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Abstract

In the first part of this paper a variational characterization of parts of the Fuč́ık spectrum
for the p-Laplacian in an interval is given. The proof uses a linking theorem on suitably
constructed sets in W 1,p(0, 1).

In the second part, a superlinear equation with Neumann boundary conditions on an
interval is considered, where the nonlinearity intersects all but the first eigenvalues. It is
proved that under certain conditions this equation is solvable for arbitrary forcing terms. The
proof uses a comparison of the minimax levels of the functional associated to this equation
with suitable minimax values related to the Fuč́ık spectrum.

1 Introduction

The main theme of this paper is the following superlinear equation with the p-Laplacian operator: −[ψ(u′)]′ = λψ(u) + g(x, u) + h(x) in (0, 1)

u′(0) = u′(1) = 0
(1.1)
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where ψ(s) =

 |s|p−2s s ̸= 0

0 s = 0
, p > 1,

g ∈ C0([0, 1]× R) ,

lims→−∞
g(x,s)
ψ(s) = 0, lims→+∞

g(x,s)
ψ(s) = +∞

(H1)

uniformly with respect to x ∈ [0, 1] and h ∈ Lq([0, 1]), with 1/p+ 1/q = 1.
In order to study problem (1.1) we will consider also the following Fuč́ık problem with Neumann

boundary conditions in dimension 1: −[ψ(u′)]′ = λ+ψ(u+)− λ−ψ(u−) in (0, 1)

u′(0) = u′(1) = 0
, (1.2)

where u+(x) = max{0, u(x)} and u−(x) = max{0,−u(x)}.
The notion of Fuč́ık spectrum was introduced in [10] and [5] for the linear operator (that is

the case p = 2), and it was extended to the p-Laplacian by many authors; it is defined as the set
Σ ⊂ R2 of the points (λ+, λ−) for which there exists a non trivial solution of problem (1.2).

To know the Fuč́ık spectrum is important in many applications, for example in the study of
problems with nonlinearities which have the same order of growth as ψ(s) at both +∞ and −∞,
but with different multiplicative coefficients: if the coefficients correspond to a point (λ+, λ−)
which is not in the Fuč́ık spectrum, then it is possible to guarantee a priori estimates for the
solutions and the PS condition for the associated functional.

If one has also a variational characterization of this spectrum, then other interesting results can
be obtained, cf. [3] for the p-Laplacian and [6, 8, 4, 13] for analogous results with the Laplacian
operator. However [3] deals only with the first nontrivial curve of the Fuč́ık spectrum.

In the one dimensional case the Fuč́ık spectrum for the p-Laplacian may be exactly calculated
(see section 2.1.1) and it is composed of a sequence of disjoint curves (we will call them Σk,
k = 1, 2, ..). Taking advantage of this fact, we will derive a variational characterization of points
lying on one of the curves Σk with k ≥ 3, in particular we will prove:

Theorem 1.1. Let α+ ≥ α− and (α+, α−) ∈ Σ2, then we can find and characterize variationally
an intersection of the halfline {(α+ + t, α− + rt), t > 0} with the Fuč́ık spectrum, for each value of
r ∈ (0, 1].

The cases α+ ≤ α− and r ∈ [1,+∞) can be done in a similar way.

Then, exploiting the variational characterization of these points on the Fuč́ık spectrum, we will
prove existence results for problem (1.1) when λ lies between the asymptotes of the second and
the third curve of the Fuč́ık spectrum. The proof uses the variational characterization to make
a comparison of these minimax levels with those of the functional associated to problem (1.1), in
order to prove the existence of a linking structure for this last functional.
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Some hypotheses on the growth at infinity of the nonlinearity g will be needed in order to obtain
the PS condition for the functional associated to problem (1.1): defining G(x, s) =

∫ s
0
g(x, ξ)dξ,

we ask

∃θ ∈
(
0,

1

p

)
, s0 > 0 s.t. 0 < G(x, s) ≤ θsg(x, s) ∀s > s0 ; (H2)

∃s1 > 0, C0 > 0 s.t. G(x, s) ≤ 1

p
sg(x, s) + C0 ∀s < −s1 . (H3)

Moreover for certain “resonant” values of the parameter λ, we will need the nonresonance
condition

∃ρ0 > 0, M0 ∈ R s.t. G(x, s) + h(x)s ≤M0 a.e. x ∈ [0, 1], ∀s < −ρ0 . (HR)

The exact statement of the results is this: let {λ− = λ∗k} be the asymptote of the curve Σk of
the Fuč́ık spectrum for problem (1.2), then:

Theorem 1.2. Under hypotheses (H1), (H2) and (H3), if p ≥ 2 and λ ∈ (λ∗2, λ
∗
3), then there exists

a solution of problem (1.1) for all h ∈ Lq(0, 1), where 1
p +

1
q = 1.

Theorem 1.3. Under hypotheses (H1), (H2), (H3) and (HR), with p ≥ 2, h ∈ Lq(0, 1) where
1
p +

1
q = 1, if λ = λ∗k for i = 2 or i = 3, then there exists a solution of problem (1.1).

Remark 1.4. The hypotheses (H1) to (H3) are satisfied for example by the function g(x, s) = es;
in this case, in order to satisfy also (HR) we will also need the condition h(x) ≥ 0 a.e.

Another example of a nonlinearity satisfying also (HR) and where there is some more freedom
on h, is when g behaves at −∞ as |s|δ with δ ∈ (0, p − 1), so that h may be chosen arbitrarily in
L∞(0, 1).

Theorem 1.2 extends the result obtained in [21], where the existence is proved for λ ∈ (0, λ∗2).
The result in [21] was derived for the Laplacian operator (a similar result was obtained in [7]) and
then extended in a straightforward way to the p-Laplacian case.

In [13] we extended the result for the Laplacian to higher values of the parameter λ by making
use of a variational characterization of the Fuč́ık spectrum of the Laplacian, however this variational
characterization fails for p ̸= 2 since it relies on the Hilbert space structure of W 1,2.

Theorem 1.3 deals with some kind of resonance (as will be clear from the proofs below); the
analogue for p = 2 was obtained in [13] for any λ∗k while, under different hypotheses, in [7] and
[17] the case λ∗1 and λ∗2 respectively were considered.

For what concerns the variational characterization of the Fuč́ık spectrum for the p-Laplacian
we cite [3], where the second curve in any spatial dimension is characterized.

