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2 Elliptic problems with sign changing coefficients

Abstract

Via variational methods, we study multiplicity of solutions for the problem



−∆u = λb(x)|u|q−2u + a u + g(x, u) in Ω ,

u = 0 on ∂Ω .

where a simple example for g(x, u) is |u|p−2u; here a, λ are real parameters, 1 < q < 2 <
p ≤ 2∗ and b(x) is a function in a suitable space Lσ. We obtain a class of sign changing
coefficients b(x) for which two non-negative solutions exist for any λ > 0, and a total of five
nontrivial solutions are obtained when λ is small and a ≥ λ1. Note that this type of results
are valid even in the critical case.

Keywords and phrases: multiplicity of solutions, variational methods, subcritical and critical
growth, concave-convex nonlinearity, sign changing coefficients.

1 Introduction

We study a class of problems of which a simple but significative example is the following:



−∆u = λb(x)|u|q−2u + a u + |u|p−2u in Ω ,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω, a ∈ R, λ > 0 are real
parameters, and the function b(x) may change sign and be unbounded.

When b(x) ≡ 1 and a = 0, one has the classical “concave-convex” nonlinearity considered
in [1]. They proved the existence of a value Λ > 0 such that there exist at least two positive
solutions for 0 < λ < Λ, at least one for λ = Λ and no positive solution for λ > Λ. In this case,
one of the solutions was obtained, without growth restrictions, using sub and supersolutions; the
other one was obtained in the subcritical and the critical case, via the Mountain Pass Theorem.

On the other hand, if b(x) ≡ −1 and the superlinear term is subcritical, one non-negative
solution for any a ∈ R and λ > 0 was found in [2], via Mountain Pass Theorem.

If b(x) is a function in a suitable space Lσ (possibly sign changing) and the superlinear term
is subcritical, the results in [3] imply that there still exist two non-negative solutions for small
λ; in this case the solutions are obtained via Mountain Pass and minimization in a small ball.

In the case of a critical superlinearity, that is, when p = 2∗ = 2N
N−2 , the result in [1] still

holds, while the case of a variable coefficient b(x) was considered in [4], finding again two positive
solutions but under the condition b ∈ L∞ and b ≥ 0; the latter requirement is important because
it implies a monotone dependence on λ of the nonlinearity, which is crucial for the application
of the argument of sub and supersolutions.

If one considers a ≥ λ1 (the first eigenvalue of the Laplacian in Ω) and a more general
superlinear term in place of |u|p−2u, then it becomes interesting to look also for sign changing
solutions. In fact, observe that if we set a > λ1 in Problem (1.1), then a non-negative solution
may exist only if b(x) is negative at least in a region of positive measure.

When b(x) ≡ −1, in the already cited [2], it was proved that, along with a non-negative
(and a non-positive) nontrivial solution, a further solution exists provided λ is small enough and
a ≥ λ1; this third solution is obtained via Linking Theorem.
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On the other hand, using Morse theory, two nontrivial solutions are obtained in [5] for
b(x) ≡ 1, and one nontrivial solution is obtained in [6] with a sign changing coefficient b ∈ L∞,
provided a is below a certain value depending on b(x).

A consequence of the main result in this paper is the existence, in the subcritical and critical
case, of five nontrivial solutions of Problem (1.1), of which two are non-negative and two non-
positive, for a suitable sign changing coefficient b(x).

In the following, we consider a larger class of problems with respect to (1.1):




−∆u = λfµ(x, u) + a u + g(x, u) in Ω ,

u = 0 on ∂Ω,
(1.2)

where now g is a superlinear term (possibly critical), µ ≥ 0 a further parameter and fµ(x, u) a
suitable sublinear term, which may change sign.

Our first purpose is to determine a class of functions fµ(x, u), for which the results in [2] are
still valid, that is, for which we may obtain at least a non-negative solution and a non-positive
one for any λ > 0 and a ∈ R, and a third solution for λ small and a ≥ λ1; as observed above,
in order to obtain this, one needs fµ(x, s) s < 0 in some region. However, it turns out that if
fµ(x, s) s > 0 in some other region, which was not the case in [2], then one more non-positive
(and one non-negative) solution arises. This will be shown in Theorems 2.1 and 2.2.

Our second purpose is to study this problem in the more delicate critical case, which was
not considered in [2]: this result will be given in Theorems 2.4 and 2.5. Observe also that in [3]
were considered, like here, unbounded coefficients, however, the critical case was not studied,
and so our work complements, in some sense, also that result.

As is well known, when the nonlinearity has this critical behavior, the functional associated
to the equation does not, in general, satisfy the Palais-Smale (PS) condition; therefore, it is
necessary to first show that this condition is still satisfied at suitable levels, and then to prove
that the critical levels coming from the variational characterization in the Mountain Pass or
Linking Theorem actually lie at these levels. For these purposes we will use some techniques
derived from [7, 1, 8]. See also in [9].

Other problems related to our (1.1) and (1.2) have been considered in several other works.
In [10], Perera considers the case a > λ1 when the coefficient b ≡ −1, but with different
hypotheses on the behavior of the nonlinearity at infinity which impose a interaction with the
first eigenvalue; in this case, a key role is played by the coercivity of the functional and he
obtains up to five nontrivial solutions (of which two non positive and two non-negative). In [11]
and [12], the coefficient b is assumed in L∞ but is allowed to change sign and the nonlinearity
is asymptotically linear: in [11] a nontrivial solution is obtained for a slightly above λ1, while in
[12] the case a < λ1 is considered and two non-negative solutions are obtained.

The paper is organized as follows: in Section 2, we give the precise statement of the results,
in the Sections 3 and 4 we give the proofs of the main theorems: Section 3 is devoted to the
subcritical case and Section 4 to the critical case; finally, in Section 5, we consider the case of a
different set of hypotheses on the function fµ.
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2 Results

We will consider two cases for the term fµ(x, u): the first one is

fµ(x, u) = bµ(x)|u|q−2u with 1 < q < 2 , (f1)

where we write bµ(x) = cµ(x)− d(x) , with cµ, d ≥ 0.
In the second one, we will consider similar coefficients cµ, d ≥ 0, but multiplying terms with

different exponents, namely

fµ(x, u) = cµ(x)|u|q1−2u− d(x)|u|q2−2u with 1 < q1 < q2 < 2 . (f2)

For the case (f1), we will assume the following set of hypotheses:

(Hfa) cµ, d ∈ Lσ(Ω) for some σ > 2∗
2∗− q , for every µ ≥ 0;

(Hfb) there exists δd > 0 such that d(x) ≥ δd > 0 in Ω;

(Hfc) ‖cµ‖Lσ is a continuous function of µ ∈ [0, +∞) and limµ→0 ‖cµ‖Lσ = 0 ;

(Hfd) for every µ > 0, there exist an open set Ωµ ⊆ Ω and a constant Mµ > 0 such that

cµ(x) ≥ d(x) + Mµ in Ωµ .

