On the validity of some classical techniques for the stationary Kirchhoff Equation

Eugenio Massa, ICMC - USP / Brazil.

joint work with Leonelo Iturriaga
(Universidad Técnica Federico Santa María/Chile).

Kirchhoff equation

The vibrating string equation:

If T is constant we have the D'alambert equation:
$\rho u_{t t}=f+T_{0} \cdot u_{x x}$

Kirchhoff equation

The vibrating string equation:

If T is constant we have the D'alambert equation:

$$
\rho u_{t t}=f+T_{0} \cdot u_{x x}
$$

In (Kirchhoff, 1883) the tension depends on the length:

$$
\rho u_{t t}=f+\left(T_{0}+k \Delta L\right) u_{x x} .
$$

Approximating the length:

We get the Kirchhoff equation: (nonlocal equation)

and the stationary Kirchhoff equation:

In (Kirchhoff, 1883) the tension depends on the length:

$$
\rho u_{t t}=f+\left(T_{0}+k \Delta L\right) u_{x x} .
$$

Approximating the length:

$$
L \simeq \int_{0}^{L_{0}} \sqrt{1+u_{x}^{2}} \simeq \int_{0}^{L_{0}} 1+\frac{1}{2} u_{x}^{2}=L_{0}+\frac{1}{2} \int_{0}^{L_{0}} u_{x}^{2}
$$

We get the Kirchhoff equation: (nonlocal equation)

$$
\rho u_{t t}=f+\left(T_{0}+\frac{k}{2} \int_{0}^{L_{0}} u_{x}^{2}\right) u_{x x}
$$

and the stationary Kirchhoff equation:

In (Kirchhoff, 1883) the tension depends on the length:

$$
\rho u_{t t}=f+\left(T_{0}+k \Delta L\right) u_{x x} .
$$

Approximating the length:

$$
L \simeq \int_{0}^{L_{0}} \sqrt{1+u_{x}^{2}} \simeq \int_{0}^{L_{0}} 1+\frac{1}{2} u_{x}^{2}=L_{0}+\frac{1}{2} \int_{0}^{L_{0}} u_{x}^{2}
$$

We get the Kirchhoff equation: (nonlocal equation)

$$
\rho u_{t t}=f+\left(T_{0}+\frac{k}{2} \int_{0}^{L_{0}} u_{x}^{2}\right) u_{x x}
$$

and the stationary Kirchhoff equation:

$$
-\left(T_{0}+\frac{k}{2} \int_{0}^{L_{0}} u_{x}^{2}\right) u_{x x}=f
$$

Stationary Kirchhoff equation

Here we consider the "Stationary Kirchhoff Equation": the following (time independent) generalization of the Kirchhoff vibrating string equation:
(K)

$$
\begin{cases}-M\left(\|u\|_{H}^{2}\right) \Delta u=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

- $\Omega \subset \mathbb{R}^{N}$ is a bounded and smooth domain,
- M: nonlocal weight function,
- $\|\cdot\|_{H}$ is the norm in $H_{0}^{1}(\Omega)$,
- f is some nonlinearity.

Comparison Principle, Sub- Supersolutions Method

Comparison principle for the Laplacian (weak form)

$$
\left\{\begin{array}{ll}
-\Delta \ell \leq-\Delta w & \text { in } \Omega \tag{1}\\
\ell \leq w & \text { on } \partial \Omega,
\end{array} \quad \Longrightarrow \quad \ell \leq w \text { in } \Omega\right.
$$

Question: Does it hold for Kirchhoff operator?

Some answers:

- (Alves and Corrêa, 2001): if $M(t) \geq 0, M(t)$ nonincreasing, $M\left(t^{2}\right) t$ increasing, then CP and SSM hold true.
- If $M\left(t_{1}^{2}\right) t_{1} \geq M\left(t_{2}^{2}\right) t_{2}$ for some positive $t_{1}<t_{2}$, then CP is false: take $\ell=t_{2} \phi_{1}$ and $w=t_{1} \phi_{1}$.
- Several papers claiming CP and SSM hold true if $M(t) \geq m_{0}>0, M(t)$ nondecreasing.

Comparison Principle, Sub- Supersolutions Method

Comparison principle for the Laplacian (weak form)

$$
\left\{\begin{array}{ll}
-\Delta \ell \leq-\Delta w & \text { in } \Omega, \tag{1}\\
\ell \leq w & \text { on } \partial \Omega,
\end{array} \quad \Longrightarrow \quad \ell \leq w \text { in } \Omega\right.
$$

Question: Does it hold for Kirchhoff operator?

$$
\begin{cases}-M\left(\|\ell\|_{H}^{2}\right) \Delta \ell \leq-M\left(\|w\|_{H}^{2}\right) \Delta w & \text { in } \Omega \tag{2}\\ \ell \leq w & \text { on } \partial \Omega\end{cases}
$$

$\Longrightarrow \quad \ell \leq w$ in $\Omega \quad$?
Some answers:

- (Alves and Corrêa, 2001) : if $M(t) \geq 0, M(t)$ nonincreasing,
$M\left(t^{2}\right) t$ increasing, then CP and SSM hold true.
- If $M\left(t_{1}^{2}\right) t_{1} \geq M\left(t_{2}^{2}\right) t_{2}$ for some positive $t_{1}<t_{2}$, then CP is false: take $\ell=t_{2} \phi_{1}$ and $w=t_{1} \phi_{1}$.
- Several papers claiming CP and SSM hold true if $M(t) \geq m_{0}>0, M(t)$ nondecreasing.