Another interesting variational characterization of the Fuč́ık spectrum for the p-Laplacian is
given in [15], where some pieces of the spectrum near the diagonal are characterized.

Other characterizations, for the linear case p = 2, may be found in [8, 6, 20, 13].
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1.1 Description of the paper

If we consider the linear case p = 2, let Ω be a bounded domain in RN and denote by 0 ≤ λ1 < λ2 ≤
λ3 ≤ ... ≤ λk ≤ ... the eigenvalues of −∆ in W 1,2(Ω) and with (ϕk, k = 1, 2, ..) the corresponding
eigenfunctions; then given a point a ∈ (λk, λk+1) and the functional Ja :W 1,2(Ω) → R

Ja(u) =

∫
Ω

|∇u|2 − a

∫
Ω

u2 , (1.3)

we have a natural splitting W 1,2(Ω) = V ⊕ Z, where V = span{ϕ1, .., ϕk}.
Taking ∂BV to be the boundary of the unit ball in the L2 norm in V , one knows that there

exists µ > 0 such that

Ja(u) ≤ −µ < 0 for all u ∈ ∂BV , (1.4)

Ja(u) ≥ µ ∥u∥2H ≥ 0 for all u ∈ Z , (1.5)

and that the two sets link (for a definition of the concept of linking see for example [18]).
The existence of this structure allows to characterize the eigenvalue λk+1 as

λk+1 = a+ inf
γ∈Γ

sup
u∈γ(Bk)

Ja(u) , (1.6)

where the family Γ is defined as

Γ = {γ ∈ C0(Bk; ∂BL2) s.t. γ|∂Bk is a homeomorphism onto ∂BV } , (1.7)

BL2 denoting the unit ball in L2-norm in W 1,2 and Bk =
{
(x1..., xk) ∈ Rk s.t.

∑k
i=1 x

2
i ≤ 1

}
.

In [13] we derived a deformation of the above structure to obtain a characterization of the Fuč́ık
spectrum.

In the case p ̸= 2 we have no more the Hilbert structure for the space W 1,p. But, for k = 1, 2,
we will build suitable sets to play the same role as ∂BV for the functional

Jα(u) =

∫
Ω

|∇u|p − α+

∫
Ω

(u+)p − α−
∫
Ω

(u−)p , (1.8)

for a suitable (α+, α−) ∈ R2, in order to characterize a point in the Fuč́ık spectrum on the second
curve and then another one above it.

In particular (see section 3), we will first reformulate in a somewhat different way the variational
characterization of the second curve of the Fuč́ık spectrum of the p-Laplacian obtained in [3] (in
this part we can still work in any spatial dimension with both Neumann or Dirichlet boundary
conditions); then, using this last characterization and restricting to the one dimensional Neumann
problem, we will obtain (in section 3.3) the variational characterization claimed in theorem 1.1.

Finally, having recovered a variational characterization as in [13], we may apply it to the “ψ-
superlinear” problem (1.1) when λ is between the asymptotes of Σ2 and Σ3 or coincides with one
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of them (resonant case): in section 4, a comparison of the obtained minimax levels with those of
the functional associated to problem (1.1) will allow to prove the existence of a linking structure
for this last functional, and then to prove theorem 1.2 and 1.3.

In section 5 the complete proof of the PS condition for the functional associated to problem
(1.1) is reported. We remark that this proof is the only point in which we use the hypothesis p ≥ 2
which appears in theorems 1.2 and 1.3.

2 The p-Laplacian operator

2.1 The eigenvalue and Fuč́ık problems

The “natural” eigenvalue problem for the p-Laplacian operator is −∇ · [ψ(∇u)] = λψ(u) in Ω

Bu = 0 in ∂Ω
, (2.1)

where Bu = 0 represents Neumann or Dirichlet boundary conditions. Actually the two sides of
the equation have the same degree of homogeneity and so if ū is a nontrivial solution then so is tū
for each t ∈ R. In this sense we will call in the following “ψ-linear” the rate of growth of ψ and
“ψ-superlinear” (resp. “ψ-sublinear”) the higher (resp. lower) rates of growth.

Much less is known about this eigenvalue problem than in the case p = 2.
For the Dirichlet problem (but the same proofs may be adapted to the Neumann case) it is

known (see [1] and [11]) that there exists a first eigenvalue λ1, that it is simple and isolated and
that the related eigenfunction ϕ1 does not change sign; moreover this first eigenvalue may be
characterized as1

λ1 = inf

{∫
Ω

|∇u|p : u ∈W ; ∥u∥Lp = 1

}
. (2.2)

Then there exists a diverging sequence of eigenvalues which may be characterized variationally
(see [15]), but it is not clear in general whether there exist other eigenvalues or not.

In an analogous way the natural formulation of the Fuč́ık problem is −∇ · [ψ(∇u)] = λ+ψ(u+)− λ−ψ(u−) in Ω

Bu = 0 in ∂Ω
. (2.3)

2.1.1 The one dimensional Neumann case

The one dimensional Neumann case is studied in [9] and [19], where it is shown that both the usual
and the Fuč́ık spectrum have the same qualitative shape as in the linear case: this is due to the
possibility to use as in the linear case the uniqueness of the solution of the initial value problem.

1Here and in the following we denote by W the space W 1,p(Ω) or W 1,p
0 (Ω), depending on the boundary conditions

under consideration.
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In particular, the eigenvalues are all simple and form a discrete and diverging sequence 0 = λ1 <
λ2 < λ3 < ..., where the corresponding eigenfunctions (which will be denoted by ϕk, k = 1, 2, 3...
and chosen such that ∥ϕk∥Lp = 1 and ϕ1 = const > 0) change sign k−1 times; the Fuč́ık spectrum is
composed by monotone decreasing curves arising from the diagonal points (λk, λk) with k = 2, 3, ...
(we will call Σk each of these curves), and by the two lines {λ+ = λ1} and {λ− = λ1} (which we
will call Σ1): here too the corresponding nontrivial solutions change sign k − 1 times and may be
divided into the two positive homogeneous families of solutions which are positive or negative in
0. In particular the nontrivial solutions corresponding to a point in the curve Σ2 are composed by
a positive half-bump followed by a negative one and viceversa.

Another property which we will use is that each curve Σk with k ≥ 2 lies completely in the
quadrant λ± > λ∗k and admits the asymptotes {λ± = λ∗k}, the values λ∗k being distinct (and
increasing in k).

