Lines of the proof

The case of the principal eigenvalue O

Idea of the proof

3.5 3

On almost resonant elliptic problems ¹

EUGENIO MASSA" and RAFAEL ANTÔNIO ROSSATO b

^a ICMC-USP.

^b Universidade Federal de Uberlândia,

Valparaíso, November 2016

¹Research partially supported by FAPESP/Brazil

meroduction
0
00000
00000
000000

The case of the principal eigenvalue O

Idea of the proof

The problem

The main problem

We consider the following system:

$$\begin{cases} -\Delta u = au + bv \pm (f_1(x, v) + h_1(x)) & \text{in } \Omega, \\ -\Delta v = bu + av \pm (f_2(x, u) + h_2(x)) & \text{in } \Omega, \\ u(x) = v(x) = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1±)

where

- $\Omega \subset \mathbb{R}^N$ bounded domain,
- $a, b \in \mathbb{R}$,
- $h_1, h_2 \in L^2(\Omega)$,
- $f_1, f_2 : \Omega \times \mathbb{R} \to \mathbb{R}$ sublinear Carathéodory functions: $\exists S > 0, q \in (1, 2)$, such that $|f_i(x, t)| \leq S(1 + |t|^{q-1}), i = 1, 2$.

Purpose: to obtain multiplicity of solutions, when the linear part is "near resonance": that is, a + b or a - b near some eigenvalue λ_k).

meroduction
0
00000
00000
000000

The case of the principal eigenvalue O Idea of the proof

The problem

The main problem

We consider the following system:

$$\begin{cases} -\Delta u = au + bv \pm (f_1(x, v) + h_1(x)) & \text{in } \Omega, \\ -\Delta v = bu + av \pm (f_2(x, u) + h_2(x)) & \text{in } \Omega, \\ u(x) = v(x) = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1±)

where

- $\Omega \subset \mathbb{R}^N$ bounded domain,
- $a, b \in \mathbb{R}$,
- $h_1, h_2 \in L^2(\Omega)$,
- $f_1, f_2 : \Omega \times \mathbb{R} \to \mathbb{R}$ sublinear Carathéodory functions:
 - $\exists \ S>0, \ q\in (1,2), \ {
 m such that} \ |f_i(x,t)|\leq S(1+|t|^{q-1}), \ i=1,2.$

Purpose: to obtain multiplicity of solutions, when the linear part is "near resonance": that is, a + b or a - b near some eigenvalue λ_k).

Introduction
00
00000
000000
The problem

The case of the principal eigenvalue $\hfill \bigcirc$

Idea of the proof

Motivation: the scalar problem

Main motivation: de Paiva, M. [dPM08]: for the scalar equivalent

$$\begin{cases} -\Delta u = \lambda u \pm f(x, u) + h(x) & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$
(1.2±)

where $h \in L^2(\Omega)$, f is sublinear, and

$$\begin{cases} \lim_{|t|\to\infty} F(x,t) = +\infty \text{ uniformly } x \in \Omega, \\ \int_{\Omega} h \phi \, dx = 0 \quad \forall \phi \in H_{\lambda_k}. \end{cases}$$

it was proved that

- a) there exists $\varepsilon_0 > 0$, such that, if $\lambda \in (\lambda_k \varepsilon_0, \lambda_k)$, then two solutions exist for problem (1.2+);
- b) there exists $\varepsilon_1 > 0$, such that, if $\lambda \in (\lambda_k, \lambda_k + \varepsilon_1)$ then two solutions exist for problem (1.2–).

Introduction
00000
000000

The case of the principal eigenvalue $\hfill \bigcirc$

Idea of the proof

The results for the system

.