Comparison Principle, Sub- Supersolutions Method

Comparison principle for the Laplacian (weak form)

$$
\left\{\begin{array}{ll}
-\Delta \ell \leq-\Delta w & \text { in } \Omega, \tag{1}\\
\ell \leq w & \text { on } \partial \Omega,
\end{array} \quad \Longrightarrow \quad \ell \leq w \text { in } \Omega .\right.
$$

Question: Does it hold for Kirchhoff operator?

$$
\begin{cases}-M\left(\|\ell\|_{H}^{2}\right) \Delta \ell \leq-M\left(\|w\|_{H}^{2}\right) \Delta w & \text { in } \Omega, \tag{2}\\ \ell \leq w & \text { on } \partial \Omega,\end{cases}
$$

$\Longrightarrow \quad \ell \leq w$ in $\Omega \quad$?
Some answers:

- (Alves and Corrêa, 2001) : if $M(t) \geq 0, M(t)$ nonincreasing, $M\left(t^{2}\right) t$ increasing, then CP and SSM hold true.
- If $M\left(t_{1}^{2}\right) t_{1} \geq M\left(t_{2}^{2}\right) t_{2}$ for some positive $t_{1}<t_{2}$, then CP is false: take $\ell=t_{2} \phi_{1}$ and $w=t_{1} \phi_{1}$.
- Several papers claiming CP and SSM hold true if $M(t) \geq m_{0}>0, M(t)$ nondecreasing.

Counterexamples:

- (García-Melián and Iturriaga, 2016): if M "increases enough", then CP and SSM are false.
- (Figueiredo and Suárez, 2018): for certain $M(t)=a+b(t+c)^{p}$ CP and SSM are false.

(Garcia-Melián and Iturriaga, 2016)
 Assume $N \geq 3$ and M is continuous, positive and verifies:

there exist $R_{2}>R_{1}>0$ such thatThen CP and SSM hold false in $\Omega=B \subseteq \mathbb{R}^{N}$
Question: is it possible that CP and SSM hold true with some
growth condition on M ?

Counterexamples:

- (García-Melián and Iturriaga, 2016): if M "increases enough", then CP and SSM are false.
- (Figueiredo and Suárez, 2018): for certain $M(t)=a+b(t+c)^{p}$ CP and SSM are false.

(García-Melián and Iturriaga, 2016)

Assume $N \geq 3$ and M is continuous, positive and verifies:
(H) there exist $R_{2}>R_{1}>0$ such that $\frac{M\left(R_{2}^{N-2}\right)}{R_{2}^{2}}>\frac{M\left(R_{1}^{N-2}\right)}{R_{1}^{2}}$.

Then CP and SSM hold false in $\Omega=B \subseteq \mathbb{R}^{N}$.

Counterexamples:

- (García-Melián and Iturriaga, 2016): if M "increases enough", then CP and SSM are false.
- (Figueiredo and Suárez, 2018): for certain $M(t)=a+b(t+c)^{p}$ CP and SSM are false.

(García-Melián and Iturriaga, 2016)

Assume $N \geq 3$ and M is continuous, positive and verifies:
(H) there exist $R_{2}>R_{1}>0$ such that $\frac{M\left(R_{2}^{N-2}\right)}{R_{2}^{2}}>\frac{M\left(R_{1}^{N-2}\right)}{R_{1}^{2}}$.

Then CP and SSM hold false in $\Omega=B \subseteq \mathbb{R}^{N}$.
Question: is it possible that CP and SSM hold true with some growth condition on M ?

We answer in (Iturriaga and M., 2018): ${ }^{1}$

Theorem ((Iturriaga and M., 2018))

Let Ω be a smooth bounded domain in \mathbb{R}^{N}. Suppose M is not nonincreasing, that is, there exist positive $t_{1}<t_{2}$ such that $M\left(t_{1}\right)<M\left(t_{2}\right)$. Then the Comparison Principle (both in its weak and strong form) and the Sub and Supersolution Method do not hold in Ω, for the operator

$$
-M\left(\|u\|_{H}^{2}\right) \Delta u
$$

[^0](H) there exist $R_{2}>R_{1}>0$ such that $\frac{M\left(R_{2}^{N-2}\right)}{R_{2}^{2}}>\frac{M\left(R_{1}^{N-2}\right)}{R_{1}^{2}}$.

In $B_{R_{2}}$ take

$$
\ell=\left\{\begin{array}{ll}
\eta \phi_{1}\left(x / R_{1}\right) & |x| \leq R_{1} \\
0 & |x| \geq R_{1}
\end{array} \quad \mathrm{w}=\phi_{1}\left(x / R_{2}\right)\right.
$$

where ϕ_{1} is the first eigenfunction in the unitary ball.

(H) there exist $R_{2}>R_{1}>0$ such that $\frac{M\left(R_{2}^{N-2}\right)}{R_{2}^{2}}>\frac{M\left(R_{1}^{N-2}\right)}{R_{1}^{2}}$.

In $B_{R_{2}}$ take

$$
\ell= \begin{cases}\eta \phi_{1}\left(x / R_{1}\right) & |x| \leq R_{1} \\ 0 & |x| \geq R_{1}\end{cases}
$$

$$
\mathrm{w}=\phi_{1}\left(x / R_{2}\right)
$$

where ϕ_{1} is the first eigenfunction in the unitary ball.

Then (H) allows to select $\eta>1$ so that

$$
-M\left(\|\ell\|_{H}^{2}\right) \Delta \ell \leq-M\left(\|w\|_{H}^{2}\right) \Delta w \quad \text { in } \Omega, \text { but } \ell \leq w \text { is false. }
$$

Comparison Principle - Our argument

Idea (dimension 1: $\Omega=(-\pi / 2, \pi / 2)$): take $\tau>0$ small and

$$
w=\min \left\{\cos \left(\frac{x}{1+\tau}\right), \frac{1}{\varepsilon} \cos (x)\right\},
$$

Comparison Principle - Our argument

Idea (dimension 1: $\Omega=(-\pi / 2, \pi / 2)$): take $\tau>0$ small and

$$
w=\min \left\{\cos \left(\frac{x}{1+\tau}\right), \frac{1}{\varepsilon} \cos (x)\right\},
$$

Comparison Principle - Our argument

Idea (dimension 1: $\Omega=(-\pi / 2, \pi / 2)$): take $\tau>0$ small and

$$
w=\min \left\{\cos \left(\frac{x}{1+\tau}\right), \frac{1}{\varepsilon} \cos (x)\right\},
$$