Remark 2.1. The values λk and λ∗k may be explicitly written, following [19] and [12]:

λk = ((k − 1)πp)
p

and λ∗k =
(
(k − 1)

πp
2

)p
, (2.4)

where πp =
2
p

p
√
p−1

sin(π/p)π.

2.2 Some useful lemmas

We give the following lemmas, which will be used repeatedly throughout the proofs; their proof
is just an application of Hölder’s inequality. From now on we will denote by q = p

p−1 the dual
exponent of p.

Lemma 2.2. u ∈ Lp(Ω) implies ψ(u) ∈ Lq(Ω) and ∥ψ(u)∥Lq = ∥u∥p−1
Lp .

Corollary 2.3. For u, v ∈ Lp(Ω), we have ψ(u)v ∈ L1 and we may estimate∣∣∣∣∫
Ω

ψ(u)v

∣∣∣∣ ≤ ∥u∥p−1
Lp ∥v∥Lp . (2.5)

Moreover

Lemma 2.4. un → u in Lp(Ω) implies
∫
Ω
ψ(un)v →

∫
Ω
ψ(u)v for all v ∈ Lp.

Proof. Since un → u in Lp, up to a subsequence we have convergence almost everywhere and we
may find a function k ∈ Lp such that |un| ≤ k a.e, so that |ψ(un)v| ≤ |k|p−1|v| which is a L1

function by the previous lemma, and so the dominated convergence theorem gives
∫
Ω
ψ(un)v →∫

Ω
ψ(u)v. This procedure may be applied to any subsequence and then the result is true also

without passing to a subsequence.

In the course of the following sections we will use several times the fact that the operator
T :W →W ∗ defined as ⟨Tu, v⟩ =

∫
Ω
ψ(∇u)∇v satisfies the following property S+:

Definition 2.5. The operator T : E → E∗ has the property S+ if



Fuč́ık spectrum for Neumann p-Laplacian. 7

un ⇀ u and lim supn→+∞⟨Tun − Tu, un − u⟩ ≤ 0 implies un → u.

Remark that condition lim supn→+∞⟨Tun − Tu, un − u⟩ ≤ 0 may be replaced by
lim supn→+∞⟨Tun, un − u⟩ ≤ 0, since by weak convergence limn→+∞⟨Tu, un − u⟩ = 0.

For the proof of this property see for example [16].

3 Variational characterization of parts of the Fuč́ık spec-
trum of the p-Laplacian

In this section we will obtain the claimed variational characterization of the Fuč́ık spectrum.

3.1 Some preliminary lemmas

Let us consider, for a given point (α+, α−) ∈ R2 and r ∈ (0, 1], the functional

Jα(u) =

∫
Ω

|∇u|p − α+

∫
Ω

(u+)p − α−
∫
Ω

(u−)p (3.1)

and the manifold

Qr =

{
u ∈W s.t. Vr(u) =

∫
Ω

(u+)p + r(u−)p = 1

}
. (3.2)

Remark 3.1. Note that the functional (resp. the manifold) are of class C2 for p > 2, C1 but not
C1,1 for p ∈ (1, 2), while for p = 2 they are C1,1, but not C2 unless α+ = α− (resp. r = 1).

Definition 3.2. For the derivative of the functional Jα restricted to Qr we will consider the norm
∥J ′
α(u)∥∗ = inft∈R ∥J ′

α(u)− tV ′
r (u)∥W∗ .

Lemma 3.3. For u ∈ Qr we have that 1 ≤
∫
Ω
|u|p ≤ 1/r.

Proof. 1 =
∫
Ω
(u+)p + r(u−)p ≤

∫
Ω
(u+)p + (u−)p =

∫
Ω
|u|p ≤

(∫
Ω
(u+)p + r(u−)p

)
/r = 1/r.

In the following we will also need some sort of PS condition: for p < 2 we need a stronger
property, actually (see [2]) if Qr is just of class C1, in order to use a deformation lemma we need
to prove the existence of a converging subsequence for any PS-sequence {un} where un ∈ Qδnr , δn
being any sequence such that δn → 0 and Qδnr = {u ∈W s.t. Vr(u) = 1 + δn}.

Lemma 3.4. The functional Jα constrained to Qr satisfies the PS condition.

Proof. We take two sequences δn → 0 and εn → 0+, a sequence {un} ⊆ Qδnr and a sequence
{βn} ⊆ R, such that ∣∣∣∣∫

Ω

|∇un|p − α+

∫
Ω

|u+n |p − α−
∫
Ω

|u−n |p
∣∣∣∣ ≤ C (3.3)
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∣∣∣∣∫
Ω

ψ(∇un)∇v − α+

∫
Ω

ψ(u+n )v + α+

∫
Ω

ψ(u−n )v + βn

(∫
Ω

ψ(u+n )v − rψ(u−n )v

)∣∣∣∣ ≤

≤ εn ∥v∥W , ∀v ∈W . (3.4)

Since {un} ⊆ Qδnr , it is bounded in Lp, and then by equation (3.3) it is also bounded in W .
Then, up to a subsequence, un converges weakly in W and strongly in Lp to some u.
The Lp convergence implies that u ∈ Qr.
Taking v = un we get that(∫

Ω

|∇un|p − α+

∫
Ω

|u+n |p − α−
∫
Ω

|u−n |p
)
+ (1 + δn)βn → 0 . (3.5)

Finally with v = un − u we have∫
Ω

ψ(∇un)∇(un − u)− α+

∫
Ω

ψ(u+n )(un − u) + α−
∫
Ω

ψ(u−n )(un − u) + (3.6)

−
(∫

Ω

|∇un|p − α+

∫
Ω

|u+n |p − α−
∫
Ω

|u−n |p
)(∫

Ω

(ψ(u+n )− rψ(u−n ))(un − u)

)
→ 0

where (estimating with equation (2.5)) all terms except the first goes to zero and then we conclude
that un → u strongly in W by the property S+ of the p-Laplacian.

Finally it will be crucial in the following that:

Proposition 3.5. The critical points, at some level c, of Jα constrained to Qr are non trivial
solutions of the Fuč́ık problem (2.3) with coefficients (λ+, λ−) = (α+ + c, α− + rc), that is the
criticality of c implies that (α+ + c, α− + rc) ∈ Σ.