A model for this coefficient could be bµ(x) = (µc(x)− 1), where c ∈ Lσ(Ω), c ≥ 0, and there
exists x0 ∈ Ω such that c is continuous in Ω \ {x0} and limx→x0 c(x) = +∞; a simple example
is 1

|x−x0|γ with γ < N(2∗−q)
2∗ . Note that condition (Hfc) with µ = 0 implies cµ ≡ 0.

Observe that the given hypotheses imply that, when the parameter µ goes to zero, the region
where bµ > 0 reduces to zero in measure, but never vanishes. However, this set needs not reduce
to a single small ball: for instance, we could also choose, in the above expression for bµ, the
function c(x) =

∑∞
j=1 2−j 1

|x−xj |γ with γ as above and {xj : j ∈ N} a dense subset of Ω; in this
case, the coefficient bµ(x) is positive in a subset of any open set, for any µ > 0.

For the case (f2), we will assume

(Hf ′a) cµ ∈ Lσ1(Ω) and d ∈ Lσ2(Ω) for values σi > 2∗
2∗− qi

(i = 1, 2), for every µ ≥ 0;

(Hf ′d) for every µ > 0, there exist an open set Ωµ ⊆ Ω and a constant Mµ > 0 such that

cµ(x) ≥ Mµ and d(x) is bounded in Ωµ ;

and cµ, d satisfy (Hfb) and (Hfc) (with the Lσ1 norm instead of Lσ).
Observe that the major difference between the two cases, lies in assumption (Hfd), actually,

in case (f1) this assumption implies, because of (Hfb), that cµ 6∈ L∞; this is not required in case
(f2) due to the assumption q1 < q2, so in this case we just need to ask, in (Hf ′d), that, in some
region, cµ does not vanish and d is bounded.

Throughout the paper, we will denote by 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ ... the eigenvalues
of −∆ in H1

0 (Ω), by σ(−∆) = {λk : k ∈ N} its spectrum and by {φk}k∈N the corresponding
eigenfunctions, taken orthogonal and normalized with ‖φk‖L2 = 1 and φ1 > 0.

It is worth pointing out that for Problem (1.2), nontrivial solutions may vanish on a nonempty
open set (see for example in [13]), due to the term fµ(x, u), which may violate the hypotheses
of the Hopf’s Lemma if in some region lims→0

fµ(x,s)
s = −∞ (that is, in case (f1), if bµ < 0); for

this reason our results will concern non-negative and non-positive solutions, rather than strictly
positive or negative ones.
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2.1 Results for the subcritical case

For the subcritical case, as anticipated above, we will consider in Problem (1.2) a superlinear
term in the more general form g(x, s), satisfying the following hypotheses:

(Hg0) g : Ω× R→ R is a Carathéodory function;

(Hg1) there exists p ∈ (2, 2∗) and C ∈ R such that |g(x, s)| ≤ C(1 + |s|p−1);

(Hg2) (i) lims→±∞
g(x,s)

s = +∞ uniformly;
(ii) there exists Θ > 2 and s0 ≥ 0 such that ΘG(x, s) − sg(x, s) +

(
Θ
2 − 1

)
as2 ≤ 0 for

|s| ≥ s0;

(Hg3) lims→0
g(x,s)

s = 0 uniformly.

Our first results are

Theorem 2.1. Let fµ satisfy (Hfa ... Hfd) (or the corresponding ones for case (f2)), g satisfy
(Hg0 ... Hg3) and a ∈ R. Then, for every λ > 0 there exists µ(λ) such that Problem (1.2) has
two nontrivial non-negative solutions and two nontrivial non-positive solutions for µ ∈ (0, µ(λ)).

Theorem 2.2. Let fµ satisfy (Hfa ... Hfd) (or the corresponding ones for case (f2)), g satisfy
(Hg0 ... Hg3) and moreover G(x, u) =

∫ u
0 g(x, s)ds ≥ 0 and a ≥ λ1. Let A > 0 be arbi-

trary. Then there exists λ(A) > 0 such that Problem (1.2) has a further nontrivial solution for
λ ∈ [0, λ(A)) and µ ∈ [0, A).
In particular, for λ ∈ (0, λ(A)) and µ ∈ (0, min {µ(λ), A}), we have at least 5 nontrivial solu-
tions.

Remark 2.3. Observe that the role of the two parameters is quite different in the two results:
the four solutions in Theorem 2.1 exist for any λ > 0 and small µ > 0, while the further solution
in Theorem 2.2 exists for any µ > 0 and small λ > 0. However, since λ(A) does not depend
directly on µ, but just on the bounded set where we limit µ, one obtains a region in the quadrant
{µ, λ > 0} where all the five nontrivial solutions exist.

2.2 Results for the critical case

In the critical case, we will need to consider a simpler form for the superlinear term, in fact, we
will take g(x, u) = |u|p−2u where p = 2∗ = 2N

N−2 ; so the problem reads




−∆u = λfµ(x, u) + a u + |u|p−2u in Ω ,

u = 0 on ∂Ω.
(2.1)

Our results in the critical case are

Theorem 2.4. Let N ≥ 3, fµ satisfy (Hfa...Hfd) (or the corresponding ones for case (f2)),
p = 2∗ and a > 0. Then, for every λ > 0 there exists µ(λ) such that Problem (2.1) has two
nontrivial non-negative solutions and two nontrivial non-positive solutions for µ ∈ (0, µ(λ)).
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Theorem 2.5. Let N ≥ 4, fµ satisfy (Hfa...Hfd) (or the corresponding ones for case (f2)),
p = 2∗ and moreover a > λ1 and a 6∈ σ(−∆). Let A > 0 be arbitrary. Then there exists λ(A) > 0
such that Problem (2.1) has two further nontrivial solutions for λ ∈ [0, λ(A)) and µ ∈ [0, A).
In particular, for λ ∈ (0, λ(A)) and µ ∈ (0, min {µ(λ), A}), we have at least six nontrivial
solutions.

As stated in the introduction, in [2] the critical case was not considered, so that we can
complement that result by considering the case fµ(x, u) = −|u|q−2u, which corresponds to our
Problem (2.1) with µ = 0 and d(x) ≡ −1; in fact we have

Theorem 2.6. Under the same hypotheses of Theorem 2.5, Problem (2.1) has one non-negative
nontrivial solution, one non-positive, and two further nontrivial solutions, for µ = 0 and λ > 0
small enough.

Remark 2.7. We observe that the result for the case of Theorem 2.6 is not as complete as it is
when µ 6= 0, actually, the non-negative solution is guaranteed only for small λ, and not for any
λ > 0 as in Theorem 2.4. In fact, in the proof of Theorem 2.4, the existence of a region where
bµ > 0 allows us to obtain, for any λ > 0, a mountain pass level where the (PS) condition holds,
something that we cannot do with the strictly negative coefficient.