Comparison Principle - Our argument

Idea (dimension 1: $\Omega=(-\pi / 2, \pi / 2)$): take $\tau>0$ small and

$$
w=\min \left\{\cos \left(\frac{x}{1+\tau}\right), \frac{1}{\varepsilon} \cos (x)\right\},
$$

Comparison Principle - Our argument

Idea (dimension 1: $\Omega=(-\pi / 2, \pi / 2)$): take $\tau>0$ small and

$$
w=\min \left\{\cos \left(\frac{x}{1+\tau}\right), \frac{1}{\varepsilon} \cos (x)\right\},
$$

Comparison Principle - Our argument

Idea (dimension 1: $\Omega=(-\pi / 2, \pi / 2)$): take $\tau>0$ small and

$$
\mathrm{w}=\min \left\{\cos \left(\frac{x}{1+\tau}\right), \frac{1}{\varepsilon} \cos (x)\right\}, \quad \quad \ell=\eta \cos (x)
$$

Comparison Principle - Our argument

Idea (dimension 1: $\Omega=(-\pi / 2, \pi / 2)$): take $\tau>0$ small and

$$
\mathrm{w}=\min \left\{\cos \left(\frac{x}{1+\tau}\right), \frac{1}{\varepsilon} \cos (x)\right\}, \quad \boxed{\ell}=\eta \cos (x)
$$

finally choose ε, τ, rescale and find parameters so that

$$
\begin{aligned}
& \lambda^{\tau} M\left(t_{2}\right)>\lambda_{1} M\left(t_{1}\right), \quad\|w\|_{H}^{2}=t_{2}>t_{1}=\|\ell\|_{H}^{2}, \quad \eta>1 \\
& -M\left(\|w\|_{H}^{2}\right) \Delta w \geq M\left(t_{2}\right) \lambda^{\tau} w \geq M\left(t_{1}\right) \lambda_{1} \ell=-M\left(\|\ell\|_{H}^{2}\right) \Delta \ell
\end{aligned}
$$

Higher dimension and general domain:
Same idea:

$$
\mathrm{w}=\min \left\{\phi_{\tau}, \frac{1}{\varepsilon} \phi_{1}\right\}, \quad \ell=\eta \phi_{1},
$$

where

- ϕ_{1} is the first eigenfunction in Ω,
- ϕ_{τ} is the first eigenfunction in

$$
\Omega_{\tau}=\left\{x \in \mathbb{R}^{N}: d(x, \Omega)<\tau\right\}
$$

Some remarks:

- counterexamples for Strong Comparison Principle and the Sub and Supersolution method are obtained in a similar way,
- the same argument works for p-Laplacian,
- versions of CP and SSM which work for a wider range of M exist, but always require additional hypotheses (Alves and Corrêa, 2015; Figueiredo and Suárez, 2018).

Kirchhoff equation: variational approach

$$
\begin{array}{cl}
\begin{cases}-M\left(\|u\|_{W}^{p}\right) \Delta_{p} u=f(x, u) & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega\end{cases} \\
J(u)=\frac{1}{p} \widehat{M}\left(\|u\|_{W}^{p}\right)-\int_{\Omega} F(x, u), & u \in W_{0}^{1, p}(\Omega) . \tag{4}
\end{array}
$$

Here ${ }_{\text {T4 }}$

- $\Omega \subset \mathbb{R}^{N}$ is a bounded and smooth domain,
- $\|\cdot\|_{w}$ is the norm in $W_{0}^{1, p}(\Omega), p>1$,
- $\widehat{M}(t)=\int_{0}^{t} M(s) d s$ and $F(x, v)=\int_{0}^{v} f(x, s) d s$.

Several authors:
Alves, Ambrosetti, Anello, Arcoya, Cheng, Colasuonno, Corrêa, Figueiredo, Liu, Ma, Madeira, Nunes, Pucci, Santos J., Siciliano, Song, Tang, Wu.

Hölder versus Sobolev minimizers

Theorem ((Brezis and Nirenberg, 1993))
Let $J(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} F(x, u), \quad u \in H_{0}^{1}(\Omega) \quad$ (..)
If $J\left(u_{0}\right) \leq J\left(u_{0}+v\right)$ for $v \in \mathcal{C}_{0}^{1}(\Omega)$ with $\|v\|_{\mathcal{C}^{1}}$ small then $J\left(u_{0}\right) \leq J\left(u_{0}+v\right)$ for $v \in H_{0}^{1}(\Omega)$ with $\|v\|_{H^{1}}$ small

Analogous in $W_{0}^{1, p}$ by (García Azorero, Peral Alonso, and Manfredi, 2000; Guo and Zhang, 2003; Brock, Iturriaga, and Ubilla, 2008).
Question: What happens for

- If $M(t) \geq m_{0}>0$ (non degenerate case) then an analogous holds true. (Fan, 2010).
\square
- $M \geq 0, M$ continuous, $M(0)=0$.

Hölder versus Sobolev minimizers

Theorem ((Brezis and Nirenberg, 1993))
Let $J(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} F(x, u), \quad u \in H_{0}^{1}(\Omega) \quad$ (..)
If $J\left(u_{0}\right) \leq J\left(u_{0}+v\right)$ for $v \in \mathcal{C}_{0}^{1}(\Omega)$ with $\|v\|_{\mathcal{C}^{1}}$ small then $J\left(u_{0}\right) \leq J\left(u_{0}+v\right)$ for $v \in H_{0}^{1}(\Omega)$ with $\|v\|_{H^{1}}$ small

Analogous in $W_{0}^{1, p}$ by (García Azorero, Peral Alonso, and Manfredi, 2000; Guo and Zhang, 2003; Brock, Iturriaga, and Ubilla, 2008).
Question: What happens for

$$
J(u)=\frac{1}{p} \widehat{M}\left(\|u\|_{W}^{p}\right)-\int_{\Omega} F(x, u), \quad u \in W_{0}^{1, p}(\Omega) ?
$$

- If $M(t) \geq m_{0}>0$ (non degenerate case) then an analogous holds true. (Fan, 2010).