Proof. The criticality of u implies that there exists the Lagrange multiplier β ∈ R such that∫
Ω

ψ(∇u)∇v − α+

∫
Ω

ψ(u+)v + α−
∫
Ω

ψ(u−)v + β

(∫
Ω

ψ(u+)v − rψ(u−)v

)
= 0 ∀v ∈W . (3.7)

Testing against u we get β = −c and so u solves

−∆pu = α+ψ(u+)− α−ψ(u−) + cψ(u+)− crψ(u−) = (α+ + c)ψ(u+)− (α− + rc)ψ(u−) (3.8)

in Ω, with the considered boundary conditions.
Finally u is not trivial since it is in Qr.

3.2 First nontrivial curve

First we will reformulate in a slightly different way the variational characterization of the second
curve of the Fuč́ık spectrum of the p-Laplacian, made in [3].
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In this part we can still work in any spatial dimension with both Neumann or Dirichlet boundary
conditions.

Consider, for a given r ∈ (0, 1],

dλ1,r = inf
δ∈Γλ1,r

sup
u∈δ([0,1])

Jλ1(u) , (3.9)

where

Jλ1(u) =

∫
Ω

|∇u|p − λ1

∫
Ω

|u|p , (3.10)

Γλ1,r =

{
δ ∈ C0([0, 1];Qr) s.t. δ(0) = ϕ1 , δ(1) = − ϕ1

p
√
r

}
. (3.11)

In the next two lemmas we prove the existence of a linking structure for the functional (3.10).

Lemma 3.6. supu∈δ({0;1}) Jλ1(u) ≤ 0, ∀δ ∈ Γλ1,r.

Proof. One needs only to note that Jλ1(ϕ1) = Jλ1

(
− ϕ1

p
√
r

)
= 0.

Lemma 3.7. +∞ > dλ1,r = infδ∈Γλ1
,r supu∈δ([0,1]) Jλ1(u) > 0.

Proof. It is less than +∞ since each δ([0, 1]) is a compact set.
Proposition 3.5 implies that the only critical points at level 0 on Qr are z1 = ϕ1 and z2 = − ϕ1

p
√
r
:

let d be the distance between them.
Since Jλ1(u) ≥ 0 in Qr by the variational characterization of λ1, we have dλ1,r ≥ 0.
Now suppose by contradiction that dλ1,r = 0: then for any sequence of positive reals εn → 0

there would exist a sequence {δn} ⊆ Γλ1,r such that

sup
u∈δn([0,1])

Jλ1(u) < εn , (3.12)

and then also a sequence {un} ⊆ Qr such that

(1a) un ∈ δn([0, 1]), and then Jλ1
(un) < εn .

(2a) ∥un − zi∥W > d/4 for i = 1, 2.

Since infu∈Qr Jλ1(u) = 0 we are in the conditions to apply the Ekeland variational principle to
each un, obtaining a sequence {wn} ⊆ Qr such that

(1b) 0 ≤ Jλ1(wn) ≤ Jλ1(un) < εn ,

(2b) ∥un − wn∥W ≤ √
εn ,

(3b) ∥J ′
λ1
(wn)∥∗ ≤ √

εn .



10 Eugenio Massa

But then wn would be a PS sequence for Jα constrained to Qr and so it would have a subsequence
converging to one of the critical points at level 0 (z1 or z2), which is impossible considering
properties (2a) and (2b).

We conclude then that dλ1,r > 0.

Combining the previous two lemmas, the PS condition in lemma 3.4 and proposition 3.5, we
can assert by a classical linking theorem (see for example [18]), that

Theorem 3.8. The level dλ1,r is critical for Jλ1(u) constrained to Qr. That is the point (λ1 +
dλ1,r, λ1 + rdλ1,r) ∈ Σ.

Moreover we will see in remark 3.10 that, in the one dimensional Neumann case, this is actually
the first intersection with the Fuč́ık spectrum of the halfline {(λ1 + t, λ1 + rt), t > 0}.

As announced before, this is nothing but a different formulation of the variational characteri-
zation in [3], however it is in a useful form to be used in the following.

3.3 Third (or higher) curve for the Neumann problem in one dimension

Now we consider the one dimensional Neumann case: we want to make one more step in the
characterization of the Fuč́ık spectrum.

The idea we are going to apply is to “build” a suitable set homeomorphic to ∂B2 to be used
as ∂BV in equation (1.7) in order to recover (partially) a variational characterization as in [13].

3.3.1 Construction of the set Lα,r1

We fix a point (α+, α−) on the curve Σ2 with α+ ≥ α−.

We define r1 = α−−λ1

α+−λ1
= α−

α+ , we call uα one of the two solutions in Qr1 of the Fuč́ık problem

(1.2) with coefficients (α+, α−), and uα the other one (namely uα(x) = uα(1− x)).
Then we consider the functional

Jα(u) =

∫ 1

0

|u′|p − α+

∫ 1

0

(u+)p − α−
∫ 1

0

(u−)p . (3.13)

Observe that for u ∈ Qr1 we have:

Jα(u) = Jλ1(u)− (α+ − λ1) (3.14)

and so
inf

δ∈Γλ1,r1

sup
u∈δ([0,1])

Jα(u) = dλ1,r1 − (α+ − λ1) ≥ 0 ; (3.15)

actually it is not lower than zero since we chose (α+, α−) ∈ Σ2 and so the point (λ1 + dλ1,r, λ1 +
rdλ1,r) found in theorem 3.8 has to be (α+, α−) itself or a point on a higher curve, implying
dλ1,r1 ≥ α+ − λ1.
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Reasoning in the same way we have also, by lemma 3.6,

sup
u∈δ({0;1})

Jα(u) = −(α+ − λ1) < 0 . (3.16)

Now we look for a special δ ∈ Γλ1,r1 such that Jα(u)|δ([0,1]) ≤ 0: we will build the image of this

δ as follows: take the path l on Qr1 :
︷ ︸︸ ︷
ϕ1ũ

+
α ∪

︷ ︸︸ ︷
ũ+αuα ∪

︷ ︸︸ ︷
uα(−ũ−α ) ∪

︷ ︸︸ ︷
(−ũ−α )

−ϕ1
p
√
r1

where ũ+α =
u+
α

∥u+
α∥

Lp

,

ũ−α =
u−
α

p
√
r1∥u−

α∥
Lp

, and the four arcs are taken projecting onto Qr1 the segment that joins the two

edges (note that these segments never pass through zero).
In the following lemma we verify that this is indeed what we were looking for:

Lemma 3.9. supu∈l(Jα(u)) = 0.

