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Abstract

In this paper we establish the existence of multiple solutions for the
semilinear elliptic problem

−∆u = −λ|u|q−2u+ au+ g(u) in Ω
u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, g : R→
R is a function of class C1 such that g(0) = g′(0) = 0, λ > 0 is real
parameter, a ∈ R, and 1 < q < 2.

Keywords: multiplicity of solution, variational methods, concave
nonlinearity

1 Introduction

Let us consider the problem

−∆u = −λ|u|q−2u+ au+ g(u) in Ω
u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω, a ∈ R,
λ > 0 is a real parameter, 1 < q < 2 and g : R→ R is a function of class C1.

Elliptic problems with nonlinearities having the concave term |u|q−2u, 1 <
q < 2, have been studied by several authors (see [1, 8, 9, 10, 11]). The case
λ > 0 was considered by Perera in [10] and by Wu & Yang in [11]. In [10], the
author studied existence of multiple solutions for the coercive case and for the

∗This is an Accepted Manuscript of an article published in Nonlinear Analysis, DOI:
doi:10.1016/j.na.2006.04.015 c© 2006. This manuscript version is made available under
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
†The author was supported by ProDoc-CAPES/Brazil
‡The author was supported by Fapesp Brazil.

1



Ambrosetti-Prodi like case, while in [11] only existence of solutions is studied,
for the asymptotically linear case.

Here we will consider the multiplicity of solutions when the behavior at
infinity of the nonlinearity is asymptotically linear or superlinear; in particular
we consider the following assumptions:

(g0) g(0) = 0,

(g1) g′(0) = 0 and a ∈ [λk, λk+1),

(g2) (i) G(u) ≥ 0,
(ii) G(u) ≤ C + C|u|p with 2 < p < p∗ = (2N)/(N − 2).

Moreover, let m(t) = at+ g(t), M(t) =
∫ t

0
m(s)ds = a

2 t
2 +G(t) and

lim
s→±∞

m(s)

s
= b± :

(g3) b± ∈ (λk+1,+∞].

Finally, in order to have the PS condition for the functionals we will work
with, one of the following conditions will be assumed:

(g4) (i) There exist t > 0 and µ < 1/2 such that M(t) ≤ µtm(t) for |t| > t
(this implies b± = +∞);
(ii) µ(p− 1) < N+2

2N .

(g′4) b± ∈ R but (b+, b−) 6∈ Σ.

(g′′4 ) (i) There exist t > 0 and µ < 1/2 such that M(t) ≤ µtm(t) for t > t (this
implies b+ = +∞);
(ii) b− ∈ R but b− 6= λ1;

(iii) There exists α ∈ [0, 1) such that lims→−∞
m(s)−λ|s|q−2s−(b−)s

|s|α = 0 and

µ(p− 1) < min{ 1
1+α ,

N+2
2N }.

We are denoting by 0 < λ1 < λ2 ≤ . . . ≤ λj ≤ . . . the eigenvalues of
(−∆, H1

0 ), where each λj occurs in the sequence as often as its multiplicity, and
by Σ the Fuč́ık spectrum of the operator (see for example in [6] or in [4]).

The main results of this work are the following two theorems:

Theorem 1.1 Assume that g satisfies (g0), (g2)(ii), (g3) with k ≥ 0 and one
of the (g4)’s; then for all λ > 0 problem (1) has at least two nontrivial solutions
(one positive and one negative).

Theorem 1.2 Assume that g satisfies (g0)...(g3) with k ≥ 1 and one of the
(g4)’s; then there exist λ∗ > 0 such that problem (1) has at least three nontrivial
solutions for λ ∈ (0, λ∗) (of which, one positive and one negative).
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Remark 1.3 The condition (g4)(ii) will be used only in lemma 3.1, in order to
prove the PS condition for F±λ (see equation (3)): if we remove this condition,
the effect is that we may no more distinguish the positive and the negative
solution, so that we obtain only one of unknown sign in place of these two
solutions.

Moreover, if hypothesis (g′′4 ) is satisfied without condition (iii), then Fλ does
not satisfies the PS conditions but F−λ does, and then we still have at least
the negative solution; in fact, in this case the nonlinearity m(s) satisfies the
hypothesis (g′4) for s ≤ 0, then it is obvious that the negative solution we find
in that case is still a solution in this one.

