IMSU

the problem existemce Multiplicity Asymptotica behavior

ILM

remark new problem sketch of the proof

Multiplicity of solutions for the p-Laplacian involving a nonlinearity with zeros

Eugenio Massa - ICMC USP

IV EBED - Escola Brasileira de Equações Diferenciais 24 de agosto de 2011

★ Ξ ►

< ∃ →

The first problem (Iturriaga Sanchez Ubilla)

Eugenio Massa ICMC USP

IMSU

the problem

existemce Multiplicity Asymptotica behavior

ILM

remark new problem sketch of the proof $(P_{\lambda}) \qquad \begin{cases} -\Delta_{p} u = \lambda h(x, u); & u > 0 \quad \text{in} \quad \Omega, \\ u = 0 & \text{in} \quad \partial\Omega, \end{cases}$

where $\lambda > 0$, Ω bounded smooth domain in \mathbb{R}^N , $(H_1) \quad h: \overline{\Omega} \times [0, +\infty) \longrightarrow [0, +\infty)$ is continuous, h(x, 0) = 0. (H_2) Exists $a \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ with $-\Delta_p a \ge 0$ and $0 < a_0 \le a(x) \le A_0$ $\begin{cases} h(x, t) = 0 & \text{if } t = a(x), \\ h(x, t) > 0 & \text{if } t \ne a(x), t > 0 \end{cases}$ $(H_3) \lim_{u \longrightarrow 0^+} \frac{h(x, u)}{u^{p-1}} = b(x)$ uniformly with respect to $x \in \Omega$ with $b \in L^{\infty}(\Omega)$ and $0 < b_0 \le b(x) \le B_0$.

 (M_2) there exists a constant k > 0 such that $\forall x \in \Omega$ the map $s \mapsto h(x, s) + k s^{p-1}$ is increasing.

Existence

Eugenio Massa ICMC USP

IMSU

existemce Multiplicity Asymptotica

ILM

remark new problem sketch of the proof

$\lim_{u \to +\infty} \frac{h(x, u)}{u^{\sigma}} = \rho \text{ uniformly with respect to } x \in \Omega.$ with $\rho > 0$ e $\sigma \in (p - 1, p_* - 1)$,

Theorem

 (H_4)

In these hypotheses exists a solution for every $\lambda > 0$

For $\lambda > \lambda_1(b)$ exists a subsolution ($\varepsilon \phi_1(b)$); *a* is supersolution

(人間) くほう くほう

- For λ < λ₁(b) origin is a minimum, superlinearity implies mountain pass geometry
- For $\lambda = \lambda_1(b)$ taking limit of the above, with $\lambda < \lambda_1(b)$

Existence

Eugenio Massa ICMC USP

IMSU

existemce Multiplicity Asymptotica

ILM

remark new problem sketch of the proof

(H_4)

 $\lim_{u \longrightarrow +\infty} \frac{h(x, u)}{u^{\sigma}} = \rho \text{ uniformly with respect to } x \in \Omega.$ with $\rho > 0$ e $\sigma \in (p - 1, p_* - 1)$,

Theorem

In these hypotheses exists a solution for every $\lambda>0$

For $\lambda > \lambda_1(b)$ exists a subsolution $(\varepsilon \phi_1(b))$; *a* is supersolution

イロト 不得下 不足下 不足下 一足

- For λ < λ₁(b) origin is a minimum, superlinearity implies mountain pass geometry
- For $\lambda = \lambda_1(b)$ taking limit of the above, with $\lambda < \lambda_1(b)$

Existence

Eugenio Massa ICMC USP

IMSU

existemce Multiplicity Asymptotica

ILM

remark new problem sketch of the proof

(H_4)

 $\lim_{u \longrightarrow +\infty} \frac{h(x, u)}{u^{\sigma}} = \rho \text{ uniformly with respect to } x \in \Omega.$ with $\rho > 0$ e $\sigma \in (p - 1, p_* - 1)$,

Theorem

In these hypotheses exists a solution for every $\lambda > 0$

For $\lambda > \lambda_1(b)$ exists a subsolution ($\varepsilon \phi_1(b)$); *a* is supersolution

イロト 不得下 不良下 不良下 一度

- For λ < λ₁(b) origin is a minimum, superlinearity implies mountain pass geometry
- For $\lambda = \lambda_1(b)$ taking limit of the above, with $\lambda < \lambda_1(b)$

Multiplicity

Eugenio Massa -ICMC USP

IMSU

the problem existemce

Multiplicity Asymptotic behavior

ILM

new problem sketch of the proof

Theorem

In the same hypotheses, if one of the following holds,

(a)
$$p = 2$$
.