Proof. Let us start by observing that the Fuč́ık equation in variational form∫ 1

0
ψ(u′α)v

′ = α+
∫ 1

0
ψ(u+α )v − α− ∫ 1

0
ψ(u−α )v, with test functions u+α and u−α , gives∫ 1

0

|(u±α )′|p = α±
∫ 1

0

(u±α )
p , (3.17)

that is Jα(u
±
α ) = 0; moreover the homogeneity of Jα allows us to ignore the projection on Qr1 in

the proof.
Now we look at the four arcs:

•
︷ ︸︸ ︷
ϕ1ũ

+
α : let v = tϕ1 + (1− t)u+α so that v′ = (1− t)(u+α )

′:
v is everywhere non negative and then (since [tϕ1 + (1− t)u+α ] ≥ (1− t)u+α everywhere):

Jα(v) = (1− t)p
∫ 1

0

|(u+α )′|p − α+

∫ 1

0

[tϕ1 + (1− t)u+α ]
p

≤ (1− t)pα+

∫ 1

0

(u+α )
p − (1− t)pα+

∫ 1

0

(u+α )
p = 0 .

•
︷ ︸︸ ︷
(−ũ−α )(−ϕ1/ p

√
r1): in the same way: let v = t(−ϕ1) + (1− t)(−u−α ) so that

v′ = (1− t)(−u−α )′:
v is everywhere non positive and then (since [tϕ1 + (1 − t)u−α ] ≥ (1 − t)u−α everywhere)
Jα(v) ≤ 0.

•
︷ ︸︸ ︷
ũ+αuα: here v = tu+α + (1− t)uα = u+α + (1− t)(−u−α ) : obviously u+α and u−α are non zero on
disjoint sets, then

Jα(v) = Jα(u
+
α ) + (1− t)pJα(u

−
α ) = 0 .
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•
︷ ︸︸ ︷
−ũ−αuα: here v = t(−u−α )+ (1− t)uα = (−u−α )+ (1− t)(u+α ) and as before Jα(v) = Jα(u

−
α )+

(1− t)pJα(u
+
α ) = 0.

Now we consider the linear isometry Y : W → W : u(x) 7→ u(1 − x), and we observe that
the functionals Jα and Vr are invariant under this transformation, that is Jα(u) = Jα(Y u) and
Vr(u) = Vr(Y u) for any u ∈W .

Moreover, let Fix(Y ) ⊆ W be the set of the fixed points of Y : we observe that l ∩ Fix(Y ) ={
ϕ1;−ϕ1/ p

√
r1
}
.

These observations allow to define

Lα,r1 = l ∪ Y l , (3.18)

such that Lα,r1 ⊆ Qr1 and is homeomorphic to ∂B2.

Remark 3.10. At this point it is clear that (in the one dimensional Neumann case) the level
dλ1,r defined in (3.9) corresponds to the first intersection with the Fuč́ık spectrum of the halfline
{(λ1 + t, λ1 + rt), t > 0}: it cannot be lower (if it were it would give a new solution of the Fuč́ık
problem that we know does not exist) and we were able to give an example of a δ ∈ Γλ1,r where
sup Jα(u) = 0, that is sup Jλ1

(u) = α+ − λ1, and then dλ1,r = α+ − λ1, where (α+, α−) was taken
on the second curve.

3.3.2 Linking structure

Now we define the class

Γα,r1 =
{
γ ∈ C0(B2;Qr1) s.t. γ|∂B2 is a homeomorphism onto Lα,r1

}
. (3.19)

We have that

Lemma 3.11. supu∈γ(∂B2) Jα(u) = 0 ∀γ ∈ Γα,r1 .

Proof. By the definition of Lα,r1 in (3.18), the invariance of Jα with respect to the map Y and
lemma 3.9.

Moreover

Lemma 3.12. +∞ > dα,r1 = infγ∈Γα,r1
supu∈γ(B2) Jα(u) > 0.

Proof. It is less than +∞ since each γ(B2) is a compact set.
Proposition 3.5 implies that the only critical points at level 0 on Qr1 are z1 = uα and z2 = uα:

let d̂ be such that Bd̂(uα) and Bd̂(uα) are disjoint and do not contain ϕ1 nor − ϕ1
p
√
r1
.

Lemma 3.11 implies that dα,r1 ≥ 0, so suppose by contradiction that dα,r1 = 0: then for any
sequence of positive reals εn → 0 there would exist a sequence {γn} ⊆ Γα,r1 such that

sup
u∈γn(B2)

Jα(u) < εn , (3.20)

and then also a sequence of paths {δn} ⊆ Γλ1,r1 such that
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(1a) δn([0, 1]) ⊆ γn(B
2), and then 0 ≤ supu∈δn([0,1]) Jα(u) < εn (see equation (3.15)),

(2a) d(δn([0, 1]), zi) > d̂ for i = 1, 2.

Now we may apply to each δn the minimax principle derived from Ekeland’s variational principle
(see for example in [14]).

Actually (see equations (3.15) and (3.16) and remark 3.10),

inf
δ∈Γλ1,r1

sup
u∈δ([0,1])

Jα(u) = dλ1,r1 − (α+ − λ1) = 0 , (3.21)

sup
u∈δ({0;1})

Jα(u) = −(α+ − λ1) < 0 (3.22)

and the sequence δn above is minimizing for the value supu∈δ([0,1]) Jα(u) with δ ∈ Γλ1,r1 .
So we obtain a sequence {wn} ⊆ Qr1 such that

(1b) −εn ≤ Jα(wn) ≤ supu∈δn([0,1]) Jα(u) < εn ,

(2b) d(δn([0, 1]), wn) ≤
√
εn ,

(3b) ∥J ′
α(wn)∥∗ ≤ √

εn .

But then wn would be a PS sequence for Jα constrained to Qr1 and so it would have a subsequence
converging to one of the critical points at level 0 (z1 or z2), which is impossible considering
properties (2a) and (2b).

We conclude then that dα,r1 > 0.

3.3.3 Characterization of a point above Σ2

Now, given a r2 ∈ (0, 1] and being P r2r1 the radial projection from Qr1 to Qr2 , we define

Γα,r2 =
{
γ = P r2r1 ◦ γ̃ s.t. γ̃ ∈ Γα,r1

}
(3.23)

and we get from the previous two lemmas, these corollaries:

Corollary 3.13. supu∈γ(∂B2) Jα(u) ≤ 0 ∀γ ∈ Γα,r2 .