3 The subcritical case

We will consider the following C1-functionals defined in H1
0 (Ω):

Jµ,λ(u) =
1
2

(
‖u‖2 − a ‖u‖2

2

)
−

∫

Ω
λFµ(x, u)−

∫

Ω
G(x, u) (3.1)

and
J±µ,λ(u) =

1
2

(
‖u‖2 − a

∥∥u±
∥∥2

2

)
−

∫

Ω
λFµ(x, u±)−

∫

Ω
G(x, u±) , (3.2)

where ‖·‖ represents the norm in H1
0 , ‖·‖r the norm in Lr, Fµ(x, u) =

∫ u
0 fµ(x, s)ds and G(x, u) =∫ u

0 g(x, s)ds.
Critical points of J+

µ,λ are non-negative solutions, while critical points of J−µ,λ are non-positive
solutions; then they are also critical points of Jµ,λ at the same level.

Throughout the proofs, C, C ′ will be used to denote several constants whose exact value is
irrelevant. Also, we will consider just the case (f1) during the proofs, and discuss the case (f2)
at the end of the paper, in section 5.

First of all, we prove some estimates which will be used throughout the following proofs.

Lemma 3.1.

(a) If (Hg1) and (Hg3) hold, then for any ε > 0 there exists Dε such that

|G(x, s)| ≤ ε
s2

2
+ Dε

|s|p
p

, for all s ∈ R . (3.3)

(b) If (Hg1) and (Hg2)-(i) hold, then for any M > 0 there exists EM such that

G(x, s) ≥ M
s2

2
−EM , for all s ∈ R . (3.4)
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Proof. The hypothesis (Hg3) implies that there exists s1(ε) such that |G(x, s)| ≤ ε s2

2 for |s| ≤
s1(ε), while (Hg1) implies that |G(x, s)| ≤ C|s| + C |s|p

p for any s ∈ R, and so there exists Dε

such that |G(x, s)| ≤ Dε
|s|p
p for |s| ≥ s1(ε). Then |G(x, s)| is bounded by the sum of the two

estimates for any s ∈ R.
On the other hand, the hypothesis (Hg2)-(i) implies that there exists s2(M) such that

G(x, s) ≥ M s2

2 for |s| ≥ s2(M), while (Hg1) implies that there exists EM such that G(x, u) −
M s2

2 ≥ −EM for |s| ≤ s2(M). Then G(x, u)−M s2

2 ≥ −EM for any s ∈ R.

Now, we will study the (PS) condition for the functionals (3.1) and (3.2). We recall that
a C1-functional J is said to satisfy the (PS)c condition if any sequence in H1

0 (Ω) satisfying
J(un) → c and J ′(un) → 0 contains a convergent subsequence; it is said to satisfy the (PS)
condition if (PS)c is satisfied for any c ∈ R. We will prove

Lemma 3.2. Under hypotheses (Hg0 ... Hg2) and (Hfa), the three functionals in (3.1) and
(3.2) satisfy the (PS) condition for any λ, µ ≥ 0 and a ∈ R.

Proof. Let Θ > 2 be as in (Hg2)-(ii); observe that by (Hg1) we may reformulate (Hg2)-(ii) as

ΘG(x, s)− sg(x, s) +
(

Θ
2
− 1

)
as2 ≤ C for any s ∈ R . (3.5)

Suppose un is a (PS) sequence for Jµ,λ, that is, |Jµ,λ(un)| < C and |J ′µ,λ(un)| ≤ εn ‖un‖ for some
sequence εn → 0; in order to prove that un is bounded we estimate

ΘC + εn ‖un‖ ≥ ΘJµ,λ(un)− J ′µ,λ(un)[un] =
(

Θ
2
− 1

) (
‖un‖2 − a ‖un‖2

2

)
+

−
∫

Ω
(ΘG(x, un)− g(x, un)un)− λ

(
Θ
q
− 1

) ∫

Ω
bµ(x) |un|q ; (3.6)

using (3.5) we get
(

Θ
2
− 1

)
‖un‖2 ≤ C ′ + εn ‖un‖+ λ

(
Θ
q
− 1

)
‖bµ‖σ ‖un‖q

and then ‖un‖ is bounded.
The existence of a convergent subsequence now follows by classical arguments, since p < 2∗

in (Hg1) and σ > 2∗
2∗− q in (Hfa).

The same argument works for J±µ,λ.

In the following two lemmas we will provide the geometry which allows to prove Theorem
2.1; first, in Lemma 3.3 we will find a “range of mountain” around the origin, and then, in
Lemma 3.4, we will see that the origin cannot be a minimum.

Lemma 3.3. Under the hypotheses of Theorem 2.1, for every λ > 0, there exists µ(λ) such that
for µ ∈ [0, µ(λ)) there exist r, δ > 0 (depending on µ, λ) such that Jµ,λ(u) ≥ δ > 0 for ‖u‖ = r.
Moreover, Jµ,λ is bounded from below in the ball Br =

{
u ∈ H1

0 : ‖u‖ ≤ r
}
.

The same property holds for J±µ,λ(u).
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Proof. In this proof we will separate the functional into two parts, where the dominant positive
terms will be, respectively, λ

∫
Ω d(x)|u|q and ‖u‖2.

If u ∈ C1
0(Ω), using (Hfb) and estimate (3.3) we get

J1(u) :=
λ

q

∫

Ω
d(x)|u|q − a

2

∫

Ω
u2 −

∫

Ω
G(x, u) ≥ ‖u‖q

q

(
λδd

q
− (a + ε) ‖u‖2−q

∞
2

− Dε ‖u‖p−q
∞

p

)
.

For small ‖u‖∞ the term in parentheses is positive, then 0 is a local minimum in the C1 topology
and then also in the H1

0 topology, by [14], that is, there exists ρ(λ) > 0 such that J1(u) ≥ 0 for
‖u‖ ≤ ρ(λ).

For the remaining part of Jµ,λ we estimate

J2(u) :=
1
2
‖u‖2 − λ

q

∫

Ω
cµ(x)|u|q ≥ 1

2
‖u‖2 − λ ‖cµ‖σ

q
‖u‖q ≥ ‖u‖q

(
‖u‖2−q

2
− λ ‖cµ‖σ

q

)
,

then for ‖u‖ =
(

4λ‖cµ‖σ
q

)1/(2−q)
:= r(µ, λ) one has

J2(u) ≥ δ(µ, λ) := C
[
λ ‖cµ‖σ

]2/(2−q)
.

Then, by (Hfc), for suitably small µ > 0 one has r(µ, λ) < ρ(λ), so that

Jµ,λ(u) ≥ δ(µ, λ) > 0

for ‖u‖ = r(µ, λ). Note that the claim of the lemma is true also for µ = 0 since in this case
cµ ≡ 0 and then J2 has a strict minimum at the origin.