The results for the system

For our system we assume an analogous condition:

$$\begin{cases} (i) & \lim_{|t| \to \infty} F_i(x, t) = +\infty, \text{ unif. with resp. to } x \in \Omega, \ i = 1, 2, \\ (ii) & \int_{\Omega} h_1 \phi + h_2 \psi = 0, \quad \text{for every } (\phi, \psi) \in Z, \end{cases}$$
(F)

Theorem

Assume the given hypotheses, let $\lambda_k, \lambda_l \in \sigma(-\Delta)$,

$$Z = span \left\{ \left(\phi, \phi
ight) : \ \phi \in H_{\lambda_k}
ight\}.$$

Then

Introduction	
00	
00000	
00000	

The results for the system

The case of the principal eigenvalue

Idea of the proof

Theorem

Assume the given hypotheses, let $\lambda_k, \lambda_l \in \sigma(-\Delta)$,

$$Z = span\left\{\left(\phi, -\phi
ight): \ \phi \in H_{\lambda_k}
ight\}.$$

Then

< □ > < 同 >

(4) E > (4) E > (4)

э

Lines of the proof

The case of the principal eigenvalue \odot

Idea of the proof

The results for the system

Double resonance

Theorem

Assume the given hypotheses, let λ_k, λ_l ∈ σ(-Δ) (may be the same) and Z = span { (φ, φ) : φ ∈ H_{λ_k}, (φ, -φ) : φ ∈ H_{λ_l}}. Then
(e) there exists ε₂ > 0 such that, if a - b ∈ (λ_l, λ_l + ε₂) and a + b ∈ (λ_k - ε₂, λ_k), then problem (1.1+) has two distinct solutions.

Theorem

Assume the given hypotheses, let $\lambda_k, \lambda_l \in \sigma(-\Delta)$ (may be the same) and $Z = span \{ (\phi, -\phi) : \phi \in H_{\lambda_k}, (\phi, \phi) : \phi \in H_{\lambda_l} \}$. Then (f) there exists $\varepsilon_2 > 0$ such that, if $a - b \in (\lambda_k - \varepsilon_2, \lambda_k)$ and $a + b \in (\lambda_l, \lambda_l + \varepsilon_2)$, then problem (1.1–) has two distinct solutions.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

3

Introduction	Lines of the proof	The case of the principal eigenvalue	Idea of the proof
00 00000 00000			
The results for the system			

Figure: Sketch of the regions with two solutions for problem (1.1-)

э

E. MASSA, R. ROSSATO On almost resonant elliptic problems

Lines of the proof

The case of the principal eigenvalue \odot

Idea of the proof

A B > A B >

The results for the system

• Scalar problem:

- λ_1 , *ODE*, bifurcation and degree. Mawhin-Schmitt (1990), Badiale-Lupo (1989), Lupo-Ramos (1990)
- λ₁, PDE, bifurcation and degree. Chiappinelli-Mawhin-Nugari (1992), Chiappinelli-de Figueiredo (1993),
- λ_1 , *PDE*, variational techniques. Ramos-Sanchez (1997), Ma-Ramos-Sanchez (1997), Ma-Pelicer (2002) (p-Laplacian)
- λ_k , *ODE*, bifurcation and degree. Lupo-Ramos (1990)
- λ_k, PDE, variational techniques. de Paiva-M. (2008), Ke-Tang (2011)
- Systems
 - in gradient form. Ou-Tang (2009), Suo-Tang (2010), An-Suo (2012),
 - in (a different) Hamiltonian form Ke-Tang (2011)

Lines of the proof

The case of the principal eigenvalue \odot

Idea of the proof

The results for the system

• Scalar problem:

- λ_1 , *ODE*, bifurcation and degree. Mawhin-Schmitt (1990), Badiale-Lupo (1989), Lupo-Ramos (1990)
- λ_1 , *PDE*, bifurcation and degree. Chiappinelli-Mawhin-Nugari (1992), Chiappinelli-de Figueiredo (1993),
- λ_1 , *PDE*, variational techniques. Ramos-Sanchez (1997), Ma-Ramos-Sanchez (1997), Ma-Pelicer (2002) (p-Laplacian)
- λ_k , ODE, bifurcation and degree. Lupo-Ramos (1990)
- λ_k, PDE, variational techniques. de Paiva-M. (2008), Ke-Tang (2011)
- Systems
 - in gradient form. Ou-Tang (2009), Suo-Tang (2010), An-Suo (2012),
 - in (a different) Hamiltonian form Ke-Tang (2011)

< 🗗 🕨

(*) *) *) *)

Lines of the proof

The case of the principal eigenvalue \odot

Idea of the proof

A B K A B K

The results for the system

• Scalar problem:

- λ_1 , *ODE*, bifurcation and degree. Mawhin-Schmitt (1990), Badiale-Lupo (1989), Lupo-Ramos (1990)
- λ₁, PDE, bifurcation and degree. Chiappinelli-Mawhin-Nugari (1992), Chiappinelli-de Figueiredo (1993),
- λ_1 , *PDE*, variational techniques. Ramos-Sanchez (1997), Ma-Ramos-Sanchez (1997), Ma-Pelicer (2002) (p-Laplacian)
- λ_k , ODE, bifurcation and degree. Lupo-Ramos (1990)
- λ_k, PDE, variational techniques. de Paiva-M. (2008), Ke-Tang (2011)
- Systems
 - in gradient form. Ou-Tang (2009), Suo-Tang (2010), An-Suo (2012),
 - in (a different) Hamiltonian form Ke-Tang (2011)

Introduction	
00000	
00000	
000000	

The case of the principal eigenvalue O

Idea of the proof

4 B K 4 B K -

Backgroung

For the problem

$$\begin{cases} -\Delta u = \lambda u + h(x) & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$
(1.1)

one has

- If λ is NOT an eigenvalue: there there exists a unique solution.
- If λ = λ_k is an eigenvalue: there exists no solution or infinte solutions (depending if ∫_Ω h φ dx ≠ 0 or = 0 ∀ φ ∈ H_{λ_k})

However, the solution when $\lambda \in (\lambda_k, \lambda_k + \varepsilon_1)$ and the solution when $\lambda \in (\lambda_k - \varepsilon_1, \lambda_k)$ are "different" in several ways.

Introduction ○○ ○○○○○ ○●○○○ ○○○○○○ Lines of the proof

The case of the principal eigenvalue O

Idea of the proof

Backgroung

Variational methods

In order to find a solutions of

$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{in } \partial \Omega. \end{cases}$$
(1.2)

We define a functional $J: H_0^1(\Omega) \to \mathbb{R}$:

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u)$$

(under suitable hypotheses) it turns out that J is smooth and critical points of J (i.e. u : J'(u) = 0) and solutions of the equation, are the same thing.

So: how do we find critical points of *J*?

Example: $J : \mathbb{R} \to \mathbb{R}$, $J \in C^1(\mathbb{R})$, $\lim_{t \to \pm\infty} J(t) = +\infty$ implies J has a global minimum, which is a crtical point. Introduction ○○ ○○○○○ ○●○○○ ○○○○○ Lines of the proof

The case of the principal eigenvalue O Idea of the proof

Backgroung

Variational methods

In order to find a solutions of

$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega. \end{cases}$$
(1.2)

We define a functional $J: H_0^1(\Omega) \to \mathbb{R}$:

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u)$$

(under suitable hypotheses) it turns out that J is smooth and critical points of J (i.e. u : J'(u) = 0) and solutions of the equation, are the same thing.

So: how do we find critical points of J?

Example: $J : \mathbb{R} \to \mathbb{R}$, $J \in C^1(\mathbb{R})$, $\lim_{t \to \pm \infty} J(t) = +\infty$ implies J has a global minimum, which is a crtical point.

Lines of the proof

The case of the principal eigenvalue O

Idea of the proof

Backgroung

Variational methods

Some classical Critical point theorems:

Definition

 $J \in C^1(E, \mathbb{R})$ satisfies the **PS condition:** For each sequence $\{u_n\} \subseteq E$ such that $|J(u_n)| \leq C$ and $J'(u_n) \to 0$ there exists a (strongly) convergent subsequence.

Theorem (Mountain Pass Theorem)

- **Q** E Banach space; $I \in C^1(E, \mathbb{R})$ satisfies the PS condition;
- **2** I(0)=0;
- **3** $\exists \rho, \alpha > 0$ such that $I(u) \ge \alpha$ for all u such that $||u||_E = \rho$;
- $\exists e \in E \text{ such that } ||e||_E > \rho \text{ and } I(e) < 0.$

Moreover, let

•
$$\Gamma = \{\gamma \in \mathcal{C}^0([0,1]; E) \text{ such that } \gamma(0) = 0 \text{ and } \gamma(1) = e\};$$

•
$$c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t)).$$

Then $c \ge \alpha$ and there exists a critical point at level c.