Proof. The result of the projection is just multiplying by a positive scalar the point u and then the
effect on Jα(u) is multiplying by the pth power of this scalar, which does not change the sign.

Corollary 3.14. +∞ > infγ∈Γα,r2
supu∈γ(B2) Jα(u) > 0.

Proof. As before: the effect of the projection is just multiplying by a number that (on Qr1) is
positive, bounded and bounded away from zero, and then the result follows.
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From now on we can proceed as in [13], that is we define

dα,r2 = inf
γ∈Γα,r2

sup
u∈γ(B2)

Jα(u) > 0 , (3.24)

we deduce from corollaries 3.13 and 3.14 and the PS condition in lemma 3.4 that

Proposition 3.15. The level dα,r2 > 0 is a critical value for Jα constrained to Qr2 , the critical
points associated to it are non trivial solutions of the Fuč́ık problem (1.2) and then (α++dα,r2 , α

−+
r2dα,r2) ∈ Σ.

This proves theorem 1.1.

Remark 3.16. Observe that we did not prove whether (α+ + dα,r2 , α
− + r2dα,r2) belongs to Σ3 or

to a higher curve, however we know that it belongs to a curve Σh with h ≥ 3, since dα,r2 > 0 and
(α+, α−) ∈ Σ2.

4 The “ψ-superlinear” problem

Since we reproduced the variational characterization as in [13], we may apply it to the “ψ-
superlinear” problem (1.1) when λ is between the asymptotes of Σ2 and Σ3 or (resonant case)
coincides with one of them.

We sketch here the basic ideas of the proofs of theorems 1.2 and 1.3, which indeed follow closely
those in [13].

The aim is to prove the existence of a non constrained critical point of the functional

F (u) =
1

p

∫ 1

0

|u′|p − λ

p

∫ 1

0

|u|p −
∫ 1

0

G(x, u)−
∫ 1

0

hu , (4.1)

in particular to show that the minimax level

f = inf
γ∗∈ΓR

α,r̄

sup
u∈γ∗(B2)

F (u) , (4.2)

where

ΓRα,r̄ = {γ∗ ∈ C0(B2;W ) s.t. γ∗|∂B2 is a homeomorphism onto RLα,r̄} , (4.3)

is critical for a suitable R > 0 and arbitrary r̄ ∈ (0, 1], and then corresponds to a solution of
problem (1.1).

To do this one estimates the functional F in terms of the functional Jα of the previous section,
deriving from corollary 3.13 and proposition 3.15 the following two lemmas, which provide a linking
structure for the functional F :

Lemma 4.1. ∀C ∈ R we can find R > 0 such that

sup
u∈γ∗(∂B2)

F (u) < C ∀γ∗ ∈ ΓRα,r̄ . (4.4)
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Lemma 4.2. There exists C̃(λ, h, g) such that

sup
u∈γ∗(B2)

F (u) ≥ −C̃(λ, h, g) ∀γ∗ ∈ ΓRα,r̄ . (4.5)

In section 5 we will prove (see lemma 5.1) that under hypotheses (H2) and (H3) the functional
F satisfies the PS condition for p ≥ 2 and any λ > 0, and then by using lemma 4.1 with C <
−C̃(λ, h, g) and lemma 4.2, we are in the conditions to apply a linking theorem that proves the
criticality of the level f defined in (4.2), and then proves also theorems 1.2 and 1.3.

4.1 Sketch of the proofs

Recall that in the one dimensional Neumann case the asymptote of each Σk with k = 2, 3 is at
λ− = λ∗k and that Σk lies entirely in the halfplane {λ− > λ∗k}. This structure of Σ implies that,
having fixed λ ∈ (λ∗2, λ

∗
3], it is always possible to find:

• a point (α+, α−) ∈ Σ2 and such that α− < λ,

• a δ > 0 such that α− < λ− δ and (if λ < λ∗3) also λ+ δ < λ∗3.

Since h ∈ Lq and using hypothesis (H1) we may estimate, with any M ∈ R and suitable
constants C1(δ, h), C2(δ, g), and C3(M, g):∣∣∣∣∫ 1

0

G(x,−u−) + hu

∣∣∣∣ ≤ δ

p
∥u∥pLp + C1(δ, h) + C2(δ, g) , (4.6)∫ 1

0

G(x, u+) ≥ M

p

∥∥u+∥∥p
Lp − C3(M, g) . (4.7)

Proof of lemma 4.1. Using the above estimates one obtains (see [13] for the details) that for u ∈
Lα,r̄ and ρ > 0,

F (ρu)

ρp
≤ 1

p
Jα(u)−

λ− δ − α−

p

∫ 1

0

|u|p + C1(δ, h) + C2(δ, g) + C3(α
+ − α−, g)

ρp
, (4.8)

from which, recalling that Jα(u) ≤ 0 by corollary (3.13) and
∫ 1

0
|u|p ≥ 1 on Lα,r̄, one gets the

claim since λ− δ − α− > 0 by construction.

Proof of lemma 4.2. (See again [13] for the details). One first fixes a γ∗ ∈ ΓRα,r̄: since γ
∗(B2) is a

compact set in a space of continuous functions, this allows to estimate the superlinear side of G as

G(x, s) ≤ 1 +
µγ∗

p
sp for all s ∈ [0,max{|u(x)| : x ∈ [0, 1], u ∈ γ∗(B2)}] (4.9)

for a suitable µγ∗ > 0 depending on γ∗.
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Then (in the hypotheses of theorem 1.2) defining rγ∗ = λ+δ−α−

λ+δ+µγ∗−α+ and estimating in terms

of Jα and Vrγ∗ (u) =
∫ 1

0
(u+)p + rγ∗

∫ 1

0
(u−)p one gets

sup
u∈γ∗(B2)

F (u) ≥ −C1(δ, h)− C2(δ, g)− 1 + (4.10)

+
1

p
sup

u∈γ∗(B2)

[(
rγ∗

Jα(u)

Vrγ∗ (u)
− (λ+ δ − α−)

)(
Vrγ∗ (u)

rγ∗

)]
(the case in which 0 ∈ γ∗(B2) so that Vrγ∗ (u) becomes null may be treated easily).