Hölder versus Sobolev minimizers

Theorem ((Brezis and Nirenberg, 1993))
Let $J(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} F(x, u), \quad u \in H_{0}^{1}(\Omega)$
If $J\left(u_{0}\right) \leq J\left(u_{0}+v\right)$ for $v \in \mathcal{C}_{0}^{1}(\Omega)$ with $\|v\|_{\mathcal{C}^{1}}$ small then $J\left(u_{0}\right) \leq J\left(u_{0}+v\right)$ for $v \in H_{0}^{1}(\Omega)$ with $\|v\|_{H^{1}}$ small

Analogous in $W_{0}^{1, p}$ by (García Azorero, Peral Alonso, and Manfredi, 2000; Guo and Zhang, 2003; Brock, Iturriaga, and Ubilla, 2008).
Question: What happens for

$$
J(u)=\frac{1}{p} \widehat{M}\left(\|u\|_{W}^{p}\right)-\int_{\Omega} F(x, u), \quad u \in W_{0}^{1, p}(\Omega) ?
$$

- If $M(t) \geq m_{0}>0$ (non degenerate case) then an analogous holds true. (Fan, 2010).
We study the degenerate case, in particular we take
- $M \geq 0, M$ continuous, $M(0)=0$.

Model problem: let $p^{*}>\omega>q \geq 1$ and $r>p$:

$$
\begin{gather*}
\mathcal{J}(u)=\frac{1}{r}\|u\|_{W}^{r}+\frac{1}{q}\|u\|_{q}^{q}-\frac{\lambda}{\omega}\|u\|_{\omega}^{\omega}, \tag{5}\\
\begin{cases}-\|u\|_{W}^{r-p} \Delta_{p} u=-|u|^{q-2} u+\lambda|u|^{\omega-2} u & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega .\end{cases} \tag{6}
\end{gather*}
$$

First result: a negative answer:

Theorem ((Iturriaga and M., 2019)¹)

If $r>p^{*}$ then

- $\mathcal{J}(0) \leq \mathcal{J}(v)$ for $v \in L^{\infty} \cap W_{0}^{1, p}$ with $\|v\|_{L^{\infty}}$ small
- there exists a sequence u_{n} in $W_{0}^{1, p}(\Omega)$ with
${ }^{1}$ L. Iturriaga and E. M. (2019). "Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems"

Model problem: let $p^{*}>\omega>q \geq 1$ and $r>p$:

$$
\begin{gather*}
\mathcal{J}(u)=\frac{1}{r}\|u\|_{W}^{r}+\frac{1}{q}\|u\|_{q}^{q}-\frac{\lambda}{\omega}\|u\|_{\omega}^{\omega}, \tag{5}\\
\begin{cases}-\|u\|_{W}^{r-p} \Delta_{p} u=-|u|^{q-2} u+\lambda|u|^{\omega-2} u & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega .\end{cases} \tag{6}
\end{gather*}
$$

First result: a negative answer:

Theorem ((Iturriaga and M., 2019)¹)

If $r>p^{*}$ then

- $\mathcal{J}(0) \leq \mathcal{J}(v)$ for $v \in L^{\infty} \cap W_{0}^{1, p}$ with $\|v\|_{L^{\infty}}$ small
- there exists a sequence u_{n} in $W_{0}^{1, p}(\Omega)$ with $\left\|u_{n}\right\|_{w} \rightarrow 0$, such that $\mathcal{J}\left(u_{n}\right)<0$.
${ }^{1}$ L. Iturriaga and E. M. (2019). "Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems". In: submitted, anXiv: $7906.07685 \mathrm{v} / 1$

Proof (simplified): Let ψ_{ε} be compact support approximations of the generalized Talenti functions

$$
\begin{equation*}
\psi_{\varepsilon}(x)=\left(C_{N, p} \frac{\epsilon^{\frac{1}{p-1}}}{\epsilon^{\frac{p}{p-1}}+|x|^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}} \quad \text { with } \epsilon>0 \tag{7}
\end{equation*}
$$

take $u_{n}=\varepsilon_{n}^{\sigma} \psi_{\varepsilon_{n}}$ where $\varepsilon_{n} \rightarrow 0$ and

$$
\frac{N}{p^{*}}>\sigma>\frac{N}{p^{*}} \frac{p^{*}-\omega}{r-\omega} \geq 0
$$

then

- u_{n} is unbounded in L^{∞},
- the last term in \mathcal{J} dominates then $\mathcal{J}\left(u_{n}\right)<0$ as $n \rightarrow \infty$.
$J\left(u_{n}\right)<0$ holds true under more general hypotheses:

Proof (simplified): Let ψ_{ε} be compact support approximations of the generalized Talenti functions

$$
\begin{equation*}
\psi_{\varepsilon}(x)=\left(C_{N, p} \frac{\epsilon^{\frac{1}{p-1}}}{\epsilon^{\frac{p}{p-1}}+|x|^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}} \quad \text { with } \epsilon>0 \tag{7}
\end{equation*}
$$

take $u_{n}=\varepsilon_{n}^{\sigma} \psi_{\varepsilon_{n}}$ where $\varepsilon_{n} \rightarrow 0$ and

$$
\frac{N}{p^{*}}>\sigma>\frac{N}{p^{*}} \frac{p^{*}-\omega}{r-\omega} \geq 0
$$

then

- u_{n} is unbounded in L^{∞},
- the last term in \mathcal{J} dominates then $\mathcal{J}\left(u_{n}\right)<0$ as $n \rightarrow \infty$.
$J\left(u_{n}\right)<0$ holds true under more general hypotheses:
- $\frac{1}{p} \widehat{M}\left(s^{p}\right) \leq C_{1} s^{r}, \quad$ for s small,
- $\quad F(x, v) \geq C_{2} v^{\omega}-C_{3} v^{q}, \quad$ for $x \in \Omega, v \geq 0$.

