# On almost resonant elliptic problems ${ }^{1}$ 

Eugenio Massa and Rafael Antônio Rossato ${ }^{\text {b }}$<br>${ }^{a}$ ICMC-USP.<br>${ }^{b}$ Universidade Federal de Uberlândia,

Valparaíso, November 2016

## The main problem

We consider the following system:

$$
\begin{cases}-\Delta u=a u+b v \pm\left(f_{1}(x, v)+h_{1}(x)\right) & \text { in } \Omega, \\ -\Delta v=b u+a v \pm\left(f_{2}(x, u)+h_{2}(x)\right) & \text { in } \Omega, \\ u(x)=v(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where

- $\Omega \subset \mathbb{R}^{N}$ bounded domain,
- $a, b \in \mathbb{R}$,
- $h_{1}, h_{2} \in L^{2}(\Omega)$,
- $f_{1}, f_{2}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ sublinear Carathéodory functions:
$\exists S>0, q \in(1,2)$, such that $\left|f_{i}(x, t)\right| \leq S\left(1+|t|^{q-1}\right), i=1,2$.
Purpose: to obtain multiplicity of solutions, when the linear part is "near
resonance": that is, $a+b$ or $a-b$ near some eigenvalue


## The main problem

We consider the following system:

$$
\begin{cases}-\Delta u=a u+b v \pm\left(f_{1}(x, v)+h_{1}(x)\right) & \text { in } \Omega, \\ -\Delta v=b u+a v \pm\left(f_{2}(x, u)+h_{2}(x)\right) & \text { in } \Omega, \\ u(x)=v(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where

- $\Omega \subset \mathbb{R}^{N}$ bounded domain,
- $a, b \in \mathbb{R}$,
- $h_{1}, h_{2} \in L^{2}(\Omega)$,
- $f_{1}, f_{2}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ sublinear Carathéodory functions:
$\exists S>0, q \in(1,2)$, such that $\left|f_{i}(x, t)\right| \leq S\left(1+|t|^{q-1}\right), i=1,2$.
Purpose: to obtain multiplicity of solutions, when the linear part is "near resonance": that is, $a+b$ or $a-b$ near some eigenvalue $\lambda_{k}$ ).


## Motivation: the scalar problem

Main motivation: de Paiva, M. [dPM08]: for the scalar equivalent

$$
\left\{\begin{align*}
-\Delta u & =\lambda u \pm f(x, u)+h(x) & & \text { in } \Omega \\
u & =0 & & \text { in } \partial \Omega
\end{align*}\right.
$$

where $h \in L^{2}(\Omega), f$ is sublinear, and

$$
\left\{\begin{array}{l}
\lim _{|t| \rightarrow \infty} F(x, t)=+\infty \text { uniformly } x \in \Omega, \\
\int_{\Omega} h \phi d x=0 \quad \forall \phi \in H_{\lambda_{k}} .
\end{array}\right.
$$

it was proved that
a) there exists $\varepsilon_{0}>0$, such that, if $\lambda \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$, then two solutions exist for problem (1.2+);
b) there exists $\varepsilon_{1}>0$, such that, if $\lambda \in\left(\lambda_{k}, \lambda_{k}+\varepsilon_{1}\right)$ then two solutions exist for problem (1.2-).

## The results for the system

For our system we assume an analogous condition:

$$
\left\{\begin{array}{l}
\text { (i) } \quad \lim _{|t| \rightarrow \infty} F_{i}(x, t)=+\infty, \text { unif. with resp. to } x \in \Omega, i=1,2,  \tag{F}\\
\text { (ii) } \quad \int_{\Omega} h_{1} \phi+h_{2} \psi=0, \quad \text { for every }(\phi, \psi) \in Z,
\end{array}\right.
$$

## Theorem

Assume the given hypotheses, let $\lambda_{k}, \lambda_{l} \in \sigma(-\Delta)$,

$$
Z=\operatorname{span}\left\{(\phi, \phi): \phi \in H_{\lambda_{k}}\right\}
$$

Then
(a) Given $\delta>0$, there exists $\varepsilon_{0}>0$ such that, if

$$
a-b \in\left(\lambda_{I-1}+\delta, \lambda_{I}-\delta\right) \text { and } a+b \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right) \text {, then Problem }
$$

$(1.1+)$ has two distinct solutions.
(b) Given $\delta>0$, there exists $\varepsilon_{1}>0$ such that, if $a-b \in\left(\lambda_{I-1}+\delta, \lambda_{I}-\delta\right)$ and $a+b \in\left(\lambda_{k}, \lambda_{k}+\varepsilon_{1}\right)$, then Problem (1.1-) has two distinct solutions.

## Theorem

Assume the given hypotheses, let $\lambda_{k}, \lambda_{l} \in \sigma(-\Delta)$,

$$
Z=\operatorname{span}\left\{(\phi,-\phi): \phi \in H_{\lambda_{k}}\right\} .
$$

Then
(a) Given $\delta>0$, there exists $\varepsilon_{0}>0$ such that, if $a+b \in\left(\lambda_{I-1}+\delta, \lambda_{I}-\delta\right)$ and $a-b \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$, then Problem (1.1-) has two distinct solutions.
(b) Given $\delta>0$, there exists $\varepsilon_{1}>0$ such that, if $a+b \in\left(\lambda_{I-1}+\delta, \lambda_{I}-\delta\right)$ and $a-b \in\left(\lambda_{k}, \lambda_{k}+\varepsilon_{1}\right)$, then Problem (1.1+) has two distinct solutions.

## Double resonance

## Theorem

Assume the given hypotheses，let $\lambda_{k}, \lambda_{l} \in \sigma(-\Delta)$（may be the same）and $Z=\operatorname{span}\left\{(\phi, \phi): \phi \in H_{\lambda_{k}}, \quad(\phi,-\phi): \phi \in H_{\lambda_{1}}\right\}$ ．Then
（e）there exists $\varepsilon_{2}>0$ such that，if $a-b \in\left(\lambda_{1}, \lambda_{1}+\varepsilon_{2}\right)$ and $a+b \in\left(\lambda_{k}-\varepsilon_{2}, \lambda_{k}\right)$ ，then problem（1．1＋）has two distinct solutions．

## Theorem

Assume the given hypotheses，let $\lambda_{k}, \lambda_{l} \in \sigma(-\Delta)$（may be the same）and $Z=\operatorname{span}\left\{(\phi,-\phi): \phi \in H_{\lambda_{k}}, \quad(\phi, \phi): \phi \in H_{\lambda_{l}}\right\}$ ．Then
（f）there exists $\varepsilon_{2}>0$ such that，if $a-b \in\left(\lambda_{k}-\varepsilon_{2}, \lambda_{k}\right)$ and $a+b \in\left(\lambda_{l}, \lambda_{1}+\varepsilon_{2}\right)$ ，then problem（1．1－）has two distinct solutions．