By the same argument

J±1 (u) =
λ

q

∫

Ω
d(x)|u±|q − a

2

∥∥u±
∥∥2

2
−

∫

Ω
G(x, u±) ≥ 0

for ‖u‖ ≤ ρ±(λ) and

J±2 (u) =
1
2
‖u‖2 − λ

q

∫

Ω
cµ(x)|u±|q ≥ 1

2
‖u‖2 − λ

q

∫

Ω
cµ(x)|u|q ,

so one gets the same results for J±µ,λ.
The fact that the functionals are bounded from below in Br is trivial, by the hypotheses

(Hfa) and (Hg1).

Lemma 3.4. Under the hypotheses of Theorem 2.1, for every λ, µ > 0, there exists φ ∈ H1
0 (Ω)

and t > 0 such that Jµ,λ(tφ) < 0 for t ∈ (0, t).
The same property holds for J±µ,λ(u).

Proof. Once that λ and µ are fixed, consider Ωµ as in (Hfd) and a non-negative function φ ≡/ 0
with support in Ωµ, then (using estimate (3.3))

Jµ,λ(tφ) =
t2

2

(
‖φ‖2 − a ‖φ‖2

2

)
−

∫

Ω
G(x, tφ)− tq

q
λ

∫

Ω
bµ(x)φq

≤ t2

2

(
‖φ‖2 − (a− ε) ‖φ‖2

2

)
+

tp

p
Dε ‖φ‖p

p −
tq

q
λ

∫

Ω
bµ(x)φq
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where
∫
Ω bµ(x)φq ≥ Mµ ‖φ‖q

q > 0 by (Hfd); since the least power is q, one has Jµ,λ(tφ) < 0 for
small t > 0.

The same holds for J+
µ,λ(tφ), and for J−µ,λ(−tφ).

Now we may prove Theorem 2.1.

Proof of Theorem 2.1. For any λ > 0 and µ ∈ (0, µ(λ)), by Lemmas 3.3, 3.4 and the (PS)
condition in Lemma 3.2, J+

µ,λ has a strictly negative minimum in Br, where r is the radius
obtained in Lemma 3.3; this is a first nontrivial non-negative solution.

Let now u ≥ 0 be nontrivial, then

J+
µ,λ(tu) =

t2

2

(
‖u‖2 − a ‖u‖2

2

)
−

∫

Ω
G(x, tu)− tq

q
λ

∫

Ω
bµ(x)|u|q ;

thus, we may use estimate (3.4) with M so large that
(
‖u‖2 − a ‖u‖2

2 −M ‖u‖2
2

)
< 0 and then

J+
µ,λ(tu) ≤ t2

2

(
‖u‖2 − a ‖u‖2

2 −M ‖u‖2
2

)
+

∫

Ω
EM +

tq

q
λ ‖bµ‖σ ‖u‖q → −∞ (3.7)

for t → +∞; hence, one has another critical point, by Mountain Pass Theorem, whose level is at
least the δ > 0 obtained in Lemma 3.3, which implies that it corresponds to a second nontrivial
non-negative solution.

The same argument gives two nontrivial non-positive solutions as critical points of J−µ,λ.
The two mountain pass levels may be characterized as

c± = inf
γ∈Γ±

sup
t∈[0,1]

J±µ,λ(γ(t)) , (3.8)

where
Γ± =

{
γ ∈ C([0, 1];H1

0 ) : γ(0) = 0, γ(1) = ±t0φ1

}

and t0 > 0 is suitably large.

Finally, we prove the existence of a fifth nontrivial solution for λ small enough, when a ≥ λ1

and G ≥ 0.

Proof of Theorem 2.2. Let a ∈ [λk, λk+1) for some k ∈ N and Hk = span {φ1, .., φk}. The
nontrivial solution will be obtained using a linking structure. Namely, we will obtain the critical
level

ce = inf
γ∈Γe

sup
u∈γ(Qe)

Jµ,λ(u) , (3.9)

where
Γe =

{
γ ∈ C(Qe, H

1
0 ) : γ|∂Qe = id

}
, (3.10)

Qe = {u + te : u ∈ Hk, t ≥ 0, ‖u + te‖ ≤ R} , (3.11)

the function e is any nonzero function in H⊥
k and R a suitably large real.

We will need to prove the existence of constants η, η̃ such that

Jµ,λ(u) ≥ η > 0 in Sρ ∩H⊥
k , for a suitable ρ ∈ (0, R), (3.12)
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Jµ,λ(u) ≤ η̃ < η in ∂Qe, the relative boundary of Qe; (3.13)

actually Sρ∩H⊥
k links with ∂Qe and then the Linking Theorem states that ce is in fact a critical

level for Jµ,λ.
We may estimate

∣∣∫
Ω bµ(x)|u|q∣∣ ≤ (‖d‖σ + ‖cµ‖σ

) ‖u‖q
2∗ ; if we set µ ∈ [0, A), then by (Hfc),

we obtain
∣∣∫

Ω bµ(x)|u|q∣∣ ≤ CA ‖u‖q for a suitable constant CA.
Let u ∈ H⊥

k ; we use estimate (3.3) with ε < λk+1 − a and obtain

Jµ,λ(u) ≥ ‖u‖2 − a ‖u‖2
2

2
− λ

CA

q
‖u‖q − ε

2
‖u‖2

2 −
Dε

p
‖u‖p

p

≥ λk+1 − a− ε

2λk+1
‖u‖2 − λ

CA

q
‖u‖q −Dε

C

p
‖u‖p ;

since the coefficient of the quadratic term is positive, there exists a small enough λ > 0 such
that for λ ∈ [0, λ) the above function of ‖u‖ is greater than a function with a positive maximum,
that is, (3.12) above is satisfied for suitable ρ, η > 0, and holds uniformly for λ ∈ [0, λ) and
µ ∈ [0, A).

Now let u ∈ Hk; then

Jµ,λ(u) ≤ λk − a

2
‖u‖2

2 +
λ

q
CA ‖u‖q −

∫

Ω
G(x, u) (3.14)

≤ λ

q
CA ‖u‖q − M

2
‖u‖2

2 + EM |Ω| , (3.15)

where we used estimate (3.4) with any M > 0. Since the norms are equivalent in Hk, (3.15)
implies that the set T = {u ∈ Hk : Jµ,λ(u) ≥ 0 for some λ ∈ [0, λ] and µ ∈ [0, A)} is bounded,
namely, ‖u‖ ≤ CT in T ; then from (3.14), using also the hypothesis that G ≥ 0, we get
Jµ,λ(u) ≤ λ

q CACq
T → 0 for λ → 0. We conclude that, for suitably small λ and µ ∈ [0, A),

Jµ,λ ≤ η̃ < η in Hk. (3.16)

Finally, given any nonzero e ∈ H⊥
k , we estimate, using again (3.4) with M so large that(