Now a positive answer

Theorem ((Iturriaga and M., 2019))

Suppose in (3-4)

- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exist constants $D>0$ and $\ell \in\left[p, p^{*}\right)$ such that

$$
f(x, v) \operatorname{sgn}(v) \leq D|v|^{\ell-1}, \quad \forall(x, v) \in \Omega \times \mathbb{R}
$$

- $M(t) \geq 0$ for every $t \geq 0$ and there exist constants $a_{1}, \delta>0$ and $r \in\left(p, p^{*}\right)$ such that

$$
M\left(s^{p}\right) \geq \frac{r a_{1}}{p} s^{r-p}\left(\Rightarrow \widehat{M}\left(s^{p}\right) \geq C s^{r}\right), \quad \text { for } 0 \leq s^{p}<\delta
$$

Then, If the origin is a local minimum for J with respect to the L^{∞} norm, then it is also a local minimum with respect to the $W_{0}^{1, p}$ norm.

Steps of the proof:

- Suppose the origin is not a local minimum.
- Then there exist a sequence v_{n} of minimizers in sets $B_{n}=\left\{\int_{\Omega} u^{\ell} \leq \frac{1}{n}\right\}$, with $J\left(v_{n}\right)<0$, which satisfy the equation (may be with an additional term due to a Lagrange multiplier), moreover $\left\|v_{n}\right\|_{w} \rightarrow 0$.
- By Moser's iterations, $f(x, v) \operatorname{sgn}(v) \leq D|v|^{\ell-1}$ implies

$$
\|u\|_{\infty} \leq C_{1}(\ell, p, \Omega) D^{\frac{1}{p^{*}-\ell}}\|u\|_{p^{*}}^{\frac{p^{*}-p}{p^{*}-\ell}}
$$

for weak solutions of $-\Delta_{p} u=f(x, u)$.

- For weak solutions of $-M\left(\|u\|_{W}^{p}\right) \Delta_{p} u=f(x, u)$, using $M\left(\|u\|_{W}^{p}\right)^{-1} \leq \frac{p}{r a_{1}}\|u\|_{W}^{p-r}$, we get

$$
\begin{aligned}
\left\|v_{n}\right\|_{\infty} & \leq C_{1}(\ldots)\left\|v_{n}\right\|\left\|_{W}^{\frac{p-r}{p^{*}-\ell}}\right\| v_{n} \|_{p^{*}}^{\frac{p^{*}-p}{p^{*}-\ell}} \\
& \leq C(\ldots)\left\|v_{n}\right\|_{W}^{p^{*}-r}
\end{aligned}
$$

- Since $\left\|v_{n}\right\|_{W} \rightarrow 0$, then $\left\|v_{n}\right\|_{\infty} \rightarrow 0$.
- Then the origin is not a minimum w.r. to L^{∞} norm either.

For the more classical kind of result involving the \mathcal{C}^{1} norm, one needs more restrictions, in particular a balance between r and ℓ :

$$
(\ell-1)>(r-p) \frac{p^{*}-1}{p^{*}-p} .
$$

Steps of the proof:

- Obtain the estimate for $\left\|v_{n}\right\|_{\infty}$ as before,
- bootstrap to a uniform estimate for the $\mathcal{C}^{1, \alpha}$ norm (via (Lieberman, 1988)),
- apply Ascoli-Arzela Theorem to get a subsequence converging in \mathcal{C}^{1},

In fact, a-priori estimates as in (Lieberman, 1988) may not hold true due to the nonlocal term.

For the more classical kind of result involving the \mathcal{C}^{1} norm, one needs more restrictions, in particular a balance between r and ℓ :

$$
(\ell-1)>(r-p) \frac{p^{*}-1}{p^{*}-p} .
$$

Steps of the proof:

- Obtain the estimate for $\left\|v_{n}\right\|_{\infty}$ as before,
- obtain an estimate for $M\left(\left\|v_{n}\right\|_{W}^{p}\right)^{-1}\left\|f\left(x, v_{n}\right)\right\|_{\infty}$,
- bootstrap to a uniform estimate for the $\mathcal{C}^{1, \alpha}$ norm (via (Lieberman, 1988)),
- apply Ascoli-Arzela Theorem to get a subsequence converging in \mathcal{C}^{1},
- Then the origin is not a minimum w.r. to \mathcal{C}^{1} norm either.

In fact, a-priori estimates as in (Lieberman, 1988) may not hold true due to the nonlocal term.

For the more classical kind of result involving the \mathcal{C}^{1} norm, one needs more restrictions, in particular a balance between r and ℓ :

$$
(\ell-1)>(r-p) \frac{p^{*}-1}{p^{*}-p} .
$$

Steps of the proof:

- Obtain the estimate for $\left\|v_{n}\right\|_{\infty}$ as before,
- obtain an estimate for $M\left(\left\|v_{n}\right\|_{W}^{p}\right)^{-1}\left\|f\left(x, v_{n}\right)\right\|_{\infty}$,
- bootstrap to a uniform estimate for the $\mathcal{C}^{1, \alpha}$ norm (via (Lieberman, 1988)),
- apply Ascoli-Arzela Theorem to get a subsequence converging in \mathcal{C}^{1},
- Then the origin is not a minimum w.r. to \mathcal{C}^{1} norm either.

In fact, a-priori estimates as in (Lieberman, 1988) may not hold true due to the nonlocal term.

Applications

Consider the problem

$$
\begin{cases}-\|u\|_{W}^{r-p} \Delta_{p} u=-|u|^{q-2} u+\lambda|u|^{\omega-2} u & \text { in } \Omega \tag{8}\\ u \not \equiv \geq 0, & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $1<q<\omega<p^{*}, \lambda>0$.

- Nonnegative solutions are critical points of

$$
\begin{equation*}
\mathcal{J}^{+}(u)=\frac{1}{r}\|u\|_{W}^{r}+\frac{1}{q}\left\|u^{+}\right\|_{q}^{q}-\frac{\lambda}{\omega}\left\|u^{+}\right\|_{\omega}^{\omega} . \tag{9}
\end{equation*}
$$

- They are positive if $q \geq p$.
- PS condition holds for $\omega \neq r>p$.