Figure: Sketch of the regions with two solutions for problem (1.1-)


## More literature

- Scalar problem:
- $\lambda_{1}, O D E$, bifurcation and degree. Mawhin-Schmitt (1990), Badiale-Lupo (1989), Lupo-Ramos (1990)
- $\lambda_{1}, P D E$, bifurcation and degree. Chiappinelli-Mawhin-Nugari (1992), Chiappinelli-de Figueiredo (1993),
- $\lambda_{1}, P D E$, variational techniques. Ramos-Sanchez (1997), Ma-Ramos-Sanchez (1997), Ma-Pelicer (2002) (p-Laplacian)


## - $\lambda_{k}$, ODE, bifurcation and degree. Lupo-Ramos (1990)

 (2011)- Systems
- in gradient form. Ou-Tang (2009), Suo-Tang (2010), An-Suo (2012)
- in (a different) Hamiltonian form Ke-Tang (2011)


## More literature

- Scalar problem:
- $\lambda_{1}, O D E$, bifurcation and degree. Mawhin-Schmitt (1990), Badiale-Lupo (1989), Lupo-Ramos (1990)
- $\lambda_{1}, P D E$, bifurcation and degree. Chiappinelli-Mawhin-Nugari (1992), Chiappinelli-de Figueiredo (1993),
- $\lambda_{1}, P D E$, variational techniques. Ramos-Sanchez (1997), Ma-Ramos-Sanchez (1997), Ma-Pelicer (2002) (p-Laplacian)
- $\lambda_{k}, O D E$, bifurcation and degree. Lupo-Ramos (1990)
- $\lambda_{k}$, PDE, variational techniques. de Paiva-M. (2008), Ke-Tang (2011)



## More literature

- Scalar problem:
- $\lambda_{1}, O D E$, bifurcation and degree. Mawhin-Schmitt (1990), Badiale-Lupo (1989), Lupo-Ramos (1990)
- $\lambda_{1}, P D E$, bifurcation and degree. Chiappinelli-Mawhin-Nugari (1992), Chiappinelli-de Figueiredo (1993),
- $\lambda_{1}, P D E$, variational techniques. Ramos-Sanchez (1997), Ma-Ramos-Sanchez (1997), Ma-Pelicer (2002) (p-Laplacian)
- $\lambda_{k}$, ODE, bifurcation and degree. Lupo-Ramos (1990)
- $\lambda_{k}, P D E$, variational techniques. de Paiva-M. (2008), Ke-Tang (2011)
- Systems
- in gradient form. Ou-Tang (2009), Suo-Tang (2010), An-Suo (2012),
- in (a different) Hamiltonian form Ke-Tang (2011)


## Background

For the problem

$$
\left\{\begin{array}{rlrl}
-\Delta u & =\lambda u+h(x) & \text { in } \Omega,  \tag{1.1}\\
u & =0 & & \text { in } \partial \Omega,
\end{array}\right.
$$

one has

- If $\lambda$ is NOT an eigenvalue: there there exists a unique solution.
- If $\lambda=\lambda_{k}$ is an eigenvalue: there exists no solution or infinte solutions (depending if $\int_{\Omega} h \phi d x \neq 0$ or $=0 \quad \forall \phi \in H_{\lambda_{k}}$ )
However, the solution when $\lambda \in\left(\lambda_{k}, \lambda_{k}+\varepsilon_{1}\right)$ and the solution when $\lambda \in\left(\lambda_{k}-\varepsilon_{1}, \lambda_{k}\right)$ are "different" in several ways.


## Variational methods

In order to find a solutions of

$$
\left\{\begin{align*}
-\Delta u & =f(x, u) & & \text { in } \Omega,  \tag{1.2}\\
u & =0 & & \text { in } \partial \Omega .
\end{align*}\right.
$$

We define a functional $J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ :

$$
J(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} F(x, u)
$$

(under suitable hypotheses) it turns out that $J$ is smooth and critical points of $J\left(\right.$ i.e. $\left.u: J^{\prime}(u)=0\right)$ and solutions of the equation, are the same thing.

Example: $J: \mathbb{R} \rightarrow \mathbb{R}, J \in \mathcal{C}^{1}(\mathbb{R}), \lim _{t \rightarrow \pm \infty} J(t)=+\infty$
implies $J$ has a global minimum, which is a crtical point.

## Variational methods

In order to find a solutions of

$$
\left\{\begin{align*}
-\Delta u & =f(x, u) & & \text { in } \Omega,  \tag{1.2}\\
u & =0 & & \text { in } \partial \Omega .
\end{align*}\right.
$$

We define a functional $J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ :

$$
J(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} F(x, u)
$$

(under suitable hypotheses) it turns out that $J$ is smooth and critical points of $J$ (i.e. $\left.u: J^{\prime}(u)=0\right)$ and solutions of the equation, are the same thing.
So: how do we find critical points of $J$ ?
Example: $J: \mathbb{R} \rightarrow \mathbb{R}, J \in \mathcal{C}^{1}(\mathbb{R}), \lim _{t \rightarrow \pm \infty} J(t)=+\infty$ implies $J$ has a global minimum, which is a crtical point.

## Variational methods

Some classical Critical point theorems:

## Definition

$J \in \mathcal{C}^{1}(E, \mathbb{R})$ satisfies the PS condition:
For each sequence $\left\{u_{n}\right\} \subseteq E$ such that $\left|J\left(u_{n}\right)\right| \leq C$ and $J^{\prime}\left(u_{n}\right) \rightarrow 0$ there exists a (strongly) convergent subsequence.

## Theorem (Mountain Pass Theorem)

(1) E Banach space; $I \in \mathcal{C}^{1}(E, \mathbb{R})$ satisfies the $P S$ condition;
(2) $I(0)=0$;
(3) $\exists \rho, \alpha>0$ such that $I(u) \geq \alpha$ for all $u$ such that $\|u\|_{E}=\rho$;
(1) $\exists e \in E$ such that $\|e\|_{E}>\rho$ and $I(e)<0$.

Moreover, let

- $\Gamma=\left\{\gamma \in \mathcal{C}^{0}([0,1] ; E)\right.$ such that $\gamma(0)=0$ and $\left.\gamma(1)=e\right\}$;
- $c=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I(\gamma(t))$.

Then $c \geq \alpha$ and there exists a critical point at level $c$.