‖u‖2 − a ‖u‖2
2 −M ‖u‖2

2

)
< 0 for every u ∈ (Hk ⊕ {te; t ∈ R}), and we obtain

Jµ,λ(u) ≤ ‖u‖2 − a ‖u‖2
2

2
+

λ

q
CA ‖u‖q

2∗ −M ‖u‖2
2 + EM |Ω| ;

then (since λ is already bounded) we have Jµ,λ ≤ 0 in SR∩ (Hk⊕{te; t ∈ R}), for suitably large
R > 0 depending on e (again the norms are equivalent). This estimate and (3.16) complete the
proof of (3.13) and then we get that ce is in fact a critical level. Moreover, by (3.12), ce ≥ η > 0,
while the trivial and the other four solutions (when they exist) are at a lower level, actually, one
may estimate the mountain pass levels in (3.8) by considering paths γ ∈ Γ± whose images are
contained in Hk; by estimate (3.16) the maxima on such paths are at most η̃ < η, then c± < η
and this implies that ce corresponds to a different nontrivial solution.
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4 The critical case

In the critical case, even assuming the Ambrosetti-Rabinowitz condition (Hg2)-(ii), the (PS)
condition does not hold in general at every level of the functional. For this reason, in order to
prove Theorems 2.4 and 2.5, we will verify that the infsup levels lie where (PS) holds.

We will need to consider two distinct problems. In order to prove Theorem 2.4 we have to
estimate the mountain pass levels for any λ > 0, while for Theorem 2.5 we will estimate the
linking level, for suitably small λ.

Throughout this section we will consider Problem (2.1) with N ≥ 3 and p = 2∗ = 2N
N−2 .

We will denote by S the best constant of the embedding of H1
0 in Lp, namely

S = inf

{
‖u‖2

‖u‖2
p

: u ∈ H1
0 (Ω) \ {0}

}
.

Remark 4.1. The nonlinearity in Problem (2.1) is odd with respect to the unknown u, which
implies that for each non-negative nontrivial solution u, one has the non-positive nontrivial
solution −u; then we will not consider J−µ,λ any more and concentrate on the look for non-
negative solutions.

4.1 The (PS) condition in the critical case

First we analyze the (PS) levels of the functionals.

Lemma 4.2. Consider the functional

Jµ,λ(u) =
1
2

(
‖u‖2 − a ‖u‖2

2

)
−

∫

Ω
λFµ(x, u)− 1

p
‖u‖p

p

with any a ∈ R; if hypothesis (Hfa) holds, then

(i) if bµ(x) ≤ 0 the (PS)c condition holds for c < 1
N SN/2;

(ii) for any ε,A > 0, there exists λ∗ > 0 such that the (PS)c condition holds provided c <
1
N SN/2 − ε, µ ∈ [0, A) and λ ∈ [0, λ∗);

(iii) if there exists a minimal energy solution u0, then the (PS)c condition holds for c <
Jµ,λ(u0) + 1

N SN/2.

The same properties hold for J+
µ,λ.

Proof. Suppose Jµ,λ(un) → c and J ′µ,λ(un) → 0.

Since for any Θ ∈ (2, p), one has
(

Θ
2 − 1

)
as2 +

(
Θ
p − 1

)
sp ≤ C, we deduce as in Lemma 3.2 that

the sequence {un} is bounded. Then we may assume un → u weakly in H1
0 , almost everywhere,

and strongly in Lr for r < p; moreover, |un|p−2un ⇀ |u|p−2u in Lp′ (the dual of Lp) and then u
is a solution of Problem (2.1). As a consequence we may write

Jµ,λ(u) = Jµ,λ(u)− 1
2
J ′µ,λ(u)[u] =

(
1
2
− 1

p

)
‖u‖p

p + λ

(
1
2
− 1

q

)∫

Ω
bµ(x) |u|q . (4.1)
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By Brézis-Lieb [15] we know that ‖un‖p
p−‖un − u‖p

p → ‖u‖p
p, while by weak convergence ‖un‖2−

‖un − u‖2 → ‖u‖2, then

Jµ,λ(un) = Jµ,λ(u) +
1
2
‖un − u‖2 − 1

p
‖un − u‖p

p + σ(1) → c , (4.2)

J ′µ,λ(un)[un] = J ′µ,λ(u)[u] + ‖un − u‖2 − ‖un − u‖p
p + σ(1) → 0 , (4.3)

where σ(1) represents a quantity that goes to zero.
Since J ′µ,λ(u)[u] = 0, (4.3) implies that (up to a subsequence)

‖un − u‖2 → b, ‖un − u‖p
p → b,

for some b ≥ 0; if b = 0 this means un → u strongly. Otherwise, by (4.1) and (4.2)

Jµ,λ(un) =
(

1
2
− 1

p

)
‖u‖p

p + λ

(
1
2
− 1

q

)∫

Ω
bµ(x) |u|q +

1
2
‖un − u‖2 − 1

p
‖un − u‖p

p + σ(1) → c

and taking limit we get

c =
p− 2
2p

‖u‖p
p + λ

q − 2
2q

∫

Ω
bµ(x) |u|q +

p− 2
2p

b .

By Sobolev inequalities (remember that p−2
2p = 1

N ) we have ‖un − u‖2 ≥ S ‖un − u‖2
p, then

b ≥ Sb2/p, that is b
p−2

p = b2/N ≥ S, and then

c ≥ 1
N

(
SN/2 + ‖u‖p

p

)
+ λ

q − 2
2q

∫

Ω
bµ(x) |u|q . (4.4)

If bµ(x) ≤ 0, then this gives contradiction if c < 1
N SN/2, so we have proved the claim (i).

Now we estimate (using, as in the proof of Theorem 2.2, that
∣∣∫

Ω bµ(x)|u|q∣∣ ≤ CA ‖u‖q
p for

µ ∈ [0, A))

c ≥ 1
N

(
SN/2 + ‖u‖p

p

)
− λCA

2− q

2q
‖u‖q

p ;

since the minimum of tp− λNCA
2−q
2q tq goes to zero as λ → 0+, one has that the (PS) condition

holds below 1
N SN/2 − ε for suitably small λ (depending also on A); this proves the claim (ii).

Finally, let u0 be a minimal energy solution; by identity (4.1) and inequality (4.4) we get

c ≥ Jµ,λ(u) +
1
N

SN/2 ≥ Jµ,λ(u0) +
1
N

SN/2 , (4.5)

then, in the case of the claim (iii), we may guarantee (PS)c below the level Jµ,λ(u0) + 1
N SN/2.

For J+
µ,λ(un) one proceeds in the same way: in fact (u+

n )p−1 → (u+)p−1, then one may deduce
that u ≥ 0 and apply Brézis-Lieb to the C1-function t 7→ (t+)p.
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4.2 Estimates of the infsup levels

Now we need to estimate the infsup levels obtained in the proofs of Theorems 2.1 and 2.2;
actually, the nonlinearity g(x, u) = |u|2∗−2u satisfies the conditions (Hg0 ... Hg3) with p = 2∗

in (Hg1), then all the estimates obtained for these theorems also hold in the critical case, except
for the (PS) condition in Lemma 3.2.