(b)
$$a(x) \equiv \overline{a}$$
, (positive constant);
exists $C > 0$: $h(x, t) \leq C |\overline{a} - t|^{p-1}$ for $t \leq \overline{a}$.

(c)
$$-\Delta_p a \in L^\infty(\Omega)$$
 and $-\Delta_p a(x) > \varepsilon > 0$ a.e. $x \in \Omega$.

(d) a
$$\in \mathcal{C}^1$$
 and $abla$ a eq 0 in Ω .

the there exist a second positive solution for $\lambda > \lambda_1(b)$.

• using a,b,c,d, one shows that first solution satisfies u < a.

- then it is a local minimum (De Figueiredo Gossez Ubilla)
- second solution via mountain pass.

Multiplicity

Eugenio Massa -ICMC USP

IMSU

the problem existemce

Multiplicity Asymptotic behavior

ILM remark

sketch of the proof

Theorem

In the same hypotheses, if one of the following holds,

(a)
$$p = 2$$
.

(b)
$$a(x) \equiv \overline{a}$$
, (positive constant);
exists $C > 0$: $h(x, t) \leq C |\overline{a} - t|^{p-1}$ for $t \leq \overline{a}$.

(c)
$$-\Delta_p a \in L^{\infty}(\Omega)$$
 and $-\Delta_p a(x) > \varepsilon > 0$ a.e. $x \in \Omega$

(d) a
$$\in \mathcal{C}^1$$
 and $abla$ a eq 0 in Ω .

the there exist a second positive solution for $\lambda > \lambda_1(b)$.

• using a,b,c,d, one shows that first solution satisfies u < a.

then it is a local minimum (De Figueiredo Gossez Ubilla)

- ₹ ∃ →

second solution via mountain pass.

Asymptotical behavior when $\lambda \to \infty$

Eugenio Massa ICMC USP

IMSU

the problem existemce Multiplicity Asymptotical behavior

remark new problem sketch of the proof

Theorem

In the above hypotheses, plus:

 (H_7) exists $\gamma > 0$ such that $h(x,t) \ge \gamma |t-a(x)|^{\sigma}$ for $t \ge a(x)$,

э

イロト イ押ト イヨト イヨト

then $u_{\lambda} \rightarrow a$ poointwise in Ω when $\lambda \rightarrow +\infty$.

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

remark new problen sketch of th proof

Proof:

- get an a-priori estimate for the solutions when λ large (blow-up technique):
 - suppose $\lambda_n \to \infty$, $||u_n||_{\infty} = u_n(x_n) \to \infty$; $w_n(y) := u_n(A_ny + x_n)/S_n$ converges to a solution of $-\Delta w = w^{\sigma}$, $w \ge 0$ in \mathbb{R}^N or half space;

then (Liouville-type theorem) w=0: contradiction.

 similar blow-up argument: fix x₀ ∈ Ω, suppose λ_n → ∞; w_n(y) := u_n(A_ny + x₀) converges to a solution of -Δw = h(x₀, w), w > 0 in ℝ^N, then (Liouville-type theorem) w = a(x₀): pointwise convergence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

- remark new proble
- sketch of the proof

Proof:

- get an a-priori estimate for the solutions when λ large (blow-up technique):
 - suppose $\lambda_n \to \infty$, $||u_n||_{\infty} = u_n(x_n) \to \infty$; $w_n(y) := u_n(A_ny + x_n)/S_n$ converges to a solution of $-\Delta w = w^{\sigma}$, $w \ge 0$ in \mathbb{R}^N or half space;

then (Liouville-type theorem) w=0: contradiction.

• similar blow-up argument: fix $x_0 \in \Omega$, suppose $\lambda_n \to \infty$; $w_n(y) := u_n(A_ny + x_0)$ converges to a solution of $-\Delta w = h(x_0, w), w > 0$ in \mathbb{R}^N , then (Liouville-type theorem) $w = a(x_0)$: pointwise convergence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

any growth at infinity

Eugenio Massa -ICMC USP

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

remark

new problem sketch of the proof Remark: if we put $w_n(y) := u_n(A_ny + x_n)$ we would get a bound from above, then we could truncate. However we do not know if the limit problem is in \mathbb{R}^N and we have no Liouville-type theorem in the half space.

(A) (E) (A) (E) (A)

We need a moving plane type result!