## Variational methods

## Theorem (Saddle Point Theorem)

(1) E Banach space; $I \in \mathcal{C}^{1}(E, \mathbb{R})$ satisfies the PS condition;
(2) $E=V \oplus W$ with $\operatorname{dim}(V)<\infty$;

- $\exists \beta<\alpha$ and $\rho>0$ such that
$-I(u) \geq \alpha$ for all $u \in W$;
$-I(u) \leq \beta$ for all $u \in B_{\rho}^{V}=\{u \in V,\|u\|=\rho\} ;$
Moreover, let
- $\Gamma=\left\{\gamma \in \mathcal{C}^{0}\left(B_{\rho}^{V} ; E\right)\right.$ such that $\left.\left.\gamma\right|_{\partial B_{\rho}^{V}}=i d\right\}$
- $c=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I(\gamma(t))$.

Then $c \geq \alpha$ and there exists a critical point at level $c$.

## Variational methods

Let $\lambda \in\left(\lambda_{k-1}, \lambda_{k}\right)$ and consider again

$$
\left\{\begin{align*}
-\Delta u & =\lambda u+h(x) & & \text { in } \Omega  \tag{1.3}\\
u & =0 & & \text { in } \partial \Omega
\end{align*}\right.
$$

Let

$$
\begin{array}{rl}
V=\oplus_{i=1}^{k-1} H_{\lambda_{i}} & W=V^{\perp} \\
J(u) & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{\lambda}{2} \int_{\Omega} u^{2}-\int_{\Omega} h u
\end{array}
$$

By properties of the eigenspaces

$$
\int_{\Omega}|\nabla u|^{2} \leq \lambda_{k-1} \int_{\Omega} u^{2} \text { in } V \quad \int_{\Omega}|\nabla u|^{2} \geq \lambda_{k} \int_{\Omega} u^{2} \text { in } W
$$

In the end one gets the conditions of the Saddle Point Theorem. If $\lambda \in\left(\lambda_{k-1}, \lambda_{k}\right)$ it is the same... but with different spaces involved!

## Scalar problem

Let us go back to the scalr problem in [dPM08]:

$$
\left\{\begin{align*}
-\Delta u & =\lambda u \pm f(x, u)+h(x) & & \text { in } \Omega \\
u & =0 & & \text { in } \partial \Omega
\end{align*}\right.
$$

where $h \in L^{2}(\Omega), f$ is sublinear, and

$$
\left\{\begin{array}{l}
\lim _{|t| \rightarrow \infty} F(x, t)=+\infty \text { uniformly } x \in \Omega \\
\int_{\Omega} h \phi d x=0 \quad \forall \phi \in H_{\lambda_{k}}
\end{array}\right.
$$

How do we prove that there exists $\varepsilon_{0}>0$, such that, if $\lambda \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$, then two solutions exist for problem (1.2+)?

The idea below this kind of problem is the following: passing the eigenvalue the saddle point geometry changes:

## Scalar problem

Let us go back to the scalr problem in [dPM08]:

$$
\left\{\begin{align*}
-\Delta u & =\lambda u \pm f(x, u)+h(x) & & \text { in } \Omega \\
u & =0 & & \text { in } \partial \Omega
\end{align*}\right.
$$

where $h \in L^{2}(\Omega), f$ is sublinear, and

$$
\left\{\begin{array}{l}
\lim _{|t| \rightarrow \infty} F(x, t)=+\infty \text { uniformly } x \in \Omega, \\
\int_{\Omega} h \phi d x=0 \quad \forall \phi \in H_{\lambda_{k}} .
\end{array}\right.
$$

How do we prove that there exists $\varepsilon_{0}>0$, such that, if $\lambda \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$, then two solutions exist for problem (1.2+)?

The idea below this kind of problem is the following: passing the eigenvalue the saddle point geometry changes: near the eigenvalue the perturbation $f$ makes it possible to have both saddle geometries at the same time.

## Some notation

Functional:
$J^{ \pm}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}:$
$J(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x \mp \int_{\Omega} F(x, u) d x-\int_{\Omega} h u d x$
$V=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{k-1}\right\}$,
$Z=\operatorname{span}\left\{\phi_{k}, \ldots, \phi_{k+m-1}\right\}=H_{\lambda_{k}}$, $W=(V \oplus Z)^{\perp}$,
$S_{V}, S_{V Z}, S_{Z W}$, the unit spheres in $V, V \oplus Z, Z \oplus W$
$B_{V}, B_{V Z}, B_{Z W}$, the unit balls.
however,

## Some notation

Functional:
$J^{ \pm}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}:$
$J(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x \mp \int_{\Omega} F(x, u) d x-\int_{\Omega} h u d x$
$V=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{k-1}\right\}$,
$Z=\operatorname{span}\left\{\phi_{k}, \ldots, \phi_{k+m-1}\right\}=H_{\lambda_{k}}$,
$W=(V \oplus Z)^{\perp}$,
$S_{V}, S_{V Z}, S_{Z W}$, the unit spheres in $V, V \oplus Z, Z \oplus W$ $B_{V}, B_{V Z}, B_{Z W}$, the unit balls.

If $\lambda \notin \sigma(-\Delta)$ there exists a solution from Saddle Point Theorem. however, a suitable behaviour of $f$ may give rise to a further solution.

## One solution




$$
\begin{aligned}
\left(\lambda<\lambda_{k}\right) \quad c_{k-1} & =\inf _{\gamma \in \Gamma_{k-1}} \sup _{v \in R B_{V}} J(\gamma(v)) . \\
\Gamma_{k-1} & =\left\{\gamma \in \mathcal{C}^{0}\left(R B_{V} ; H_{0}^{1}\right) \text { s.t. }\left.\gamma\right|_{R S_{V}}=I d\right\} \\
\left(\lambda>\lambda_{k}\right) \quad c_{k} & =\inf _{\gamma \in \Gamma_{k}} \sup _{v \in R B_{V Z}} J(\gamma(v)) . \\
\Gamma_{k} & =\left\{\gamma \in \mathcal{C}^{0}\left(R B_{V Z} ; H_{0}^{1}\right) \text { s.t. }\left.\gamma\right|_{R S_{V Z}}=I d\right\}
\end{aligned}
$$

## Proposition

In the given hypotheses:

$$
\begin{equation*}
\exists D_{W}: \quad J^{+}(u) \geq D_{W} \quad \text { for } u \in W \text {; } \tag{1.4}
\end{equation*}
$$

there exist $R^{+}, \varepsilon_{0}>0$ such that, for any $\lambda \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$

$$
\begin{array}{ll}
J^{+}(u)<D_{W} & \text { for } u \in R^{+} S_{V Z}, \\
& \text { for } u \in V,\|u\| \geq R^{+} ; \tag{1.6}
\end{array}
$$

if now we fix $\lambda \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$ then

$$
\begin{array}{rll}
\exists D_{\lambda}: & J^{+}(u) \geq D_{\lambda} & \text { for } u \in Z \oplus W, \\
\exists \rho_{\lambda}^{+}>R^{+}: & J^{+}(u)<D_{\lambda} & \text { for } u \in \rho_{\lambda}^{+} S_{V} . \tag{1.8}
\end{array}
$$

W


We have $c_{k} \geq D_{W}$,

then the solutions are
distinct.