Lines of the proof

The case of the principal eigenvalue $\hfill \bigcirc$

Idea of the proof

Backgroung

Variational methods

Theorem (Saddle Point Theorem)

$$\exists \beta < \alpha \text{ and } \rho > 0 \text{ such that} \\ -I(u) > \alpha \text{ for all } u \in W^{:}$$

$$-I(u) \stackrel{\frown}{\leq} \beta$$
 for all $u \in B_{\rho}^{V} = \{u \in V, ||u|| = \rho\};$

Moreover, let

•
$$\Gamma = \{\gamma \in C^0(B^V_{\rho}; E) \text{ such that } \gamma|_{\partial B^V_{\rho}} = id\}$$

• $c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t)).$

Then $c \ge \alpha$ and there exists a critical point at level c.

< A ▶

A B > A B >

Lines of the proof

The case of the principal eigenvalue O

Idea of the proof

Backgroung

Variational methods

Let $\lambda \in (\lambda_{k-1}, \lambda_k)$ and consider again

$$\begin{cases} -\Delta u = \lambda u + h(x) & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$
(1.3)

Let

$$V = \oplus_{i=1}^{k-1} H_{\lambda_i} \qquad \qquad W = V^{\perp}$$

$$J(u) = rac{1}{2} \int_{\Omega} |\nabla u|^2 - rac{\lambda}{2} \int_{\Omega} u^2 - \int_{\Omega} hu^2$$

By properties of the eigenspaces

$$\int_{\Omega} |\nabla u|^2 \leq \lambda_{k-1} \int_{\Omega} u^2 \text{ in } V \qquad \int_{\Omega} |\nabla u|^2 \geq \lambda_k \int_{\Omega} u^2 \text{ in } W$$

In the end one gets the conditions of the Saddle Point Theorem. If $\lambda \in (\lambda_{k-1}, \lambda_k)$ it is the same... but with different spaces involved $\exists \lambda \in (\lambda_{k-1}, \lambda_k)$

Introduction ○○ ○○○○○ ○○○○○ ●○○○○○	Lines of the proof	The case of the principal eigenvalue O O	Idea of the proof
Scalar proble	em		

Let us go back to the scalr problem in [dPM08]:

$$\begin{cases} -\Delta u = \lambda u \pm f(x, u) + h(x) & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$
(1.2±)

where $h \in L^2(\Omega)$, f is sublinear, and

$$\begin{cases} \lim_{|t|\to\infty} F(x,t) = +\infty \text{ uniformly } x \in \Omega, \\ \int_{\Omega} h \phi \, dx = 0 \quad \forall \phi \in H_{\lambda_k}. \end{cases}$$

How do we prove that there exists $\varepsilon_0 > 0$, such that, if $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$, then two solutions exist for problem (1.2+)?

The idea below this kind of problem is the following: passing the eigenvalue the saddle point geometry changes: near the eigenvalue the perturbation f makes it possible to have both saddle geometries at the same time.

Introduction ○○ ○○○○○ ○○○○○ ●○○○○○	Lines of the proof	The case of the principal eigenvalue O O	Idea of the proof
Scalar proble	em		

Let us go back to the scalr problem in [dPM08]:

$$\begin{cases} -\Delta u = \lambda u \pm f(x, u) + h(x) & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$
(1.2±)

where $h \in L^2(\Omega)$, f is sublinear, and

$$\begin{cases} \lim_{|t|\to\infty} F(x,t) = +\infty \text{ uniformly } x \in \Omega, \\ \int_{\Omega} h \phi \, dx = 0 \quad \forall \phi \in H_{\lambda_k}. \end{cases}$$

How do we prove that there exists $\varepsilon_0 > 0$, such that, if $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$, then two solutions exist for problem (1.2+)?

The idea below this kind of problem is the following: passing the eigenvalue the saddle point geometry changes: near the eigenvalue the perturbation f makes it possible to have both saddle geometries at the same time.

Introc	luction
mulou	uction

The case of the principal eigenvalue $_{\bigcirc}$

Idea of the proof

글 🕨 🖌 글 🕨

-

00000 scalar

Some notation

Functional: $J^{\pm} : H^{1}_{0}(\Omega) \to \mathbb{R} :$ $J(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^{2} - \lambda u^{2}) dx \mp \int_{\Omega} F(x, u) dx - \int_{\Omega} h u dx$

$$V = span\{\phi_1, \dots, \phi_{k-1}\},$$

$$Z = span\{\phi_k, \dots, \phi_{k+m-1}\} = H_{\lambda_k},$$

$$W = (V \oplus Z)^{\perp},$$

$$S_V, S_{VZ}, S_{ZW}, \text{ the unit spheres in } V, V \oplus Z, Z \oplus W$$

$$B_V, B_{VZ}, B_{ZW}, \text{ the unit balls.}$$

If $\lambda \notin \sigma(-\Delta)$ there exists a solution from Saddle Point Theorem. however, a suitable behaviour of f may give rise to a further solution.