2 Proofs of the main Theorems

The classical solutions of the problem (1) correspond to critical points of the
functional Fλ, defined, on H1

0 = H1
0 (Ω), by

Fλ(u) =
1

2

∫
Ω

|∇u|2dx+
λ

q

∫
Ω

|u|qdx− a

2

∫
Ω

u2dx−
∫

Ω

G(u) dx, u ∈ H1
0 . (2)

Under the above assumptions Fλ is a functional of class C1.
Moreover, define, for u ∈ H1

0 ,

F±λ (u) =
1

2

∫
Ω

|∇u|2dx+
λ

q

∫
Ω

|u±|qdx− a

2

∫
Ω

(u±)2dx−
∫

Ω

G(u±) dx, (3)

where u+ = max{u, 0} and u− = min{u, 0}: by virtue of condition (g0), F±λ ∈
C1 and the critical points u± of F±λ satisfy ±u± ≥ 0 and so are critical points
of Fλ too: actually, (F±λ )′(u±)[(u±)∓] =

∫
Ω
|∇(u±)∓|2dx = 0.

2.1 Preliminary Lemmata

We first give some useful estimates based on the given hypotheses:

Lemma 2.1 (a) If (g0), (g1) and (g2)(ii) are satisfied, then for any ε > 0
there exists Dε such that G(s) ≤ ε

2s
2 +Dε|s|p.

(b) If (g0) and (g2)(ii) are satisfied, then there exists D such that G(s) ≤
Ds2 +D|s|p.

(c) If (g3) is satisfied, then for ε ≥ 0 small enough, there exists Cε such that

M(s) ≥ λk+1+ε
2 s2 − Cε.

Proof: By (g0), (g1) we have that there exists a δ ∈ (0, 1) such that G(s) ≤ ε
2s

2

for |s| < δ; then the claim follows since by (g2)(ii) we have G(s) ≤ C +C|s|p ≤
2C
δp |s|

p for any |s| ≥ δ.
Estimate (b) is analogous, since (g0) implies G(s) ≤ Ds2 for |s| < δ and

suitable D, δ > 0.
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Finally, estimate (c) is trivial. �
Now, we give the following three theorems, which will provide the structure

we need to obtain the solutions claimed in theorems 1.1 and 1.2.

Lemma 2.2 If g satisfies (g0) and (g2)(ii), then u ≡ 0 is a local minimizer for
Fλ and F±λ , for any λ > 0.

Proof: It suffices to show that 0 is a local minimizer of Fλ in the C1 topology
(see [2]). Then, for u ∈ C1

0 (Ω) (we use estimate (b) in lemma 2.1),

Fλ(u) =
1

2

∫
Ω

|∇u|2dx+
λ

q

∫
Ω

|u|qdx− a

2

∫
Ω

u2dx−
∫

Ω

G(u) dx

≥ λ

q

∫
Ω

|u|qdx− a

2

∫
Ω

u2dx−
∫

Ω

G(u) dx

≥ λ

q

∫
Ω

|u|qdx− a

2

∫
Ω

u2dx−D
∫

Ω

|u|2dx−D
∫

Ω

|u|pdx

≥
(λ
q
− a− 2D

2
|u|2−qC0 −D|u|p−qC0

)∫
Ω

|u|qdx ≥ 0

if |a−2D|
2 |u|2−q

C1
0

+ C|u|p−q
C1

0
≤ λ

q . The same argument works for F±λ . �

Lemma 2.3 If g satisfies (g2)(ii) and (g3) with k ≥ 0, then there exists t0 > 0
such that F±λ (±t0ϕ1) ≤ 0, for all λ in a limited set.

Proof: Using estimate (c) in lemma 2.1 and denoting by ϕ1 the eigenfunction
associated to λ1, we have, for t > 0,

F±λ (±tϕ1) =
t2

2

∫
Ω

|∇ϕ1|2dx+
tqλ

q

∫
Ω

|ϕ1|qdx−
∫

Ω

M(±tϕ1) dx

≤ 1

2
t2(λ1 − λk+1 − ε)

∫
Ω

ϕ2
1dx+

tqλ

q

∫
Ω

|ϕ1|qdx+ Cε|Ω|

and, since λ1 ≤ λk+1 and q < 2, there exists a choice of ε > 0 which proves the
lemma. �

Lemma 2.4 Assume that g satisfies (g0...g3) with k ≥ 1; then there exist posi-
tive numbers r, ρ, R̄ and η = η(λ), such that

(i) for all u ∈ Hk := ⊕kj=1ker(−∆− λjI) we have

Fλ(u) ≤ η(λ) and lim
λ→0+

η(λ) = 0 ;

(ii) for all u ∈ Sr = {u ∈ H⊥k with ||u|| = r}, we have

Fλ(u) ≥ ρ > 0 ∀λ > 0;
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(iii) for all u ∈ Hk+1 := ⊕k+1
j=1ker(−∆− λjI) and ‖u‖ ≥ R̄ we have

Fλ(u) < 0 .