First case: If $r>\omega>q$ then \mathcal{J}^{+}is coercive.

Theorem

Let $1<q<\omega<p^{*}, r>\omega$ and $\lambda>0$.

- If $r \in\left(\omega, p^{*}\right)$, then
- no solution (even sign changing) for $\lambda \ll 1$
- at least two nonnegative nontrivial solutions for $\lambda \gg 1$.
- If $r=p^{*}$, then
- no solution (even sign changing) for $\lambda \ll 1$
- at least one nonnegative nontrivial solution for $\lambda \gg 1$.
- If $r>p^{*}$, then there exists at least one nonnegative nontrivial solution for every $\lambda>0$.
\square
- If $r=p$, similar (more precise) result in (Anello, 2012),
using sub and supersolution method.
\square - ir $r>p^{*}$, things change!

First case: If $r>\omega>q$ then \mathcal{J}^{+}is coercive.

Theorem

Let $1<q<\omega<p^{*}, r>\omega$ and $\lambda>0$.

- If $r \in\left(\omega, p^{*}\right)$, then
- no solution (even sign changing) for $\lambda \ll 1$
- at least two nonnegative nontrivial solutions for $\lambda \gg 1$.
- If $r=p^{*}$, then
- no solution (even sign changing) for $\lambda \ll 1$
- at least one nonnegative nontrivial solution for $\lambda \gg 1$.
- If $r>p^{*}$, then there exists at least one nonnegative nontrivial solution for every $\lambda>0$.

Remark

- If $r=p$, similar (more precise) result in (Anello, 2012), using sub and supersolution method.
- if $r \in\left(p, p^{*}\right)$, the $0-2$ solution situation is maintained
- ir $r>p^{*}$, things change!

Proof:

- $r>\omega>q$ then \mathcal{J}^{+}is coercive.
- if $r>p^{*}$ then $\inf \mathcal{J}^{+}<0$. Then at least one solution then the origin is a local minimum.
- With some estimates

Then a necessary condition is

No nontrivial solution for λ small

- inf $\mathcal{J}^{+}<0$ for λ large enough, then global minimum Mountain pass solution.
- if $r=p^{*}$ then for λ large enough we still have the global minimum

Proof:

- $r>\omega>q$ then \mathcal{J}^{+}is coercive.
- if $r>p^{*}$ then $\inf \mathcal{J}^{+}<0$. Then at least one solution
- if $r<p^{*}$ then the origin is a local minimum.
- With some estimates

$$
\|u\|_{\omega}^{\omega} \leq \frac{r-\omega}{r-q}\|u\|_{q}^{q}+\frac{\omega-q}{r-q}\left(C\|u\|_{w}\right)^{r} .
$$

Then a necessary condition is

$$
\begin{aligned}
0 & =\|u\|_{w}^{r}+\|u\|_{q}^{q}-\lambda\|u\|_{\omega}^{\omega} \\
& \geq\left(1-\lambda \frac{\omega-q}{r-q} C^{r}\right)\|u\|_{W}^{r}+\left(1-\lambda \frac{r-\omega}{r-q}\right)\|u\|_{q}^{q}:
\end{aligned}
$$

No nontrivial solution for λ small

- inf $\mathcal{J}^{+}<0$ for λ large enough, then global minimum + Mountain pass solution.

Proof:

- $r>\omega>q$ then \mathcal{J}^{+}is coercive.
- if $r>p^{*}$ then $\inf \mathcal{J}^{+}<0$. Then at least one solution
- if $r<p^{*}$ then the origin is a local minimum.
- With some estimates

$$
\|u\|_{\omega}^{\omega} \leq \frac{r-\omega}{r-q}\|u\|_{q}^{q}+\frac{\omega-q}{r-q}\left(C\|u\|_{w}\right)^{r} .
$$

Then a necessary condition is

$$
\begin{aligned}
0 & =\|u\|_{w}^{r}+\|u\|_{q}^{q}-\lambda\|u\|_{\omega}^{\omega} \\
& \geq\left(1-\lambda \frac{\omega-q}{r-q} C^{r}\right)\|u\|_{w}^{r}+\left(1-\lambda \frac{r-\omega}{r-q}\right)\|u\|_{q}^{q}:
\end{aligned}
$$

No nontrivial solution for λ small

- inf $\mathcal{J}^{+}<0$ for λ large enough, then global minimum + Mountain pass solution.
- if $r=p^{*}$ then for λ large enough we still have the global minimum .

Second case: If $r<\omega$ then \mathcal{J}^{+}is not coercive.
Theorem
Suppose $1<q<\omega<p^{*}$ and $r \in[p, \omega)$.
Then at least one nonnegative nontrivial solution for all $\lambda>0$.

Proof:

- PS holds true,
- $\mathcal{J}^{+}(t u) \rightarrow-\infty$ if $t \rightarrow \infty$ and $u>0$,
- the origin is a minimum.
\Longrightarrow Mountain pass solution.

Second case: If $r<\omega$ then \mathcal{J}^{+}is not coercive.

Theorem

Suppose $1<q<\omega<p^{*}$ and $r \in[p, \omega)$.
Then at least one nonnegative nontrivial solution for all $\lambda>0$.

Proof:

- PS holds true,
- $\mathcal{J}^{+}(t u) \rightarrow-\infty$ if $t \rightarrow \infty$ and $u>0$,
- the origin is a minimum.
\Longrightarrow Mountain pass solution.

Third case: M not a pure power.

Theorem

Let $1<q<\omega<p^{*}$ and $M\left(s^{p}\right)=\min \left\{s^{r_{0}-p} ; s^{r_{\infty}-p}\right\}$ with $r_{\infty} \in(p, \omega)$,

Then the problem

$$
\begin{cases}-M\left(\|u\|_{W}^{p}\right) \Delta_{p} u=-|u|^{q-2} u+\lambda|u|^{\omega-2} u & \text { in } \Omega \tag{10}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

has at least one nonnegative nontrivial solution for $\lambda>0$ small enough. Moreover,

Third case: M not a pure power.