Introc	luction
mulou	uction

0

00000

scalar

The case of the principal eigenvalue \bigcirc

Idea of the proof

글 🖌 🔺 글 🕨

-

Some notation

Functional: $J^{\pm} : H^{1}_{0}(\Omega) \to \mathbb{R} :$ $J(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^{2} - \lambda u^{2}) dx \mp \int_{\Omega} F(x, u) dx - \int_{\Omega} h u dx$

$$V = span\{\phi_1, \dots, \phi_{k-1}\},$$

$$Z = span\{\phi_k, \dots, \phi_{k+m-1}\} = H_{\lambda_k},$$

$$W = (V \oplus Z)^{\perp},$$

$$S_V, S_{VZ}, S_{ZW}, \text{ the unit spheres in } V, V \oplus Z, Z \oplus W$$

$$B_V, B_{VZ}, B_{ZW}, \text{ the unit balls.}$$

If $\lambda \notin \sigma(-\Delta)$ there exists a solution from Saddle Point Theorem. however, a suitable behaviour of f may give rise to a further solution.

 $\Gamma_k \quad = \quad \{\gamma \in \mathcal{C}^0(RB_{VZ}; H^1_0) \ \text{s.t.} \ \gamma|_{RS_{VZ}} = Id\},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction ○○ ○○○○○ ○○○○○ ○○○●○○	Lines of the proof	The case of the principal eigenvalue O O	Idea of the pro
The case	$\lambda < \lambda_k$		
Propositio	n		
In the give	en hypotheses:		
	$\exists D_W : J^+(A)$	$u)\geq D_W \qquad ext{for} \ \ u\in W$;	(1.4)
there exist	$t : R^+, arepsilon_0 > 0$ such that	at, for any $\lambda \in (\lambda_k - arepsilon_0, \lambda_k)$	
	$J^+(u) < D_W$	for $u \in R^+S_{VZ}$,	(1.5)

for
$$u \in V, \ \|u\| \ge R^+$$
; $lackslash$ (1.6)

if now we fix $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$ then

$$\exists D_{\lambda}: J^{+}(u) \ge D_{\lambda} \quad \text{for } u \in Z \oplus W, \qquad (1.7)$$

$$\exists \rho_{\lambda}^{+} > R^{+}: J^{+}(u) < D_{\lambda} \quad \text{for } u \in \rho_{\lambda}^{+}S_{V}. \stackrel{\bullet}{\longrightarrow} \qquad (1.8)$$

of

E. MASSA, R. ROSSATO On almost resonant elliptic problems

rou		tion
 	uuc	LIUII

The case of the principal eigenvalue O Idea of the proof

00000 scalar

Back to the system

$$\begin{cases} -\Delta u = au + bv \pm (f_1(x, v) + h_1(x)) & \text{in } \Omega, \\ -\Delta v = bu + av \pm (f_2(x, u) + h_2(x)) & \text{in } \Omega, \\ u(x) = v(x) = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1±)

Remarks:

- The system is of Hamiltonian type; then variational but with strongly indefinite functional: we use a Galerkin approximation.
- In the scalar case we had a different proof for the case above or below the eigenvalue (saddle point theorems or linking spheres theorem, depending if the almost resonant eigenspace is part of the finite / infinite dimensional subspace in the splitting). For the system, having to use Galerkin aproximation, the geometry is always the same: a finite dimensional saddle point.

rou		tion
 	uuc	LIUII

The case of the principal eigenvalue O Idea of the proof

00000 scalar

Back to the system

$$\begin{cases} -\Delta u = au + bv \pm (f_1(x, v) + h_1(x)) & \text{in } \Omega, \\ -\Delta v = bu + av \pm (f_2(x, u) + h_2(x)) & \text{in } \Omega, \\ u(x) = v(x) = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1±)

Remarks:

- The system is of Hamiltonian type; then variational but with strongly indefinite functional: we use a Galerkin approximation.
- In the scalar case we had a different proof for the case above or below the eigenvalue (saddle point theorems or linking spheres theorem, depending if the almost resonant eigenspace is part of the finite / infinite dimensional subspace in the splitting). For the system, having to use Galerkin aproximation, the geometry is always the same: a finite dimensional saddle point.