Proof: (i): Let u ∈ Hk: we have, since a ≥ λk,

Fλ(u) =
λk − a

2

∫
Ω

u2dx+
λ

q

∫
Ω

|u|qdx−
∫

Ω

G(u) dx

≤ λ

q
Kq||u||q −

∫
Ω

G(u) dx, (4)

where we denoted by Kq the constant of the continuous embedding of H0
1 in Lq.

From estimate (c) in lemma 2.1 (with ε = 0), we see that we may find s0

such that G(s) ≥ λk+1−a
2 s2 − C0 ≥ 0 for |s| > s0; then (using also (g2)(i))

∫
Ω

G(u) dx ≥
∫
|u|≥s0

(
λk+1 − a

2
u2 − C0

)
dx ;

now, for any z ∈ Hk with ‖z‖ = 1,

Fλ(tz) ≤ λ

q
Kq||tz||q −

∫
|tz|≥s0

(
λk+1 − a

2
(tz)2 − C0

)
dx .

Since the functions z ∈ Hk with ‖z‖ = 1 are smooth, they are uniformly

bounded and then (since their L2 norm is at least λ
−1/2
k ) there exists a common

ε > 0 such that the sets Ωz = {x ∈ Ω : |z(x)| > ε} have measure |Ωz| > ε; by
using this property we get, for t > s0/ε so that Ωz ⊆ {x ∈ Ω : |tz(x)| > s0},∫

|tz|≥s0

(
λk+1 − a

2
(tz)2 − C0

)
dx ≥ ελk+1 − a

2
t2ε2 − C0|Ω| ;

then

Fλ(tz) ≤ tq
λ

q
Kq + C0|Ω| − t2ε3λk+1 − a

2
.

This implies that, fixed a λ̄ > 0, the set T = {u ∈ Hk : Fλ(u) ≥ 0 for
some λ ∈ (0, λ̄]} is bounded in the H1

0 norm, that is, ‖u‖ ≤ CT in T ; then from
equation (4) we get, since G ≥ 0, that

Fλ(u) ≤ λ
Kq C

q
T

q
→ 0forλ→ 0+ ,

which proves the claim.
(ii): Let u ∈ H⊥k : we have, by estimate (a) in lemma 2.1,

Fλ(u) ≥ 1

2

∫
Ω

|∇u|2dx+
λ

q

∫
Ω

|u|qdx− a

2

∫
Ω

u2dx− ε

2

∫
Ω

u2dx− Cε
∫

Ω

|u|pdx

≥ 1

2

(
1− a+ ε

λk+1

)
||u||2 − CεKp||u||p ;

5



since 2 < p and a < λk+1, we can choose r and ρ as in the lemma.
(iii): By estimate (c) in lemma 2.1, we get, for any u ∈ Hk+1,

Fλ(u) ≤ λk+1

2

∫
Ω

u2dx+
λ

q

∫
Ω

|u|qdx−
∫

Ω

M(u) dx

≤ −ε
2

∫
Ω

u2dx+ Cε|Ω|+
λ

q
Kq‖u‖q ;

since 2 > q the claim is proved. �

Proof of Theorem 1.1

By lemma 2.2 and 2.3, we may apply the Relaxed Mountain Pass Theorem in [7]
(Corollary 5.11) to obtain that the following levels are critical for the functional
Fλ and correspond to nontrivial solutions of problem (1):

c±λ = inf
γ∈Γ±

sup
t∈[0,1]

F±λ (γ(t)) ,

where
Γ± = {γ ∈ C([0, 1]) : γ(0) = 0, γ(1) = ±t0ϕ1} .

Moreover, as observed before, the solution corresponding to c+λ is positive
while that corresponding to c−λ is negative, and so they are distinct.