We have

$$
c_{k} \geq D_{W},
$$

$$
c_{k-1} \geq D_{\lambda},
$$

but also

$$
c_{k-1}<D_{W},
$$

then the solutions are distinct.

## Back to the system

$$
\begin{cases}-\Delta u=a u+b v \pm\left(f_{1}(x, v)+h_{1}(x)\right) & \text { in } \Omega \\ -\Delta v=b u+a v \pm\left(f_{2}(x, u)+h_{2}(x)\right) & \text { in } \Omega, \\ u(x)=v(x)=0 & \text { on } \partial \Omega\end{cases}
$$

Remarks:

- The system is of Hamiltonian type; then variational but with strongly indefinite functional: we use a Galerkin approximation.
below the eigenvalue (saddle point theorems or linking spheres
theorem, depending if the almost resonant eigenspace is part of the finite / infinite dimensional subspace in the splitting). For the system, having to use Galerkin aproximation, the same: a finite dimensional saddle point.


## Back to the system

$$
\begin{cases}-\Delta u=a u+b v \pm\left(f_{1}(x, v)+h_{1}(x)\right) & \text { in } \Omega \\ -\Delta v=b u+a v \pm\left(f_{2}(x, u)+h_{2}(x)\right) & \text { in } \Omega \\ u(x)=v(x)=0 & \text { on } \partial \Omega\end{cases}
$$

Remarks:

- The system is of Hamiltonian type; then variational but with strongly indefinite functional: we use a Galerkin approximation.
- In the scalar case we had a different proof for the case above or below the eigenvalue (saddle point theorems or linking spheres theorem, depending if the almost resonant eigenspace is part of the finite / infinite dimensional subspace in the splitting). For the system, having to use Galerkin aproximation, the geometry is always the same: a finite dimensional saddle point.


## Idea of the Proof

We consider the functionals

$$
\begin{equation*}
J_{a, b}^{ \pm}(u, v)= \pm \frac{1}{2} B_{a, b}((u, v),(u, v))-\mathcal{F}(u, v)-\mathcal{H}(u, v) . \tag{2.1}
\end{equation*}
$$

defined in $E=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$, where

$$
\begin{gathered}
\mathcal{F}(u, v)=\int_{\Omega} F_{1}(x, v)+\int_{\Omega} F_{2}(x, u), \quad \mathcal{H}(u, v)=\int_{\Omega} h_{1} v+\int_{\Omega} h_{2} u, \\
B_{a, b}((u, v),(\phi, \psi))=\int_{\Omega} \nabla u \nabla \psi+\int_{\Omega} \nabla v \nabla \phi-a \int_{\Omega}(u \psi+v \phi)-b \int_{\Omega}(u \phi+v \psi) .
\end{gathered}
$$

We consider the eigenvalues and eigenfunctions of $B$ :

$$
\mu_{ \pm i}=\frac{-b \pm\left(\lambda_{i}-a\right)}{\lambda_{i}}, \quad \psi_{ \pm i}=\frac{\left(\phi_{i}, \pm \phi_{i}\right)}{\sqrt{2 \lambda_{i}}}, \quad i \in \mathbb{N}
$$

Then

$$
\begin{equation*}
a \pm b=\lambda_{i} \Rightarrow \mu_{ \pm i}=0 \tag{2.2}
\end{equation*}
$$

So we define

$B_{V}, B_{V Z}, B_{W}, B_{Z W}$ closed unitary balls in $V, V \oplus Z, W$ e $Z \oplus W$
$S_{V}, S_{V Z}, S_{W}$ e $S_{z W}$ their relative boundaries

We consider the eigenvalues and eigenfunctions of $B$ :

$$
\mu_{ \pm i}=\frac{-b \pm\left(\lambda_{i}-a\right)}{\lambda_{i}}, \quad \psi_{ \pm i}=\frac{\left(\phi_{i}, \pm \phi_{i}\right)}{\sqrt{2 \lambda_{i}}}, \quad i \in \mathbb{N}
$$

Then

$$
\begin{gather*}
\left\|\boldsymbol{\psi}_{i}\right\|_{E}=1, \quad\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle_{E}=\delta_{i, j}, \quad B\left(\psi_{i}, \psi_{j}\right)=\mu_{i} \delta_{i, j}, \quad i, j \in \mathbb{Z}_{0}=\mathbb{Z} \backslash\{0\} . \\
a \pm b=\lambda_{i} \Rightarrow \mu_{ \pm i}=0 \tag{2.2}
\end{gather*}
$$

So we define

$B_{V}, B_{V Z}, B_{W}, B_{Z W}$ closed unitary balls in $V, V \oplus Z, W$ e $Z \oplus W$
$S_{V}, S_{V Z}, S_{W}$ e $S_{z W}$ their relative boundaries

We consider the eigenvalues and eigenfunctions of $B$ :

$$
\mu_{ \pm i}=\frac{-b \pm\left(\lambda_{i}-a\right)}{\lambda_{i}}, \quad \psi_{ \pm i}=\frac{\left(\phi_{i}, \pm \phi_{i}\right)}{\sqrt{2 \lambda_{i}}}, \quad i \in \mathbb{N}
$$

Then

$$
\begin{gather*}
\left\|\boldsymbol{\psi}_{i}\right\|_{E}=1, \quad\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle_{E}=\delta_{i, j}, \quad B\left(\psi_{i}, \psi_{j}\right)=\mu_{i} \delta_{i, j}, \quad i, j \in \mathbb{Z}_{0}=\mathbb{Z} \backslash\{0\} . \\
a \pm b=\lambda_{i} \Rightarrow \mu_{ \pm i}=0 \tag{2.2}
\end{gather*}
$$

So we define
$V=\overline{\operatorname{span}\left\{\boldsymbol{\psi}_{i}: i \in \mathbb{Z}_{0}, \mu_{i}<0\right\}}$ : negative subspace
$Z=\overline{\operatorname{span}\left\{\boldsymbol{\psi}_{i}: i \in \mathbb{Z}_{0}, \mu_{i}=\mu_{k}\right\}}$ : almost resonant subspace
$W=\overline{\operatorname{span}\left\{\boldsymbol{\psi}_{i}: i \in \mathbb{Z}_{0}, \mu_{i}>0 \text { e } \mu_{i} \neq \mu_{k}\right\}}$
$B_{V}, B_{V Z}, B_{W}, B_{Z W}$ closed unitary balls in $V, V \oplus Z, W$ e $Z \oplus W$ $S_{V}, S_{V Z}, S_{W}$ e $S_{Z W}$ their relative boundaries

$$
\begin{aligned}
& E_{n}=\operatorname{span}\left[\psi_{-n}, \ldots, \psi_{n}\right] \subseteq E, \\
& V_{n}=V \cap E_{n} \text { e } W_{n}=W \cap E_{n} \\
& \left(Z \subseteq E_{n}, \text { for every } n>k+m\right)
\end{aligned}
$$

$J_{n}^{+}$the functional $J^{+}$restricted to the subspace $E_{n}$.