Introduction	
000000	

Lines of the proof ●○○○○○○ The case of the principal eigenvalue $\hfill \bigcirc$

Idea of the proof

Lines of the proof

Idea of the Proof

We consider the functionals

$$J_{a,b}^{\pm}(u,v) = \pm \frac{1}{2} B_{a,b}((u,v),(u,v)) - \mathcal{F}(u,v) - \mathcal{H}(u,v).$$
(2.1)

defined in $E = H_0^1(\Omega) \times H_0^1(\Omega)$, where

$$\mathcal{F}(u,v) = \int_{\Omega} F_1(x,v) + \int_{\Omega} F_2(x,u), \qquad \mathcal{H}(u,v) = \int_{\Omega} h_1 v + \int_{\Omega} h_2 u,$$

$$B_{a,b}((u,v),(\phi,\psi)) = \int_{\Omega} \nabla u \nabla \psi + \int_{\Omega} \nabla v \nabla \phi - a \int_{\Omega} (u\psi + v\phi) - b \int_{\Omega} (u\phi + v\psi).$$

글 에 에 글 어

э

Introduction	Lines of the proof	The case of the principal eigenvalue	Idea of the proof
00 00000 00000 000000	000000		
Lines of the proof			

We consider the eigenvalues and eigenfunctions of *B*:

$$\mu_{\pm i} = rac{-b \pm (\lambda_i - a)}{\lambda_i}, \qquad \psi_{\pm i} = rac{(\phi_i, \pm \phi_i)}{\sqrt{2\lambda_i}}, \qquad i \in \mathbb{N}.$$

Then

 $\|\psi_i\|_E = 1, \quad \langle \psi_i, \psi_j \rangle_E = \delta_{i,j}, \quad B(\psi_i, \psi_j) = \mu_i \delta_{i,j}, \qquad i, j \in \mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}.$

$$a \pm b = \lambda_i \Rightarrow \mu_{\pm i} = 0 \tag{2.2}$$

So we define $V = \underline{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i < 0\}}: \text{ negative subspace}$ $Z = \underline{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i = \mu_k\}}: \text{ almost resonant subspace}$ $W = \underline{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i > 0 \in \mu_i \neq \mu_k\}}$

 B_V , B_{VZ} , B_W , B_{ZW} closed unitary balls in V, $V \oplus Z$, $W \in Z \oplus W$ S_V , S_{VZ} , $S_W \in S_{ZW}$ their relative boundaries

Introduction	Lines of the proof	The case of the principal eigenvalue	Idea of the proof
00 00000 00000 000000	000000		
Lines of the proof			

We consider the eigenvalues and eigenfunctions of *B*:

$$\mu_{\pm i} = \frac{-b \pm (\lambda_i - a)}{\lambda_i}, \qquad \psi_{\pm i} = \frac{(\phi_i, \pm \phi_i)}{\sqrt{2\lambda_i}}, \qquad i \in \mathbb{N}.$$

Then

$$\|\psi_i\|_E = 1, \quad \langle \psi_i, \psi_j \rangle_E = \delta_{i,j}, \quad B(\psi_i, \psi_j) = \mu_i \delta_{i,j}, \qquad i, j \in \mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}.$$

$$a \pm b = \lambda_i \Rightarrow \mu_{\pm i} = 0 \tag{2.2}$$

So we define $V = \underline{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i < 0\}}: \text{ negative subspace}$ $Z = \underline{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i = \mu_k\}}: \text{ almost resonant subspace}$ $W = \underline{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i > 0 \in \mu_i \neq \mu_k\}}$

 B_V , B_{VZ} , B_W , B_{ZW} closed unitary balls in V, $V \oplus Z$, $W \in Z \oplus W$ S_V , S_{VZ} , S_W e S_{ZW} their relative boundaries $A_B \to A_B \to A_B$, $A_B \to A_B \to A_B$