As is classical in the literature, we will need to consider some compact support approxima-
tions of the instanton functions which realize the best Sobolev constant S of the embedding
H1(RN ) ⊂ Lp(RN ). Namely, consider

Ψ1(x) = (N(N − 2))(N−2)/4 1
(1 + |x|2)(N−2)/2

,

Ψν(x) = ν(2−N)/2Ψ(x/ν) = (N(N − 2))(N−2)/4

(
ν

(ν2 + |x|2)
)(N−2)/2

,

and consider a ball B2ξ ⊆ Ω and a function ρξ ∈ C∞(Ω; [0, 1]) defined as 1 in Bξ and 0 in Ω\B2ξ;
then we set

ψν(x) = ρξ(x)Ψν(x) . (4.6)

With this definition one has the following estimates (see [7, 16]), which will be used in the proofs
of this section.

Lemma 4.3.

‖ψν‖2 = SN/2 + O(νN−2) , (4.7)
‖ψν‖p

p = SN/2 + O(νN ) , (4.8)

‖ψν‖2
2 =





Cν2 + O(νN−2) for N ≥ 5,

Cν2| ln(µ)|+ O(ν2) for N = 4,

O(ν) for N = 3,

(4.9)

where O(f(ν)) represents a function of ν which is bounded in module by Cf(ν) when ν → 0.
Moreover, for some C, C ′ > 0 and ν small

C ′ν(N−2)/2 ≥ ‖ψν‖p−1
p−1 ≥ Cν(N−2)/2 , (4.10)

C ′ν(N−2)q/2 ≥ ‖ψν‖q
q ≥ Cν(N−2)q/2 , provided q <

N

N − 2
. (4.11)

First, as a consequence of Lemma 4.2, we obtain

Proposition 4.4. Under the hypotheses of Theorem 2.4, for λ > 0 and µ ∈ (0, µ(λ)), there
exists a non-negative nontrivial solution u0 of Problem (2.1), verifying that the corresponding
critical level J+

µ,λ(u0) is negative and ‖u0‖ < r, where r is the radius obtained in Lemma 3.3.

Proof. Suppose for sake of contradiction that all critical points of J+
µ,λ are at non-negative

level. Then, by point (iii) in Lemma 4.2, the (PS)c condition would hold below 1
N SN/2; as a

consequence, arguing as in the first part of the proof of Theorem 2.1, we would get a critical
point at negative level, by minimization in Br. This proves the existence of a non-negative
nontrivial solution u0 at a negative level.
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In order to prove that ‖u0‖ < r consider

j(t) := Jµ,λ(tu0) =
t2

2

(
‖u0‖2 − a ‖u0‖2

2

)
− tq

q
λ

∫

Ω
bµ(x)|u0|q − tp

p
‖u0‖p

p ;

we know that t = 1 is a critical point at negative level for j(t) and that if
∥∥t̃u0

∥∥ = r then
j(t̃) ≥ δ > 0, by Lemma 3.3. This implies that, in the expression of j, the coefficient of tq is
negative and that of t2 is positive; as a consequence j(t) < 0 for t ∈ (0, 1), and then t̃ > 1, that
is, ‖u0‖ < r.

Then, we consider the mountain pass levels; in this case, we use the same infsup characteri-
zation (3.8), but we will need to take a different class of paths. Let then λ > 0 and µ ∈ (0, µ(λ))
as determined in Lemma 3.3; our candidate critical level is

c+(ν) = inf
γ∈Γ+

ν

sup
t∈[0,1]

J+
µ,λ(γ(t)) , (4.12)

Γ+
ν =

{
γ ∈ C([0, 1];H1

0 ) : γ(0) = u0, γ(1) = u0 + t0ψν

}
, (4.13)

where u0 is the non-negative solution of Proposition 4.4, ψν is taken with support in Ωµ from
condition (Hfd) and t0 (depending on ν) is chosen such that ‖u0 + t0ψν‖ > r and J+

µ,λ(u0 +
t0ψν) < 0; the fact that this is possible is a consequence of inequality (4.18) in the proof of the
next lemma.

Lemma 4.5. Under the hypotheses of Theorem 2.4, there exists ν > 0 such that

c+(ν) < Jµ,λ(u0) +
1
N

SN/2 .

Proof. We need to evaluate, for t ≥ 0,

Jµ,λ(u0 + tψν) =
1
2

(
‖u0‖2 − a ‖u0‖2

2

)
+

t2

2

(
‖ψν‖2 − a ‖ψν‖2

2

)
+

+ t

∫

Ω
(∇u0∇ψν − a u0ψν)− λ

q

∫

Ω
bµ(x)|u0 + tψν |q − 1

p
‖u0 + tψν‖p

p ; (4.14)

we will use the following estimates, deduced from the inequalities (1 + s)p ≥ 1 + sp + sp and
(1 + s)q ≥ 1 + sq for any s ≥ 0:

‖u0 + tψν‖p
p ≥ ‖u0‖p

p + tp ‖ψν‖p
p + tp

∫

Ω
up−1

0 ψν , (4.15)

∫

Ω
bµ(x)|u0 + tψν |q ≥

∫

bµ≥0
bµ(x)

(
uq

0 + quq−1
0 tψν

)
+

∫

bµ<0
bµ(x)uq

0 , (4.16)

where we used the fact that ψν = 0 when bµ(x) < 0. Moreover, since u0 is a solution,

t

∫

Ω
(∇u0∇ψν − a u0ψν) = λ

∫

(bµ≥0)
bµ(x)uq−1

0 tψν +
∫

Ω
up−1

0 tψν (4.17)
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and these two terms annihilate with the corresponding ones in (4.15) and (4.16), so that Eq.
(4.14) reads

Jµ,λ(u0 + tψν) ≤ Jµ,λ(u0) +
t2

2

(
‖ψν‖2 − a ‖ψν‖2

2

)
− tp

p
‖ψν‖p

p . (4.18)

For N ≥ 4, the claim follows as in [7] since a > 0.
Observe that (4.18) also implies that it is possible to find t0(ν) as required for the definition

in (4.13).