## Two Saddle Geometries

Let $\lambda_{k}$ be the first eigenvalue above $a+b$ and $\operatorname{dist}(a-b, \sigma)>\delta$.

$a+b \notin \sigma(-\Delta)$
$J^{+}(\mathbf{u}) \geq D_{a+b, \delta}, \mathbf{u} \in Z \oplus W$
$J^{+}(\mathbf{u})<D_{a+b, \delta}, \mathbf{u} \in \rho S_{V}, \rho \geq \rho_{a+b, \delta}$

$$
\begin{aligned}
& a+b \nearrow \lambda_{k} \Leftrightarrow \mu_{k} \searrow 0 \\
& J^{+}(\mathbf{u}) \geq E_{\delta}, \mathbf{u} \in W, \\
& J^{+}(\mathbf{u})<E_{\delta}, \mathbf{u} \in R_{\delta} S_{V Z}
\end{aligned}
$$

## Proposition

Let $\lambda_{k}$ be the first eigenvalue above $a+b$ and $\operatorname{dist}(a-b, \sigma(-\Delta))>\delta$. Then

- There exists $E_{\delta} \in \mathbb{R}$, such that

$$
J^{+}(\mathbf{u}) \geq E_{\delta}, \quad \forall \mathbf{u} \in W
$$

- There exist $\varepsilon_{0}>0$ e $R_{\delta}>0$,such that, $a+b \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$,

$$
\begin{array}{ll}
J^{+}(\mathbf{u})<E_{\delta}-1, & \forall \mathbf{u} \in R_{\delta} S_{v z} \\
J^{+}(\mathbf{u})<E_{\delta}-1, & \forall \mathbf{u} \in V \text { with }\|\mathbf{u}\|_{E}>R_{\delta} .
\end{array}
$$

- For given $a, b$ with $a+b \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$ and $\operatorname{dist}(a-b, \sigma(-\Delta))>\delta$, there exist $D_{a+b, \delta} \in \mathbb{R}$ and $\rho_{a+b, \delta}>R_{\delta}$ such that



## Proposition

Let $\lambda_{k}$ be the first eigenvalue above $a+b$ and $\operatorname{dist}(a-b, \sigma(-\Delta))>\delta$. Then

- There exists $E_{\delta} \in \mathbb{R}$, such that

$$
J^{+}(\mathbf{u}) \geq E_{\delta}, \quad \forall \mathbf{u} \in W
$$

- There exist $\varepsilon_{0}>0$ e $R_{\delta}>0$, such that, $a+b \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$,

$$
\begin{array}{ll}
J^{+}(\mathbf{u})<E_{\delta}-1, & \forall \mathbf{u} \in R_{\delta} S_{v z} \\
J^{+}(\mathbf{u})<E_{\delta}-1, & \forall \mathbf{u} \in V \text { with }\|\mathbf{u}\|_{E}>R_{\delta} .
\end{array}
$$

- For given $a, b$ with $a+b \in\left(\lambda_{k}-\varepsilon_{0}, \lambda_{k}\right)$ and $\operatorname{dist}(a-b, \sigma(-\Delta))>\delta$, there exist $D_{a+b, \delta} \in \mathbb{R}$ and $\rho_{a+b, \delta}>R_{\delta}$ such that

$$
\begin{array}{ll}
J^{+}(\mathbf{u}) \geq D_{a+b, \delta}, & \forall \mathbf{u} \in Z \oplus W \\
J^{+}(\mathbf{u})<D_{a+b, \delta}, & \forall \mathbf{u} \in \rho S_{V}, \rho \geq \rho_{a+b, \delta}
\end{array}
$$






## $V$ e $W$ have infinite dimension

Para $n>k+m$ : $J_{n}^{+}$satisfies (PS).

Saddle Point geometry:
$V_{n}$ e $Z \oplus W_{n}$ $V_{n} \oplus Z$ e $W_{n}$
$\exists \mathbf{u}_{n}, \mathbf{v}_{n}$, critical points of $J_{n}^{+}$, at the levels
$c_{n} \in\left[D_{a+b, \delta}, E_{\delta}-1\right]$
$d_{n} \in\left[E_{\delta}, T_{\delta}\right]$

## We prove that $\exists c \in\left[D_{a+b, \delta}, E_{\delta}-1\right], d \in\left[E_{\delta}, T_{\delta}\right]$, such that $c_{n} \rightarrow c, d_{n} \rightarrow d$.

## Then $\mathbf{u}, \mathbf{v}$ are two distinct solutions of our problem

We prove that $\exists c \in\left[D_{a+b, \delta}, E_{\delta}-1\right], d \in\left[E_{\delta}, T_{\delta}\right]$, such that $c_{n} \rightarrow c, d_{n} \rightarrow d$.
Moreover there exist critical points $\mathbf{u}, \mathbf{v} \in E$, of the functional $J^{+}$, such that $\mathbf{u}_{n} \rightarrow \mathbf{u}, \mathbf{v}_{n} \rightarrow \mathbf{v}, J^{+}(\mathbf{u})=c$ and $J^{+}(\mathbf{v})=d$.

Then $\mathbf{u}, \mathbf{v}$ are two distinct solutions of our problem.

We prove that $\exists c \in\left[D_{a+b, \delta}, E_{\delta}-1\right], d \in\left[E_{\delta}, T_{\delta}\right]$, such that $c_{n} \rightarrow c, d_{n} \rightarrow d$.
Moreover there exist critical points $\mathbf{u}, \mathbf{v} \in E$, of the functional $J^{+}$, such that $\mathbf{u}_{n} \rightarrow \mathbf{u}, \mathbf{v}_{n} \rightarrow \mathbf{v}, J^{+}(\mathbf{u})=c$ and $J^{+}(\mathbf{v})=d$.

Then $\mathbf{u}, \mathbf{v}$ are two distinct solutions of our problem.

## Near resonance with the principal eigenvalue

Scalar case: In Ramos-Sanchez (1997) [RS97], three distinct solutions for the scalr problem (1.2土), for $\lambda \in\left(\lambda_{1}-\epsilon, \lambda_{1}\right)$ or $\lambda \in\left(\lambda_{1}, \lambda_{1}+\epsilon\right.$ ). (using minimization and Mountain Pass)

Question: Can we find a third solution for the system (1.1土), when $a+b$ or $a-b$ is near $\left.\lambda_{1}\right)$ ?