Theorem

$$
\begin{aligned}
& \text { Let } 1<q<\omega<p^{*} \text { and } \\
& M\left(s^{p}\right)=\min \left\{s^{r_{0}-p} ; s^{r_{\infty}-p}\right\} \\
& \text { with } r_{\infty} \in(p, \omega) \text {, }
\end{aligned}
$$

Then the problem

$$
\begin{cases}-M\left(\|u\|_{W}^{p}\right) \Delta_{p} u=-|u|^{q-2} u+\lambda|u|^{\omega-2} u & \text { in } \Omega \tag{10}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

has at least one nonnegative nontrivial solution for $\lambda>0$ small enough. Moreover,
(1) if $r_{0}<p^{*}$, then the nonnegative nontrivial solution exists for every $\lambda>0$,
(2) if $r_{0}>p^{*}$, then a further nonnegative nontrivial solution exists for $\lambda>0$ small enough.

Proof:

- PS holds true for the associated $\mathcal{J}^{+}\left(r_{\infty}<\omega\right)$
- $\mathcal{J}^{+}(t u) \rightarrow-\infty$ if $t \rightarrow \infty$ and $u>0$, (ω largest power)
- Since $\mathcal{J}^{+}(u) \geq \frac{1}{p} \widehat{M}\left(\|u\|_{W}^{p}\right)-\lambda C\|u\|_{W}^{\omega}$, there exist $\Lambda, S, \rho>0$ such that

$$
\mathcal{J}^{+}(u) \geq S>0 \quad \text { for }\|u\|_{w}=\rho \text { and } \lambda \in[0, \Lambda)
$$

\Longrightarrow Mountain pass solution for $\lambda \in[0, \Lambda)$.

- If $r_{0}<p^{*}$ the origin is a local minimum,
- If $r_{0}>p^{*}$ the origin is NOT a local minimum, \Longrightarrow for $\lambda \in[0, \Lambda)$, MP solution + local minimum in B_{ρ}

Proof:

- PS holds true for the associated $\mathcal{J}^{+}\left(r_{\infty}<\omega\right)$
- $\mathcal{J}^{+}(t u) \rightarrow-\infty$ if $t \rightarrow \infty$ and $u>0$, (ω largest power)
- Since $\mathcal{J}^{+}(u) \geq \frac{1}{p} \widehat{M}\left(\|u\|_{W}^{p}\right)-\lambda C\|u\|_{W}^{\omega}$, there exist $\Lambda, S, \rho>0$ such that

$$
\mathcal{J}^{+}(u) \geq S>0 \quad \text { for }\|u\|_{w}=\rho \text { and } \lambda \in[0, \Lambda)
$$

\Longrightarrow Mountain pass solution for $\lambda \in[0, \Lambda)$.

- If $r_{0}<p^{*}$ the origin is a local minimum, \Longrightarrow MP solution $\forall \lambda>0$.
- If $r_{0}>p^{*}$ the origin is NOT a local minimum, \Longrightarrow for $\lambda \in[0, \Lambda)$, MP solution + local minimum in B_{ρ}.

A-priori estimates

Consider the nonlocal problem (P_{a})

$$
\begin{cases}-\|u\|_{W}^{r-2} \Delta u=g_{a}(u)=-a u^{q-1}+u^{\omega-1} & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

with parameter $a \in(0, A]$ and suitable $1<q<\omega<2$.
If $r=2$, there exists $\Lambda>0$ such that

$$
\left|g_{a}(s)\right| \leq \Lambda \text { for every } s \in[-D, D], a \in(0, A] .
$$

Then by (Lieberman, 1988:Theorem 1) there exist $\beta(\Lambda, N) \in(0,1)$ and $C(\Lambda, D, N, \Omega)>0$, such that

$$
\|u\|_{\mathcal{C}^{1, \beta}} \leq C
$$

for any weak solution satisfying $\|u\|_{\infty}<D$.
Question: does the same hold with $r>2$?

Writing the nonlocal problem as

$$
-\Delta u=\|u\|_{W}^{2-r} g_{a}(u)
$$

the RHS is not bounded if $\|u\|_{W} \rightarrow 0$. Then one cannot directly apply (Lieberman, 1988) result.

Proposition ((Iturriaga and M., 2019))

Idea of the proof: By (Il'yasov and Egorov, 2010), for suitable $1<q<\omega, b_{0}$, there exists a compact support solution Φ for

Writing the nonlocal problem as

$$
-\Delta u=\|u\|_{W}^{2-r} g_{a}(u)
$$

the RHS is not bounded if $\|u\|_{W} \rightarrow 0$. Then one cannot directly apply (Lieberman, 1988) result.
Actually,

Proposition ((Iturriaga and M., 2019))

If $r \in\left(2+\frac{2}{N}, 2^{*}\right), N \geq 3$, then there exists a family of functions, satisfying problem $\left(P_{a}\right)$ with $a \in(0,1]$, which is bounded in L^{∞} but unbounded in \mathcal{C}^{1}.

Idea of the proof: By (Il'yasov and Egorov, 2010), for suitable $1<q<\omega, b_{0}$, there exists a compact support solution Φ for

Writing the nonlocal problem as

$$
-\Delta u=\|u\|_{W}^{2-r} g_{a}(u)
$$

the RHS is not bounded if $\|u\|_{W} \rightarrow 0$. Then one cannot directly apply (Lieberman, 1988) result.
Actually,

Proposition ((Iturriaga and M., 2019))

If $r \in\left(2+\frac{2}{N}, 2^{*}\right), N \geq 3$, then there exists a family of functions, satisfying problem (P_{a}) with $a \in(0,1]$, which is bounded in L^{∞} but unbounded in \mathcal{C}^{1}.