As observed in remark 1.3, if only hypothesis (g4)(i) is satisfied, then we
loose the PS condition for F±λ , so that we may guarantee only one mountain
pass critical point for Fλ, of unknown sign. �

Proof of Theorem 1.2

In view of lemma 2.4 we define the set

Q =
{
u+ v : u ∈ Hk, v = tϕk+1, t ≥ 0, ‖u+ v‖ ≤ R̄

}
:

we have

• Fλ(u) ≤ η(λ) for u ∈ ∂Q, by (i) and (iii) in lemma 2.4;

• Fλ(u) ≥ ρ for u ∈ Sr, by (ii) in lemma 2.4;

• ∂Q links with Sr, since by comparing (i) and (iii) in lemma 2.4 it is clear
that R̄ > r.

Then, let λ∗ = sup{t > 0 : η(λ) < ρ for all λ ∈ (0, t)}: for λ ∈ (0, λ∗) we may
apply standard linking theorem, and then we find a new critical level c1 ≥ ρ.

To conclude the proof, we just need to show that the level c1 corresponds to
a new solution, in fact the two paths γ± : [0, 1] → H1

0 : t 7→ ±tt0ϕ1 belong to
Γ± respectively, and since their image is contained in Hk one gets, from (i) in
lemma 2.4, that c±λ ≤ η(λ) < ρ ≤ c1. �
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3 PS condition

Lemma 3.1 If one of the three hypotheses (g4), (g′4), (g′′4 ) is satisfied, then the
functionals Fλ and F±λ satisfy the PS condition for any λ > 0.

Proof: The claim for Fλ follows from [3] (Lemma 2.2 in chapter III) under
the hypothesis (g4)(i), and from [5] in the case (g′′4 ); for the case (g′4) we do as
follows.

CASE (g′4): Suppose we have a sequence {un} ⊆ H1
0 such that |F (un)| ≤ K

and |F ′(un)[v]| ≤ εn‖v‖ for any v ∈ H1
0 : it is a classical result that the PS

condition follows if we prove that {un} is bounded, so suppose 1 ≤ ‖un‖ → ∞
and define Un = un

‖un‖ so that, up to a subsequence, Un → U weakly in H1
0 and

strongly in L2.
By (g′4) we may estimate |m(s)− b+s+ − b−s−| ≤ ε|s|+ Cε and so∫

Ω

|m(un)− b+u+
n − b−u−n |

‖un‖
dx ≤ ε

∫
Ω

|Un| dx+
Cε
‖un‖

,

for any ε > 0, and then tends to zero.
Now consider, for any v ∈ H1

0 :∣∣∣∣F ′(un)[v]

‖un‖

∣∣∣∣ =

∣∣∣∣∫
Ω

∇Un∇vdx+ λ

∫
Ω

|un|q−2unv

‖un‖
dx−

∫
Ω

m(un)v

‖un‖
dx

∣∣∣∣ ≤ εn ‖v‖‖un‖ :

summing and subtracting
∫

Ω
b+u+

n+b−u−
n

‖un‖ v dx and since q < 2 gives∫
Ω

∇Un∇vdx− b+
∫

Ω

U+
n vdx− b−

∫
Ω

U−n vdx→ 0 (5)

and taking weak limit gives∫
Ω

∇U∇vdx− b+
∫

Ω

U+vdx− b−
∫

Ω

U−vdx = 0 ,

which implies U = 0 since (b+, b−) 6∈ Σ; this gives contradiction since once that
Un → 0 in L2, by choosing v = Un in (5) one would deduce 1 =

∫
Ω
|∇Un|2 → 0.

For F+
λ one has that in the cases (g4) (with (ii)) and (g′′4 ) it satisfies the

hypotheses in [5], while in the case (g′4) it still satisfies (g′4) with b− = 0:
actually (b+, 0) 6∈ Σ since otherwise this would imply b+ = λ1 but then also
(b+, b−) ∈ Σ, which was excluded by hypothesis.

Finally, for F−λ one reduces again to the case (g′4), now with b+ = 0, both
in case (g′4) and (g′′4 ), while the case (g4) reduces to the hypotheses of [5] by
simply changing the sign of the variable in the nonlinearity.

Note that, as observed in remark 1.3, hypothesis (g4)(ii) is used just to prove
the PS condition for F±λ : it is not necessary for Fλ; on the other side hypothesis
(g′′4 )(iii) is needed for the PS condition of Fλ but not for F−λ . �
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