+]
q+1

q + 1

∣∣∣∣∣ ≤ T ,
(4.3)

F ′(un)[φ, ψ] = B̂(un, (φ, ψ)) +−C1

∫
Ω

[
(vn + vneg)

+
]p
ψ+

− C2

∫
Ω

[
(un + uneg)

+
]q
φ ≤ εn ‖(φ, ψ)‖E ∀(φ, ψ) ∈ E , (4.4)

where we are denoting by B̂ the form B plus, in the case of functional (3.21),
the term

∫
Ω
bvψ; also, since this does not affect the proof at all, we will assume

C1 = C2 = 1.
First, we want to prove that ‖un‖E is bounded; so we consider for sake of

contradiction a subsequence such that ‖un‖E → ∞ and we define (Un, Vn) =
(un,vn)
‖un‖E

, so that (up to a further subsequence) (Un, Vn) → (U, V ) weakly in E

and strongly in [Lr]2 for r < 2∗.
Now observe that∫

Ω

[
(vn + vneg)

+
]p
vn =

∫
Ω

[
(vn + vneg)

+
]p+1

+
[
(vn + vneg)

+
]p

(−vneg)

(and an analogous relation holds for the term in un); then, by considering
F (un)− 1

2F
′(un)[un], we get(

1

2
− 1

p+ 1

)∫
Ω

[
(vn + vneg)

+
]p+1

+

+

(
1

2
− 1

q + 1

)∫
Ω

[
(un + uneg)

+
]q+1

+
1

2

∫
Ω

[
(vn + vneg)

+
]p

(−vneg)+

+
1

2

∫
Ω

[
(un + uneg)

+
]q

(−uneg) ≤ T + εn ‖un‖E ; (4.5)

by observing that each term in the expression above is nonnegative, we conclude
that the estimate from above holds for each of them, and then

1

‖un‖E

∫
Ω

[
(vn + vneg)

+
]p+1 → 0 ,

1

‖un‖E

∫
Ω

[
(un + uneg)

+
]q+1 → 0 . (4.6)

For any (φ, ψ) ∈ E we get, by considering F ′(un)[φ,ψ]
‖un‖E

,

B̂((Un, Vn), (φ, ψ))−
∫

Ω

[(vn + vneg)
+]
p

‖un‖E
ψ −

∫
Ω

[(un + uneg)
+]
q

‖un‖E
φ→ 0 (4.7)
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which, by using the weak convergence of (Un, Vn) and (4.6), implies that

B̂((U, V ), (φ, ψ)) = 0 ; (4.8)

this means that (U, V ) is a solution of −∆(U, V )t = A(U, V )t, but then it is zero
by our assumptions on the eigenvalues of the matrix A (see the lemma 2.1).

Now consider F ′(un,vn)[vn,un]

‖un‖2E
:

B̂((Un, Vn), (Vn, Un))−
∫

Ω

[(vn + vneg)
+]
p

‖un‖E
Un −

∫
Ω

[(un + uneg)
+]
q

‖un‖E
Vn → 0 ,

which implies B̂((Un, Vn), (Vn, Un))→ 0 and then
∫

Ω
|∇Un|2 + |∇Vn|2 → 0; but

this gives rise to a contradiction since by definition we have
∫

Ω
|∇Un|2+|∇Vn|2 =

‖(u, v)‖2E = 1.
We conclude that ‖un‖E is bounded.
It is now simple to see that un admits a convergent subsequence. In fact,

up to a subsequence, (un, vn) → (u, v) weakly in E and strongly in [Lr]2 for
r < 2∗, then we may consider F ′(un, vn)[vn − v, un − u] to obtain∫

Ω

∇un∇(un − u) +∇vn∇(vn − v)→ 0 , (4.9)

which implies that the convergence is in fact strong.
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[6] D. G. de Figueiredo, C. A. Magalhães, On nonquadratic Hamiltonian elliptic
systems, Adv. Differential Equations 1 (5) (1996) 881–898.

14



[7] D. G. de Figueiredo, M. Ramos, On linear perturbations of superquadratic
elliptic systems, in: Reaction diffusion systems (Trieste, 1995), Vol. 194 of
Lecture Notes in Pure and Appl. Math., Dekker, New York, 1998, pp. 121–
130.

[8] P. L. Felmer, Periodic solutions of “superquadratic” Hamiltonian systems,
J. Differential Equations 102 (1) (1993) 188–207.

15