Idea of the proof: By (Il'yasov and Egorov, 2010), for suitable $1<q<\omega, b_{0}$, there exists a compact support solution Φ for

$$
\begin{cases}-\Delta u=-u^{q-1}+b_{0} u^{\omega-1} & \text { in } B, \\ u=0 & \text { on } \partial B\end{cases}
$$

Then consider for $\lambda \geq 1, \mu \in(0,1]$, the family of functions

$$
\Phi_{\lambda, \mu}(x):= \begin{cases}\mu \Phi(\lambda x) & \text { in } B_{1 / \lambda} \\ 0 & \text { in } \Omega \backslash B_{1 / \lambda}\end{cases}
$$

where $B_{1 / \lambda}$ is the ball centered at the origin with radius $1 / \lambda$. setting $\mu(\lambda)=\lambda^{-\alpha}$, for suitable $\alpha \in(0,1)$, one obtains the family in the claim.

Then consider for $\lambda \geq 1, \mu \in(0,1]$, the family of functions

$$
\Phi_{\lambda, \mu}(x):= \begin{cases}\mu \Phi(\lambda x) & \text { in } B_{1 / \lambda} \\ 0 & \text { in } \Omega \backslash B_{1 / \lambda}\end{cases}
$$

where $B_{1 / \lambda}$ is the ball centered at the origin with radius $1 / \lambda$. setting $\mu(\lambda)=\lambda^{-\alpha}$, for suitable $\alpha \in(0,1)$, one obtains the family in the claim.

Then consider for $\lambda \geq 1, \mu \in(0,1]$, the family of functions

$$
\Phi_{\lambda, \mu}(x):= \begin{cases}\mu \Phi(\lambda x) & \text { in } B_{1 / \lambda} \\ 0 & \text { in } \Omega \backslash B_{1 / \lambda}\end{cases}
$$

where $B_{1 / \lambda}$ is the ball centered at the origin with radius $1 / \lambda$. setting $\mu(\lambda)=\lambda^{-\alpha}$, for suitable $\alpha \in(0,1)$, one obtains the family in the claim.

Then consider for $\lambda \geq 1, \mu \in(0,1]$, the family of functions

$$
\Phi_{\lambda, \mu}(x):= \begin{cases}\mu \Phi(\lambda x) & \text { in } B_{1 / \lambda} \\ 0 & \text { in } \Omega \backslash B_{1 / \lambda}\end{cases}
$$

where $B_{1 / \lambda}$ is the ball centered at the origin with radius $1 / \lambda$. setting $\mu(\lambda)=\lambda^{-\alpha}$, for suitable $\alpha \in(0,1)$, one obtains the family in the claim.

Then consider for $\lambda \geq 1, \mu \in(0,1]$, the family of functions

$$
\Phi_{\lambda, \mu}(x):= \begin{cases}\mu \Phi(\lambda x) & \text { in } B_{1 / \lambda} \\ 0 & \text { in } \Omega \backslash B_{1 / \lambda}\end{cases}
$$

where $B_{1 / \lambda}$ is the ball centered at the origin with radius $1 / \lambda$. setting $\mu(\lambda)=\lambda^{-\alpha}$, for suitable $\alpha \in(0,1)$, one obtains the family in the claim.

THE END!

Alves，C．O．and F．J．S．A．Corrêa（2001）．＂On existence of solutions for a class of problem involving a nonlinear operator＂．In：Comm．Appl．Nonlinear Anal．8．2，pp．43－56．
E Alves，C．O．and F．J．S．A．Corrêa（2015）．＂A sub－supersolution approach for a quasilinear Kirchhoff equation＂．In：J．Math． Phys．56．5，pp．051501， 12.
（ Anello，G．（2012）．＂Multiplicity and asymptotic behavior of nonnegative solutions for elliptic problems involving nonlinearities indefinite in sign＂．In：Nonlinear Anal．75．8， pp．3618－3628．
围 Brezis，H．and L．Nirenberg（1993）．＂H^{1} versus C^{1} local minimizers＂．In：C．R．Acad．Sci．Paris Sér．I Math．317．5， pp．465－472．
目 Brock，F．，L．Iturriaga，and P．Ubilla（2008）．＂A Multiplicity Result for the p－Laplacian Involving a Parameter＂．In：Ann．Henri Poincaré 9．7，pp．1371－1386．
围 Fan，X．（2010）．＂A Brezis－Nirenberg type theorem on local minimizers for $p(x)$－Kirchhoff Dirichlet problems and applications＂．In：Differ．Equ．Appl．2．4，pp．537－551．

Figueiredo, G. M. and A. Suárez (2018). "Some remarks on the comparison principle in Kirchhoff equations". In: Rev. Mat. Iberoam. 34.2, pp. 609-620.
E García Azorero, J. P., I. Peral Alonso, and J. J. Manfredi (2000). "Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations". In: Commun. Contemp. Math. 2.3, pp. 385-404.
: García-Melián, J. and L. Iturriaga (2016). "Some counterexamples related to the stationary Kirchhoff equation". In: Proc. Amer. Math. Soc. 144.8, pp. 3405-3411.
围 Guo, Z. and Z. Zhang (2003). " $W^{1, p}$ versus C^{1} local minimizers and multiplicity results for quasilinear elliptic equations". In: J. Math. Anal. Appl. 286.1, pp. 32-50.

国 II'yasov, Y. and Y. Egorov (2010). "Hopf boundary maximum principle violation for semilinear elliptic equations". In: Nonlinear Anal. 72.7-8, pp. 3346-3355.
© Iturriaga, L. and E. M. (2018). "On necessary conditions for the comparison principle and the sub- and supersolution method
for the stationary Kirchhoff equation". In: J. Math. Phys. 59.1, pp. 011506, 6.
Iturriaga, L. and E. M. (2019). "Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems". In: submitted, arXiv:1906.07685v1.
Kirchhoff, G. (1883). "Mechanik". In: Teubner, Leipzig.
Lieberman, G. M. (1988). "Boundary regularity for solutions of degenerate elliptic equations". In: Nonlinear Anal. 12.11, pp. 1203-1219.

[^0]: ${ }^{1}$ L. Iturriaga and E. M. (2018). "On necessary conditions for the comparison principle and the sub- and supersolution method for the stationary Kirchhoff equation". In: J. Math. Phys. 59.1, pp. 日11506, 6 三