But supu∈γ∗(B2) rγ∗
Jα(u)
Vrγ∗ (u) is equivalent to rγ∗ supu∈γ(B2) Jα(u) for some γ ∈ Γα,rγ∗ (compare

equation (3.19) and (4.3)); then using proposition 3.15 and remark 3.16 we obtain

sup
u∈γ∗(B2)

rγ∗
Jα(u)

Vrγ∗
≥ rγ∗dα,rγ∗ > λ∗3 − α− > λ+ δ − α− . (4.11)

This implies that the sup in the right hand side of (4.10) is nonnegative, independently from the
γ∗ chosen and hence the lemma is proved.

In the hypotheses of theorem 1.3, one has a kind of resonance which creates difficulties for the
last estimate above: actually we have no more λ∗3 > λ + δ and then for lemma 4.2 we need to
impose also the hypothesis (HR) in order to estimate without need of the δ:∫

G(x, u−) + hu ≤ C4(h, g) +
1

p

∫ 1

0

(u+)p ; (4.12)

then equation (4.10) reads

sup
u∈γ∗(B2)

F (u) ≥−C4(h, g)− 1 + 1
p supu∈γ∗(B2)

[(
rγ∗

Jα(u)
Vrγ∗ (u) − (λ− α−)

)(
Vrγ∗ (u)

rγ∗

)]
(4.13)

with rγ∗ = λ−α−

λ+µγ∗+1−α+ , and as before we may conclude since now we just need rγ∗dα,rγ∗ >

λ∗3 − α− = λ− α−.

In the case λ = λ∗2 we may repeat the same argument choosing (α+, α−) = (λ1, λ1), [0, 1] in
place of B2 and comparing with the variational characterization of the first non trivial curve in
section 3.2.

In particular the critical level will be defined (for R large enough) by

f = inf
δ∗∈ΓR

λ1,r̄

sup
u∈δ∗([0,1])

F (u) , (4.14)

where

Γλ1,r̄ = {δ∗ ∈ C0([0, 1];W ) s.t. δ∗(0) = Rϕ1 , δ
∗(1) = −R ϕ1

p
√
r̄
} . (4.15)
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5 Proof of the PS condition

In this section we will prove the PS condition for functional (4.1) with p ≥ 2.
This proof is adapted from that in [8] for the periodic problem on an interval, with the Laplacian

operator.
The exact statement of the result is

Lemma 5.1. For p ≥ 2, under hypotheses (H1), (H2) and (H3) with h ∈ Lq(0, 1), the functional
(4.1) satisfies the PS condition for any λ > 0.

We observe that, as in the case p = 2, when λ ≥ λ∗2 one needs also hypothesis (H3), which was
not needed in [21].

First note that from hypothesis (H1) one can always make the following estimates:
for any ε > 0, s̄ ∈ R and M ∈ R, there exist CM , Cε ∈ R (of course depending also on s̄) such that

g(x, s) ≥Mψ(s)− CM for s > s̄ , (5.1)

|g(x, s)| ≤ εψ(−s) + Cε for s ≤ s̄ . (5.2)

Let now {un} ⊆W 1,p(0, 1) be a PS sequence, i.e. there exist T > 0 and εn → 0+ such that

|F (un)| =
∣∣∣∣1p
∫ 1

0

|u′n|p −
λ

p

∫ 1

0

|un|p −
∫ 1

0

G(x, un)−
∫ 1

0

hun

∣∣∣∣ ≤ T , (5.3)

|⟨F ′(un), v⟩| =
∣∣∣∣∫ 1

0

ψ(u′n)v
′ − λ

∫ 1

0

ψ(un)v −
∫ 1

0

g(x, un)v −
∫ 1

0

hv

∣∣∣∣ ≤
≤ εn ∥v∥W 1,p , ∀v ∈W 1,p . (5.4)

1. Suppose un is not bounded, then we can assume ∥un∥W 1,p ≥ 1, ∥un∥W 1,p → +∞ and define
zn = un

∥un∥W1,p
, so that zn is a bounded sequence in W 1,p and we can select a subsequence

such that zn → z0 weakly in W 1,p and strongly in Lp(0, 1) and C0[0, 1].

2. Claim: z0 ≤ 0.

Proof of the claim. Considering

∣∣∣∣ ⟨F ′(un),z
+
0 ⟩

∥un∥p−1

W1,p

∣∣∣∣ we get

∫ 1

0

g(x, un)z
+
0

∥un∥p−1
W 1,p

≤
∣∣∣∣∫ 1

0

ψ(z′n)(z
+
0 )

′
∣∣∣∣+λ ∣∣∣∣∫ 1

0

ψ(zn)z
+
0

∣∣∣∣+
∣∣∣∣∣
∫ 1

0

hz+0

∥un∥p−1
W 1,p

∣∣∣∣∣+ εn
∥∥z+0 ∥∥W 1,p

∥un∥p−1
W 1,p

. (5.5)

Now for any x̄ such that z+0 (x̄) > 0, we have that un(x̄) > 0 for n big enough and then we
can use the estimate (5.1) to obtain

g(x̄, un)

∥un∥p−1
W 1,p

≥Mψ(zn(x̄))−
CM

∥un∥p−1
W 1,p

; (5.6)
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by first taking lim inf and then exploiting the arbitrariness of M we get

lim
n→+∞

g(x̄, un)

∥un∥p−1
W 1,p

= +∞ . (5.7)

Joining equations (5.1) and (5.2) with s̄ = 0 and divided by ∥un∥p−1
W 1,p we get

g(x, un)

∥un∥p−1
W 1,p

≥ −εψ(|zn|)−
max {CM ; Cε}

∥un∥p−1
W 1,p

; (5.8)

since zn is uniformly bounded by its C0 convergence and ∥un∥W 1,p ≥ 1, this implies that the

functions g(x,un)

∥un∥p−1

W1,p

are bounded below uniformly so that we can use Fatou’s Lemma and get

from (5.5) and supposing z+0 ̸≡ 0

+∞ =

∫ 1

0

lim
n→+∞

g(x, un)z
+
0

∥un∥p−1
W 1,p

≤ lim inf
n→+∞

∫ 1

0

g(x, un)z
+
0

∥un∥p−1
W 1,p

(5.9)

≤ lim inf
n→+∞

(∣∣∣∣∫ 1

0

ψ(z′n)(z
+
0 )

′
∣∣∣∣+ λ

∣∣∣∣∫ 1

0

ψ(zn)z
+
0

∣∣∣∣+
∣∣∣∣∣
∫ 1

0

hz+0

∥un∥p−1
W 1,p

∣∣∣∣∣+ εn
∥∥z+0 ∥∥W 1,p

∥un∥p−1
W 1,p

)
.