In Ou-Tang (2009) three solutions are obtained for a gradient System

We need some more regularity: we assume

- $\Omega$ a $C^{2}$ bounded domain in $\mathbb{R}^{N}$
- $h_{1}, h_{2} \in L^{r}(\Omega)$, where
- $f_{1}, f_{2}$ continuous functions in $\bar{\Omega} \times \mathbb{R}$, such that there exist $S>0, q \in(1,2)$, satisfying



## Near resonance with the principal eigenvalue

Scalar case: In Ramos-Sanchez (1997) [RS97], three distinct solutions for the scalr problem (1.2土), for $\lambda \in\left(\lambda_{1}-\epsilon, \lambda_{1}\right)$ or $\lambda \in\left(\lambda_{1}, \lambda_{1}+\epsilon\right)$. (using minimization and Mountain Pass)

Question: Can we find a third solution for the system (1.1土), when $a+b$ or $a-b$ is near $\left.\lambda_{1}\right)$ ?

In Ou-Tang (2009) three solutions are obtained for a gradient System
We need some more regularity: we assume

- $\Omega$ a $\mathcal{C}^{2}$ bounded domain in $\mathbb{R}^{N}$,
- $h_{1}, h_{2} \in L^{r}(\Omega)$, where $r>N$,
- $f_{1}, f_{2}$ continuous functions in $\bar{\Omega} \times \mathbb{R}$, such that there exist $S>0, q \in(1,2)$, satisfying

$$
\begin{equation*}
\left|f_{i}(x, t)\right| \leq S\left(1+|t|^{q-1}\right), \text { for } i=1,2 \tag{3.1}
\end{equation*}
$$

- Hypothesis (F).

We will say

- $\mathbf{u}=(u, v)$ is positive (or negative), when $u>0$ and $v>0$ (or $u<0$ and $v<0$ ),


## Theorem

Assume the given hypotheses and let $\lambda_{h} \in \sigma(-\Delta)$ and
$Z=\operatorname{span}\left\{\left(\phi_{1}, \phi_{1}\right)\right\}$. Then
(a) given $\delta>0$, there exists $\varepsilon_{0}>0$ such that, if $a-b \in\left(\lambda_{h-1}+\delta, \lambda_{h}-\delta\right)$ and $a+b \in\left(\lambda_{1}-\varepsilon_{0}, \lambda_{1}\right)$, then problem (1.1+) has three distinct solutions, of which, one is positive and one is negative.
(b) given $\delta>0$, there exists $\varepsilon_{1}>0$ such that, if $a-b \in\left(\lambda_{h-1}+\delta, \lambda_{h}-\delta\right)$ and $a+b \in\left(\lambda_{1}, \lambda_{1}+\varepsilon_{1}\right)$, then problem (1.1-) has three distinct solutions, of which, one is positive and one is negative.

## Idea of the proof

First we truncate the nonlinearities: for $i=1,2$, we take continuous functions such that

$$
\widetilde{f}_{i}(x, s)=\left\{\begin{array}{l}
f_{i}(x, s), \text { se } s \geq-1  \tag{4.1}\\
0, \text { se } s \leq-2
\end{array}\right.
$$

As a consequence hypothesis $(\mathbf{F})$ is satisfied, but only at $+\infty$.

## Proposition

If $a-b \in\left(\lambda_{h-1}+\delta, \lambda_{h}-\delta\right)$ and $a+b<\lambda_{1}$, then

- there exists $E_{\delta} \in \mathbb{R}$, such that $J_{a, b}^{+}(\mathbf{u}) \geq E_{\delta}, \forall \mathbf{u} \in W$
- there exist sequences $\varepsilon_{j} \rightarrow 0^{+}$and $R_{j} \rightarrow+\infty$, (depending on $\delta$ ), such that if $a+b \in\left(\lambda_{1}-\varepsilon_{j}, \lambda_{1}\right)$, then

$$
\begin{aligned}
J_{a, b}^{+}(\mathbf{u})<E_{\delta}-1, & \forall \mathbf{u} \in R_{j} S_{V Z} \\
\widetilde{J}_{a, b}^{+}(\mathbf{u})<-R_{j}, & \forall \mathbf{u} \in V \text { with }\|\mathbf{u}\|_{E}>R_{j},{ }^{\text {A4 }} \\
\widetilde{J}_{a, b}^{+}(\mathbf{u})<-R_{j}, & \forall \mathbf{u}=\mathbf{v}+k \psi_{1}, \quad \mathbf{v} \in V, k \geq 0 \text { and }\|\mathbf{u}\|_{E}=R_{j}
\end{aligned}
$$

- for every $j$, fixing $a+b \in\left(\lambda_{1}-\varepsilon_{j}, \lambda_{1}\right)$ and $\operatorname{dist}(a-b, \sigma(-\Delta))>\delta$, there exist $D_{a+b, \delta} \in \mathbb{R}$ and $\rho_{a+b, \delta}>R_{j}$, such that

$$
\begin{array}{ll}
\widetilde{J}_{a, b}^{+}(\mathbf{u}) \geq D_{a+b, \delta}, & \forall \mathbf{u} \in Z \oplus W \\
\widetilde{J}_{a, b}^{+}(\mathbf{u})<D_{a+b, \delta}, & \forall \mathbf{u} \in \rho S_{V}, \rho \geq \rho_{a+b, \delta}
\end{array}
$$

$\exists$ critical points $\widetilde{\mathbf{u}}_{n}^{j}$ of $\widetilde{J}_{\mathrm{a}_{j}, b_{j}}^{+} \mid E_{n}$ and
$\mathbf{v}_{n}^{j}$ of $J_{a_{j}, b_{j}}^{+} \mid E_{n}$, at the levels
$\widetilde{c}_{n}^{j} \in\left[D_{a+b, \delta},-R_{j}\right]$
$d_{n}^{j} \in\left[E_{\delta}, T_{j}\right]$

$$
n \rightarrow+\infty:
$$

$\exists$ critical points
$\widetilde{\mathbf{u}}^{j}$ of $\widetilde{J}_{a_{j}, b_{j}}^{+}$and
$\mathbf{v}^{j}$ of $J_{a_{j}, b_{j}}^{+}$
$J^{+}<E_{\delta}-1$
at the levels
$\widetilde{c}^{j} \in\left[D_{a+b, \delta},-R_{j}\right]$
$d^{j} \in\left[E_{\delta}, T_{j}\right]$