Proof of the case N = 3. We consider now the case N = 3, which implies p = 6.
Observe that if Ωµ is as in (Hfd) then, in Ωµ, −∆u0 ≥ 0 and then either u0 ≡ 0 or u0 > 0.
In the second case, passing if necessary to a ball contained in Ωµ, we have u0 ≥ C > 0, then

we use in place of (4.15) the estimate

‖u0 + tψν‖6
6 ≥ ‖u0‖6

6 + t6 ‖ψν‖6
6 + 6t

∫

Ω
ψνu

5
0 + 6t5

∫

Ω
ψ5

νu0 , (4.19)

so that (4.14) becomes (using bµ(x) > Mµ and u0 ≥ C > 0)

Jµ,λ(u0 + tψν) ≤ Jµ,λ(u0) +
t2

2

(
‖ψν‖2 − a ‖ψν‖2

2

)
− t6

6
‖ψν‖6

6 − Ct5 ‖ψν‖5
5 . (4.20)

The maximum of the above function of t ≥ 0 is reached for some tν , which is bounded and
bounded away from zero with respect to ν when this is small, actually, by (4.7), (4.8), (4.9)
and (4.10), when ν → 0 the right hand side of (4.20) converges uniformly on compact sets to
t2

2 S3/2 − t6

6 S3/2, which has a unique maximum and then goes to −∞. Then we deduce, using
the estimates of Lemma 4.3

Jµ,λ(u0 + tψν) ≤ Jµ,λ(u0) +
t2ν
2

(
‖ψν‖2 − a ‖ψν‖2

2

)
− t6ν

6
‖ψν‖6

6 − Ct5ν ‖ψν‖5
5 (4.21)

≤ Jµ,λ(u0) +
t2ν
2

(
S3/2 + O(ν)

)
− t6ν

6

(
S3/2 + O(ν3)

)
− Ct5ν

√
ν

≤ Jµ,λ(u0) +
t2ν
2

S3/2 − t6ν
6

S3/2 − C
√

ν + O(ν) . (4.22)

Since the maximum of the function t2

2 S3/2 − t6

6 S3/2 is 1
3S3/2, for suitably small ν, the claim is

proved by virtue of the least order term −C
√

ν.
Finally, we consider the case u0 ≡ 0 in Ωµ; in this case the supports of u0 and ψν are disjoint,

then
Jµ,λ(u0 + tψν) = Jµ,λ(u0) + Jµ,λ(tψν) (4.23)

and we may consider

Jµ,λ(tψν) =
t2

2

(
‖ψν‖2 − a ‖ψν‖2

2

)
− t6

1
6
‖ψν‖6

6 − tq
λ

q

∫

Ω
bµ(x)ψq

ν ; (4.24)

using (Hfd) and (4.11) we get
∫
Ω bµ(x)ψq

ν ≥ Mµ ‖ψ‖q
q ≥ Cνq/2 and then, proceeding as we did

with (4.20), we get

Jµ,λ(tψν) ≤ 1
3
S3/2 − C ′νq/2 + O(ν) ;

since q < 2, the least order term is −C ′νq/2 and then for suitably small ν > 0 we obtain the
claim.



16 Elliptic problems with sign changing coefficients

With this result we may give the proof of Theorem 2.4

Proof of Theorem 2.4. Proposition 4.4 gives a first non-negative solution u0, at a negative level.
By point (iii) in Lemma 4.2, if the origin and u0 were the unique critical points of J+

µ,λ, then
(PS)c would hold below J+

µ,λ(u0) + 1
N SN/2; but in this case, for the ν given in Lemma 4.5, the

mountain pass level (4.12) would be a further critical point. This proves the existence of a
second non-negative nontrivial solution. The non-positive solutions come from remark 4.1.

Now we consider the linking level obtained in Theorem 2.2.

Lemma 4.6. Under the hypotheses of Theorem 2.5, for any A > 0, there exist ν, ε, λ̃ > 0 such
that if eν is the component of ψν orthogonal to Hk then the infsup level ceν in (3.9) satisfies

ceν <
1
N

SN/2 − ε

for any λ ∈ [0, λ̃) and µ ∈ [0, A).

Proof. Let eν be the component orthogonal to Hk of the function ψν , and let Yν = Hk ⊕
{teν : t ∈ R}. For any given u ∈ Yν we have

Jµ,λ(tu) =
t2

2

(
‖u‖2 − a ‖u‖2

2

)
− λ

tq

q

∫

Ω
bµ(x)|u|q − tp

p
‖u‖p

p ; (4.25)

we estimate, sq

q ≤ 1 + s2

2 C1 and we use again
∣∣∫

Ω bµ(x)|u|q∣∣ ≤ CA ‖u‖q
p for any µ ∈ [0, A),

obtaining ∣∣∣∣
λ

q
tq

∫

Ω
bµ(x)|u|q

∣∣∣∣ ≤ λCA

(
1 + C1

t2

2
‖u‖2

p

)
.

With this estimate, (4.25) implies

Jµ,λ(tu) ≤ λCA +
t2

2

[
‖u‖2 − a ‖u‖2

2 + λCAC1 ‖u‖2
p

]
− tp

p
‖u‖p

p ;

since the maximum of A t2

2 −B tp

p is for t =
(

A
B

) 1
p−2 at level

(
1
2 − 1

p

)
AN/2

BN/2−1 , we get

Jµ,λ(tu) ≤ λCA +
1
N

[
‖u‖2 − a ‖u‖2

2 + λCAC1 ‖u‖2
p

]N/2

(
‖u‖p

p

)N/2−1
(4.26)

≤ λCA +
1
N

[
‖u‖2 − a ‖u‖2

2

‖u‖2
p

+ λCAC1

]N/2

. (4.27)

Now we consider

mν = max
{
‖u‖2 − a ‖u‖2

2 : u ∈ Yν , ‖u‖p = 1
}

. (4.28)

The maximum is assumed since Yν is finite dimensional, then let u be a maximizer and write
u = ỹ + τeν = y + τψν with y, ỹ ∈ Hk. Observe that by triangular inequality and the estimates
(4.9)

‖y‖2 ≤ ‖u‖2 + ‖τψν‖2 ≤ C ‖u‖p + |τ | ‖ψν‖2 = C + |τ |O(ν) ; (4.29)
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using the inequality |1 + s|p ≥ 1 + ps, for any s ∈ R, one gets

1 = ‖u‖p
p = ‖y + τψν‖p

p ≥ ‖τψν‖p
p +p

∫

Ω
(τψν)p−1y ≥ |τ |p ‖ψν‖p

p−|τ |p−1C ‖ψν‖p−1
p−1 ‖y‖∞ (4.30)

and using (4.29) (Hk is finite dimensional so the norms are equivalent for y), (4.8) and (4.10),
this becomes

1 ≥ |τ |p−1
[
|τ |(SN/2 + σ(1))− Cσ(1)− |τ |σ(1)

]
;

we conclude that |τ | (and then also y by (4.29)) is bounded for ν → 0.
Now, from (4.30) and using the boundedness of τ we deduce

1 ≥ ‖τψν‖p
p − C ‖ψν‖p−1

p−1 ‖y‖∞ ; (4.31)

then we compute

mν = (y + τψν , y + τψν)− a(y + τψν , y + τψν)2

≤ ‖y‖2 − a ‖y‖2
2 + τ2

(
‖ψν‖2 − a ‖ψν‖2

2

)
+ 2|τ | ( |(y, ψν)|+ a|(y, ψν)2|)