The right hand side can be estimated since the first two terms are bounded by
(1 + λ) ∥zn∥p−1

W 1,p

∥∥z+0 ∥∥W 1,p ≤ 1 + λ and the last two clearly go to zero; then equation (5.9)
gives rise to a contradiction unless z0 ≤ 0.

3. Claim: Using hypotheses (H2) and (H3) we obtain a constant A such that∫
un>s0

ung(x, un) ≤ A ∥un∥W 1,p , (5.10)

at least for n big enough.

For p ≥ 2 this implies ∫
un>s0

ung(x, un) ≤ A ∥un∥p−1
W 1,p . (5.11)

Proof of the claim. Considering first |pF (un)− ⟨F ′(un), un⟩| we get∫
un>s0

g(x, un)un − pG(x, un) ≤
∫
un≤s0

pG(x, un)− g(x, un)un + (5.12)

+(p− 1)

∣∣∣∣∫ 1

0

hun

∣∣∣∣+ pT + εn ∥un∥W 1,p .
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Then we estimate (using hypothesis (H3) in (5.14) and hypothesis (H2) in (5.16)):∫
−s1≤un≤s0

pG(x, un)− g(x, un)un ≤ sup x ∈ [0, 1],

s ∈ [−s1, s0]


(
pG(x, s)− g(x, s)s

)
, (5.13)

∫
un≤−s1

pG(x, un)− g(x, un)un ≤ pC0, , (5.14)∣∣∣∣∫ 1

0

hun

∣∣∣∣ ≤ ∥h∥Lq ∥un∥Lp ≤ ∥h∥Lq ∥un∥W 1,p , . (5.15)

(1− pθ)

∫
un>s0

g(x, un)un ≤
∫
un>s0

g(x, un)un − pG(x, un) . (5.16)

Since (1− pθ) > 0, joining all estimates from (5.12) to (5.16), we get∫
un>s0

g(x, un)un ≤ A

2
∥un∥W 1,p +

A

2
≤ A ∥un∥W 1,p (5.17)

for some constant A.

Since we are supposing ∥un∥W 1,p ≥ 1, this implies (5.11) for p ≥ 2.

4. Claim: under hypothesis (H3),

lim
n→+∞

∫ 1

0

|g(x, un)|
∥un∥p−1

W 1,p

= 0 . (5.18)

Proof of the claim. Fix ε > 0 and k such that A
k ≤ ε and k > s0.

Estimate (5.2) shows that∫
un≤k

|g(x, un)|
∥un∥W 1,p

≤
∫ 1

0

ε|un|p−1 + Cε

∥un∥p−1
W 1,p

≤ εC
∥un∥p−1

Lp

∥un∥p−1
W 1,p

+
Cε

∥un∥p−1
W 1,p

, (5.19)

from which there exists n̄ such that∫
un≤k

|g(x, un)|
∥un∥p−1

W 1,p

≤ (C + 1)ε for n > n̄ . (5.20)

Since k > s0 and using estimate (5.11), one has∫
un>k

g(x, un)

∥un∥p−1
W 1,p

≤
∫
un>k

g(x, un)

∥un∥p−1
W 1,p

un
k

≤
∫
un>s0

g(x, un)

∥un∥p−1
W 1,p

un
k

≤ A

k
≤ ε . (5.21)
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Then we conclude that for n > n̄∫ 1

0

|g(x, un)|
∥un∥p−1

W 1,p

≤ (2 + C)ε ; (5.22)

for the arbitrariness of ε the claim is proved.

5. Claim: zn → z0 strongly in W 1,p.

Proof of the claim. Considering

∣∣∣∣ ⟨F ′(un),(zn−z0)⟩
∥un∥p−1

W1,p

∣∣∣∣ we get

∣∣∣∣∫ 1

0

ψ(z′n)(z
′
n − z′0)

∣∣∣∣ ≤ (5.23)

≤ λ

∫ 1

0

|ψ(zn)||zn − z0|+
∫ 1

0

|g(x, un)|
∥un∥p−1

W 1,p

|zn − z0|+

∣∣∣∣∣
∫ 1

0

h(zn − z0)

∥un∥p−1
W 1,p

∣∣∣∣∣+ εn ∥zn − z0∥W 1,p

∥un∥p−1
W 1,p

;

but now all the terms on the right goes to zero (use equation (5.18) and the strong convergence
of zn in Lp and C0), and then we conclude that zn → z0 strongly in W 1,p by the property
S+ of the p-Laplacian.

6. Claim: under hypothesis (H3), λ > 0 implies z0 = 0.

Proof of the claim. Consider

∣∣∣∣ ⟨F ′(un),v⟩
∥un∥p−1

W1,p

∣∣∣∣ for any v ∈W 1,p we get :

∣∣∣∣∫ 1

0

ψ(z′n)v
′ − λ

∫ 1

0

ψ(zn)v

∣∣∣∣ ≤ ∫ 1

0

|g(x, un)|
∥un∥p−1

W 1,p

|v|+

∣∣∣∣∣
∫ 1

0

hv

∥un∥p−1
W 1,p

∣∣∣∣∣+ εn ∥v∥W 1,p

∥un∥p−1
W 1,p

; (5.24)

but now the right hand side goes to zero by equation (5.18) and so, taking limit and using
lemma 2.4, we get ∫ 1

0

ψ(z′0)v
′ − λ

∫ 1

0

ψ(z0)v = 0 for any v ∈W 1,p . (5.25)

Finally v = 1 gives, with λ > 0, that
∫ 1

0
ψ(z0) = 0, but for a nonpositive function this implies

z0 = 0.

7. Claim: un is bounded.
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Proof of the claim. Since we get the contradiction 1 = ∥zn∥W 1,p → ∥z0∥W 1,p = 0.

8. The PS condition follows now with standard calculations from the boundedness of un.

Remark 5.2. The above proof may easily be adapted to the multidimensional Neumann problem
under the hypothesis p > N which guarantees the compact inclusion W 1,p(Ω) ⊆ C0(Ω̄).
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[1] A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C. R.
Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728.

[2] A. Bonnet, A deformation lemma on a C1 manifold, Manuscripta Math. 81 (1993), no. 3-4,
339–359.

[3] M. Cuesta, D. de Figueiredo, and J.-P. Gossez, The beginning of the Fučik spectrum for the
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