$\exists$ critical points
$\widetilde{\mathbf{u}}_{n}^{j}$ of $\widetilde{J}_{a_{j}, b_{j}}^{+} \mid E_{n}$ and
$\mathbf{v}_{n}^{j}$ of $J_{a_{j}, b_{j}}^{+} \mid E_{n}$, at the levels
$\widetilde{c}_{n}^{j} \in\left[D_{a+b, \delta},-R_{j}\right]$
$\underline{d_{n}^{j} \in\left[E_{\delta}, T_{j}\right]}$

$$
n \rightarrow+\infty:
$$

$\exists$ critical points $\widetilde{\mathbf{u}}^{j}$ of $\widetilde{J}_{a_{j}, b_{j}}^{+}$and
$\mathbf{v}^{j}$ of $J_{a_{j}, b_{j}}^{+}$,
at the levels
$\tilde{c}^{j} \in\left[D_{a+b, \delta},-R_{j}\right]$
$d^{j} \in\left[E_{\delta}, T_{j}\right]$

## A sequence of solutions

$\exists$ critical points $\widetilde{\mathbf{u}}^{j}$ of $\widetilde{J}_{a_{j}, b_{j}}^{+}$and $\mathbf{v}^{j}$ of $J_{a_{j}, b_{j}}^{+}$, at the levels $\widetilde{c}^{j} \in\left[D_{a+b, \delta},-R_{j}\right] d^{j} \in\left[E_{\delta}, T_{j}\right]:$
$\mathbf{v}^{j}$ is a solution of

$$
\begin{cases}-\Delta u=a_{j} u+b_{j} v+\left(f_{1}(x, v)+h_{1}(x)\right) ; & \text { em } \Omega,  \tag{4.2}\\ -\Delta v=b_{j} u+a_{j} v+\left(f_{2}(x, u)+h_{2}(x)\right) ; & \text { em } \Omega \\ u(x)=v(x)=0 ; & \text { em } \partial \Omega\end{cases}
$$

$e \widetilde{\mathbf{u}}^{j}$ is a solution of

$$
\begin{cases}-\Delta u=a_{j} u+b_{j} v+\left(\widetilde{f}_{1}(x, v)+h_{1}(x)\right) ; & \text { em } \Omega,  \tag{4.3}\\ -\Delta v=b_{j} u+a_{j} v+\left(\widetilde{f}_{2}(x, u)+h_{2}(x)\right) ; & \text { em } \Omega \\ u(x)=v(x)=0 ; & \text { em } \partial \Omega\end{cases}
$$

Next step: prove that, for $j$ large, $\widetilde{\mathbf{u}}^{j}$ is positive.

## A sequence of solutions

$\exists$ critical points $\widetilde{\mathbf{u}}^{j}$ of $\widetilde{J}_{a_{j}, b_{j}}^{+}$and $\mathbf{v}^{j}$ of $J_{a_{j}, b_{j}}^{+}$, at the levels $\widetilde{c}^{j} \in\left[D_{a+b, \delta},-R_{j}\right] d^{j} \in\left[E_{\delta}, T_{j}\right]:$
$\mathbf{v}^{j}$ is a solution of

$$
\begin{cases}-\Delta u=a_{j} u+b_{j} v+\left(f_{1}(x, v)+h_{1}(x)\right) ; & \text { em } \Omega,  \tag{4.2}\\ -\Delta v=b_{j} u+a_{j} v+\left(f_{2}(x, u)+h_{2}(x)\right) ; & \text { em } \Omega \\ u(x)=v(x)=0 ; & \text { em } \partial \Omega\end{cases}
$$

$e \widetilde{\mathbf{u}}^{j}$ is a solution of

$$
\begin{cases}-\Delta u=a_{j} u+b_{j} v+\left(\tilde{f}_{1}(x, v)+h_{1}(x)\right) ; & \text { em } \Omega,  \tag{4.3}\\ -\Delta v=b_{j} u+a_{j} v+\left(\tilde{f}_{2}(x, u)+h_{2}(x)\right) ; & \text { em } \Omega, \\ u(x)=v(x)=0 ; & \text { em } \partial \Omega\end{cases}
$$

Next step: prove that, for $j$ large, $\widetilde{\mathbf{u}}^{j}$ is positive.

We denote, for every $j \in \mathbb{N}$,

$$
\begin{equation*}
\widetilde{\mathbf{u}}^{j}=\beta_{j} \boldsymbol{\psi}_{1}+\boldsymbol{\omega}_{j} \tag{4.4}
\end{equation*}
$$

where $\beta_{j} \in \mathbb{R}$ and $\omega_{j} \in V \oplus W$.

- Given $\eta>0$, there exists $\widetilde{C}_{\eta}>0$ (not depending on $j$ ), such that

$$
\left\|\omega_{j}\right\|_{c+1 \times c l} \leq \eta^{\prime} \beta_{j} \mid+\widetilde{C}_{\eta}
$$



We denote, for every $j \in \mathbb{N}$,

$$
\begin{equation*}
\widetilde{\mathbf{u}}^{j}=\beta_{j} \boldsymbol{\psi}_{1}+\boldsymbol{\omega}_{j} \tag{4.4}
\end{equation*}
$$

where $\beta_{j} \in \mathbb{R}$ and $\boldsymbol{\omega}_{j} \in V \oplus W$.

- Given $\eta>0$, there exists $\widetilde{C}_{\eta}>0$ (not depending on $j$ ), such that

$$
\begin{equation*}
\left\|\omega_{\mathrm{j}}\right\|_{\mathcal{C}^{1} \times \mathcal{C}^{1}} \leq \eta\left|\beta_{j}\right|+\widetilde{C}_{\eta} . \tag{4.5}
\end{equation*}
$$



We denote, for every $j \in \mathbb{N}$,

$$
\begin{equation*}
\widetilde{\mathbf{u}}^{j}=\beta_{j} \boldsymbol{\psi}_{1}+\boldsymbol{\omega}_{j}, \tag{4.4}
\end{equation*}
$$

where $\beta_{j} \in \mathbb{R}$ and $\boldsymbol{\omega}_{j} \in V \oplus W$.

- Given $\eta>0$, there exists $\widetilde{C}_{\eta}>0$ (not depending on $j$ ), such that

$$
\begin{equation*}
\left\|\boldsymbol{\omega}_{\mathbf{j}}\right\|_{\mathcal{C}^{1} \times \mathcal{C}^{1}} \leq \eta\left|\beta_{j}\right|+\widetilde{C}_{\eta} . \tag{4.5}
\end{equation*}
$$

- $\left|\beta_{j}\right| \rightarrow+\infty\left(\right.$ since $\left.\widetilde{J}_{a_{j}, b_{j}}^{+}\left(\widetilde{\mathbf{u}}^{j}\right)=\widetilde{c}^{j} \rightarrow-\infty\right)$

$$
\frac{\widetilde{\mathbf{u}}^{j}}{\beta_{j}}=\psi_{1}+\frac{\omega_{j}}{\beta_{j}} \rightarrow \psi_{1}, \text { in } \mathcal{C}^{1}(\bar{\Omega}) \times \mathcal{C}^{1}(\bar{\Omega})
$$

Then, $\exists j_{0}$, such that $\forall j \geq j_{0}, \widetilde{\mathbf{u}}^{j}$ is positive, if $\beta_{j}>0$, or negative, if $\beta_{j}<0$.