(Damascelli) Ω convexo, h(x, u) = f(u) locally Lipschitz in $(0, \infty)$, f(u) > 0 for u > 0,

second problem (Iturriaga Lorca)

Eugenio Massa ICMC USP

IMSL

the problem existemce Multiplicity Asymptotica behavior

ILM

remark new problem sketch of the proof $(\Pi_{\lambda}) \qquad \begin{cases} -\Delta_{\rho} \, u = \lambda f(u) & \text{in } \Omega, \\ u = 0 & \text{em } \partial\Omega, \end{cases}$

Ω bounded smooth convex domain in \mathbb{R}^N , $\lambda > 0$.

 $\begin{array}{l} (F_1) \ f: [0, +\infty) \to [0, +\infty) \ \text{continuous and} \\ \text{locally Lipschitz in } (0, \infty); \\ f(0) = f(1) = 0 \ \text{and} \ f(x) > 0 \ \text{for } x \not\in \{0; 1\}. \\ \\ (F_2) \ \liminf_{s \to 0^+} \frac{f(s)}{s^{p-1}} \ge 1. \\ \\ (F_3) \ \lim_{t \to 1} \frac{f(t)}{|t-1|^{\sigma}} = \gamma, \ \text{with} \ \gamma > 0 \ \text{e} \ \sigma \in (p-1, p_* - 1) \\ \\ (F_4) \ \text{Exist} \ k > 0 \ \text{and} \ T > 1 \ \text{such that} \ t \mapsto f(t) + kt^{p-1} \ \text{is increasing} \\ \text{for } t \in [0, T]. \\ \\ (\ \text{no restriction on the growth at infinity}) \end{array}$

example: $f(u) = u^{p-1}e^{u}|1-u|^{\sigma}$ with $\sigma \in (p, -1, p_* = 1)$.

IMSU

the problem existemce Multiplicity Asymptotica behavior

Theorem

ILM

remark new problem

sketch of the proof There exists $\lambda^* > 0$ such that the problem (Π_{λ}) has at least two positive solutions $u_{1,\lambda}$, $u_{2,\lambda}$, for $\lambda > \lambda^*$. moreover $||u_{1,\lambda}||_{\infty} \to 1^-$ and $||u_{2,\lambda}||_{\infty} \to 1^+$, when $\lambda \to \infty$.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

remark new proble

sketch of the proof

• truncate the nonlinearity above T > 1

let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$

- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

★ Ξ ► ★ Ξ ►

- then $\|u\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

remark new proble

sketch of the proof

- truncate the nonlinearity above T > 1
- let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

* 原 * * 原 * -

- \blacksquare then $\left\| u \right\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

remark new proble

sketch of the proof

- \blacksquare truncate the nonlinearity above ${\it T}>1$
- let $\tau > 0$ and consider the positive nonlinearity $f_{T}(u) + \tau(u^{+})^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

- \blacksquare then $\left\| u \right\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

remark

sketch of the proof

- \blacksquare truncate the nonlinearity above ${\cal T}>1$
- let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

- \blacksquare then $\left\| u \right\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).

IMSU

the problem existemce Multiplicity Asymptotical behavior

ILM

- remark
- sketch of the proof

- \blacksquare truncate the nonlinearity above ${\cal T}>1$
- let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

- \blacksquare then $\left\| u \right\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).

IMSU

the problem existemce Multiplicity Asymptotica behavior

ILM

- remark
- sketch of the

- \blacksquare truncate the nonlinearity above ${\cal T}>1$
- let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

- \blacksquare then $\left\| u \right\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).

IMSU

- the problem existemce Multiplicity Asymptotical behavior
- ILM
- remark
- sketch of the proof

- \blacksquare truncate the nonlinearity above ${\cal T}>1$
- let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

(本間) (本語) (本語) (二語)

- \blacksquare then $\|u\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).

IMSU

- the problem existemce Multiplicity Asymptotical behavior
- ILM
- remark
- sketch of the proof

- \blacksquare truncate the nonlinearity above ${\cal T}>1$
- let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

 \blacksquare then $\|u\|_\infty \to 1$ when $\lambda \to \infty$

• then for λ large solution below T (original problem).

IMSU

- the problem existemce Multiplicity Asymptotical behavior
- ILM
- remark
- sketch of the

- \blacksquare truncate the nonlinearity above ${\cal T}>1$
- let $\tau > 0$ and consider the positive nonlinearity $f_T(u) + \tau(u^+)^{p-1}$
- 1 is no more supersolution, but one find a family of supersolutions near 1
- first solution via sub-supersolutions (strictly below 1)
- second solution via degree argument
- By Damascelli the maxima are far from the boundary
- \blacksquare taking limit $\tau \to 0$ we get solutions with $\tau = 0$ and still maxima are far from the boundary

- \blacksquare then $\|u\|_{\infty} \to 1$ when $\lambda \to \infty$
- then for λ large solution below T (original problem).