≤ (λk − a) ‖y‖2
2 + τ2 ‖ψν‖2

p

‖ψν‖2 − a ‖ψν‖2
2

‖ψν‖2
p

+ C ‖y‖∞ ‖ψν‖1 (4.32)

where we exploited the regularity of y to estimate |(y, ψν)| = |(∆y, ψν)2| ≤ C ‖y‖∞ ‖ψν‖1.
By (4.31), and estimate (4.10)

τ2 ‖ψν‖2
p ≤

(
1 + C ‖ψν‖p−1

p−1 ‖y‖∞
)2/p

=
(
1 + O(ν(N−2)/2) ‖y‖∞

)
. (4.33)

By estimates (4.7), (4.8) and (4.9) (in the case N ≥ 5)

‖ψν‖2 − a ‖ψν‖2
2

‖ψν‖2
p

=
SN/2 − aCν2 + O(νN−2)

(
SN/2 + O(νN )

)2/p
= S − aCν2 + O(νN−2) . (4.34)

Using ‖ψν‖1 = O(ν(N−2)/2), the equivalence of the norms of y, Eqs. (4.33) and (4.34) in (4.32)
we obtain

mν ≤ (λk − a) ‖y‖2 +
(
S − aCν2 + O(νN−2) + O(ν(N−2)/2) ‖y‖

)
. (4.35)

Since λk < a, we have two possibilities:

either (λk − a) ‖y‖2 + O(ν(N−2)/2) ‖y‖ ≤ 0, or (4.36)

(a− λk) ‖y‖ ≤ O(ν(N−2)/2), which implies

‖y‖O(ν(N−2)/2) = O(νN−2) ; (4.37)

in both cases, we may conclude from (4.35) that

mν ≤ S − aCν2 + O(νN−2), (4.38)

and then from (4.27)

Jµ,λ(tu) ≤ λCA +
1
N

[
S − aCν2 + O(νN−2) + λCAC1

]N/2
. (4.39)
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To conclude, we have to fix suitable values for ε, ν and λ̃ in order to satisfy the claim;
first we may set ν, ε such that the term 1

N

[
S − aCν2 + O(νN−2)

]N/2 in (4.39) is smaller than
1
N SN−2 − 2ε, then for suitably small λ̃ the whole right hand side in (4.39) is smaller than
1
N SN/2 − ε, for any µ ∈ [0, A) and λ ∈ [0, λ̃).

The case N = 4 is similar: the unique difference is in Eqs. (4.34) and (4.38), where one uses
the second of the estimates in (4.9) and then obtains mν ≤ S − aCν2| ln(ν)|+ O(ν2).

At this point we may give the proof of Theorem 2.5:

Proof of Theorem 2.5. Given the value A > 0, let ν, ε, λ̃ be as in Lemma 4.6, then point (ii)
in Lemma 4.2 implies that for suitably small λ the level ceν is in fact critical, and then it
corresponds to two nontrivial solutions, since the functional is even.

Since a > λ1, we do not need to use the mountain pass characterization in (4.12) with Lemma
4.5 in order to estimate the level of the mountain pass solution; in fact, the same argument used
in Theorem 2.5 shows that the mountain pass level as defined in (3.8) is lower than ceν and then
it lies at a level where (PS) holds.

Finally, we analyze what happens in the case µ = 0, that is, bµ < −δd < 0.

Proof of Theorem 2.6. Since µ = 0 the claim in Lemma 3.4 does not hold, so we do not have
the minimum solutions.

However, by point (i) in Lemma 4.2 the (PS)c condition is satisfied below 1
N SN/2, moreover,

Lemma 3.3 holds and the whole proof of Theorem 2.2 works in the same way, then we may
apply the Mountain Pass and the Linking Theorem, provided the corresponding levels are below
1
N SN/2.

Finally, also Lemma 4.6 holds and again, since the mountain pass level is below the linking
level, we conclude that for suitably small λ > 0 both kinds of solution exist.

5 The case (f2)

We sketch here the differences in the proofs which arise when considering the case (f2) instead
of the case (f1).

Observe that most of the arguments just exploit the fact that 1 < q < 2 and the estimate∣∣∫
Ω bµ(x)|u|q∣∣ ≤ CA ‖u‖q, which may be replaced with

−CA ‖u‖q2 ≤
∫

Ω
cµ(x)|u|q1 − d(x)|u|q2 ≤ CA ‖u‖q1 ;

these arguments are then extended straightforward to case (f2).
The real difference arises in Lemma 3.4: in this case the result will be given by the fact

that the exponents are different, and not by the unboundedness of bµ, which is not assumed in
hypothesis (Hf ′d). Following the lines of the original proof, one can choose Ωµ as in (Hf ′d) and
again φ ≡/ 0 a non-negative function with support in Ωµ, then

Jµ,λ(tφ) ≤ t2

2

(
‖φ‖2 − (a− ε) ‖φ‖2

2

)
+

tp

p
Dε ‖φ‖p

p −
tq1

q1
λ

∫

Ω
cµ(x)φq1 +

tq2

q2
λ

∫

Ω
d(x)φq2
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where
∫
Ω cµ(x)φq1 ≥ Mµ ‖φ‖q1

q1
> 0 and now the least power is q1, then again Jµ,λ(tφ) < 0 for

small t > 0.
In the proof of Proposition 4.4, when proving that ‖u0‖ < r, one has now to deal with four

different powers in the expression of j(t); however in this case the unique unknown sign is that
of the term in t2, so that one may still prove that j may have at most a minimum and then a
maximum.

Some technical differences arise in the proof of Lemma 4.5; first, we get in place of (4.16)
∫

Ω
cµ(x)|u0 + tψν |q1 − d(x)|u0 + tψν |q2 ≥

∫

Ω
cµ(x)

(
uq1

0 + q1u
q1−1
0 tψν

)
−

∫

Ω
d(x)uq2

0 (5.1)

and in place of (4.17)

t

∫

Ω
(∇u0∇ψν − a u0ψν) = λ

∫

Ω

(
cµ(x)uq1−1

0 − d(x)uq2−1
0

)
tψν +

∫

Ω
up−1

0 tψν ; (5.2)

then we get again (4.18) since the term
(
− ∫

Ω d(x)uq2−1
0 tψν

)
which is not canceled between the

above expressions is non-positive, and we may proceed as before.
Later in the same proof, the last term in (4.24) becomes

tq
λ

q

(
−

∫

Ω
cµ(x)ψq1

ν +
∫

Ω
d(x)ψq2

ν

)
≤ −C ′νq1/2 + C ′νq2/2 ,

and since q1 < q2 we may conclude as before.
Observe that this last estimate is the unique place where we need the hypothesis that d(x) is

bounded in Ωµ (part of (Hf ′d)); in fact, this hypothesis could be removed except for the critical
case in dimension N = 3.
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