We denote, for every $j \in \mathbb{N}$,

$$
\begin{equation*}
\widetilde{\mathbf{u}}^{j}=\beta_{j} \boldsymbol{\psi}_{1}+\boldsymbol{\omega}_{j}, \tag{4.4}
\end{equation*}
$$

where $\beta_{j} \in \mathbb{R}$ and $\boldsymbol{\omega}_{j} \in V \oplus W$.

- Given $\eta>0$, there exists $\widetilde{C}_{\eta}>0$ (not depending on $j$ ), such that

$$
\begin{equation*}
\left\|\omega_{\mathrm{j}}\right\|_{\mathcal{C}^{1} \times \mathcal{C}^{1}} \leq \eta\left|\beta_{j}\right|+\widetilde{C}_{\eta} . \tag{4.5}
\end{equation*}
$$

- $\left|\beta_{j}\right| \rightarrow+\infty\left(\right.$ since $\left.\widetilde{J}_{a_{j}, b_{j}}^{+}\left(\widetilde{\mathbf{u}}^{j}\right)=\widetilde{c}^{j} \rightarrow-\infty\right)$

$$
\frac{\widetilde{\mathbf{u}}^{j}}{\beta_{j}}=\psi_{1}+\frac{\omega_{j}}{\beta_{j}} \rightarrow \psi_{1}, \quad \text { in } \mathcal{C}^{1}(\bar{\Omega}) \times \mathcal{C}^{1}(\bar{\Omega})
$$

Then, $\exists j_{0}$, such that $\forall j \geq j_{0}, \widetilde{\mathbf{u}}^{j}$ is positive, if $\beta_{j}>0$, or negative, if $\beta_{j}<0$.

- $\beta_{j} \rightarrow+\infty$, when $j \rightarrow \infty$.
- Then, for every $j>j_{0}$, we have that $\widetilde{\mathbf{u}}^{j}$ is positive and then it is a solution of (1.1+).
- At this point we have two solutions: $\widetilde{\mathbf{u}}^{j} \mathrm{e} \mathbf{v}^{j}$ : they are distinct since they lie at different levels.


## For the third solutions, we consider the system



- if $(u, v)$ is a solution of (4.6), then $(-u,-v)$ is a solution of $(1.1+)$
- if $J_{a, b}$ is the functional associated to (4.6), then $J_{a, b}(\mathbf{u})=J_{a, b}^{+}(-\mathbf{u})$, $\forall \mathbf{u} \in E$
- $g_{i}(x, t)=-f_{i}(x,-t)$ satisfy the same hypotheses as $f_{i}$
- Then, for every $j>j_{0}$, we have that $\widetilde{\mathbf{u}}^{j}$ is positive and then it is a solution of $(1.1+)$.
- At this point we have two solutions: $\widetilde{\mathbf{u}}^{j} \mathrm{e} \mathbf{v}^{j}$ : they are distinct since they lie at different levels.

For the third solutions, we consider the system

$$
\begin{cases}-\Delta u=a u+b v+\left(-f_{1}(x,-v)+\left(-h_{1}(x)\right)\right) ; & \text { in } \Omega  \tag{4.6}\\ -\Delta v=b u+a v+\left(-f_{2}(x,-u)+\left(-h_{2}(x)\right)\right) ; & \text { in } \Omega \\ u(x)=v(x)=0 ; & \text { on } \partial \Omega\end{cases}
$$

- if $(u, v)$ is a solution of (4.6), then $(-u,-v)$ is a solution of $(1.1+)$
- if $\widehat{J}_{a, b}$ is the functional associated to (4.6), then $\widehat{J}_{a, b}(\mathbf{u})=J_{a, b}^{+}(-\mathbf{u})$, $\forall \mathbf{u} \in E$
- $g_{i}(x, t)=-f_{i}(x,-t)$ satisfy the same hypotheses as $f_{i}$.

Proceeding as before, we get

- there exist $\widehat{\mathbf{u}}^{j}$ positive solutions of (4.6) for $j$ large, moreover $\widehat{J}_{a_{j}, b_{j}}\left(\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$.
- then $-\widehat{\mathbf{u}}^{j}$ are negative solutions of $(1.1+)_{j}$, and $J_{a_{j}, b_{j}}^{+}\left(-\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$.

Proceeding as before, we get

- there exist $\widehat{\mathbf{u}}^{j}$ positive solutions of (4.6) for $j$ large, moreover $\widehat{J}_{a_{j}, b_{j}}\left(\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$.
- then $-\widehat{\mathbf{u}}^{j}$ are negative solutions of $(1.1+)_{j}$, and $J_{a_{j}, b_{j}}^{+}\left(-\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$.

Conclusion:
$-\widehat{\mathbf{u}}^{j} \neq \widetilde{\mathbf{u}}^{j}$ : one positive, one negative.
$-\widehat{\mathbf{u}}^{j} \neq \mathbf{v}^{j}: J_{a_{j}, b_{j}}^{+}\left(-\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$ e $J_{a_{j}, b_{j}}^{+}\left(\mathbf{v}^{j}\right)>E_{\delta}$.

Proceeding as before, we get

- there exist $\widehat{\mathbf{u}}^{j}$ positive solutions of (4.6) for $j$ large, moreover $\widehat{J}_{a_{j}, b_{j}}\left(\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$.
- then $-\widehat{\mathbf{u}}^{j}$ are negative solutions of $(1.1+)_{j}$, and $J_{a_{j}, b_{j}}^{+}\left(-\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$.

Conclusion:
$-\widehat{\mathbf{u}}^{j} \neq \widetilde{\mathbf{u}}^{j}$ : one positive, one negative.
$-\widehat{\mathbf{u}}^{j} \neq \mathbf{v}^{j}: J_{a_{j}, b_{j}}^{+}\left(-\widehat{\mathbf{u}}^{j}\right) \rightarrow-\infty$ e $J_{a_{j}, b_{j}}^{+}\left(\mathbf{v}^{j}\right)>E_{\delta}$.
Then (1.1+) has three distinct solutions (of which, one positive and one negative), near enough to the eigenvalue.

## Papers

E. Massa, R. A. Rossato, Multiple solutions for an elliptic system near resonance. Journal of Mathematical Analysis and Applications (Print), v. 420, p. 1228-1250, 2014.
E. Massa, R. A. Rossato, Three solutions for an elliptic system near resonance with the principal eigenvalue, to appear in Differential and Integral Equations.

## Main references

F. O. de Paiva and E. Massa, Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, J. Math. Anal. Appl. 342 (2008), no. 1, 638-650.M. Ramos and L. Sanchez, A variational approach to multiplicity in elliptic problems near resonance, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 2, 385-394. MR 1447958 (98a:35043)