Introduction	Lines of the proof	The case of the principal eigenvalue	Idea of the proof
00 00000 00000 000000	000000		
Lines of the proof			

We consider the eigenvalues and eigenfunctions of *B*:

$$\mu_{\pm i} = rac{-b \pm (\lambda_i - a)}{\lambda_i}, \qquad \psi_{\pm i} = rac{(\phi_i, \pm \phi_i)}{\sqrt{2\lambda_i}}, \qquad i \in \mathbb{N}.$$

Then

$$\|\psi_i\|_E = 1, \quad \langle \psi_i, \psi_j \rangle_E = \delta_{i,j}, \quad B(\psi_i, \psi_j) = \mu_i \delta_{i,j}, \qquad i, j \in \mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}.$$

$$a \pm b = \lambda_i \Rightarrow \mu_{\pm i} = 0 \tag{2.2}$$

So we define $V = \frac{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i < 0\}}{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i = \mu_k\}}$: negative subspace $Z = \frac{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i = \mu_k\}}{span\{\psi_i : i \in \mathbb{Z}_0, \mu_i > 0 e \mu_i \neq \mu_k\}}$

 B_V, B_{VZ}, B_W, B_{ZW} closed unitary balls in $V, V \oplus Z, W \in Z \oplus W$ $S_V, S_{VZ}, S_W \in S_{ZW}$ their relative boundaries

Introduction 00 00000 00000	Lines of the proof ○○●○○○○○	The case of the principal eigenvalue O O	Idea of the
Lines of the proof			

proof

< 注入 < 注入 →

3

$$E_n = span[\psi_{-n}, \ldots, \psi_n] \subseteq E,$$

$$V_n = V \cap E_n$$
 e $W_n = W \cap E_n$
($Z \subseteq E_n$, for every $n > k + m$)

 J_n^+ the functional J^+ restricted to the subspace E_n .

Introduction	
00000	
000000	

The case of the principal eigenvalue $_{\bigcirc}$

Idea of the proof

Lines of the proof

Two Saddle Geometries

Let λ_k be the first eigenvalue above a + b and $dist(a - b, \sigma) > \delta$.

$$\begin{array}{l} \mathbf{a} + \mathbf{b} \not\in \sigma(-\Delta) \\ J^+(\mathbf{u}) \geq D_{\mathbf{a}+\mathbf{b},\delta}, \ \mathbf{u} \in Z \oplus W \\ J^+(\mathbf{u}) < D_{\mathbf{a}+\mathbf{b},\delta}, \ \mathbf{u} \in \rho S_V, \ \rho \geq \rho_{\mathbf{a}+\mathbf{b},\delta} \end{array}$$

 $\begin{array}{l} \mathbf{a} + \mathbf{b} \nearrow \lambda_k \iff \mu_k \searrow \mathbf{0} \\ J^+(\mathbf{u}) \ge E_{\delta}, \ \mathbf{u} \in W, \\ J^+(\mathbf{u}) < E_{\delta}, \ \mathbf{u} \in R_{\delta} S_{VZ} \end{array}$

Idea of the proof

Lines of the proof

Proposition

Let λ_k be the first eigenvalue above a + b and $dist(a - b, \sigma(-\Delta)) > \delta$. Then

• There exists $E_{\delta} \in \mathbb{R}$, such that

 $J^+(\mathbf{u}) \geq E_\delta, \quad \forall \mathbf{u} \in W,$

There exist ε₀ > 0 e R_δ > 0, such that, a + b ∈ (λ_k − ε₀, λ_k),

 $\begin{aligned} J^{+}(\mathbf{u}) &< E_{\delta} - 1, & \forall \ \mathbf{u} \in R_{\delta}S_{VZ}, \\ J^{+}(\mathbf{u}) &< E_{\delta} - 1, & \forall \ \mathbf{u} \in V \ \text{with} \ \|\mathbf{u}\|_{E} > R_{\delta}. \end{aligned}$

 For given a, b with a + b ∈ (λ_k − ε₀, λ_k) and dist(a − b, σ(−Δ)) > δ, there exist D_{a+b,δ} ∈ ℝ and ρ_{a+b,δ} > R_δ such that

 $J^{+}(\mathbf{u}) \ge D_{a+b,\delta}, \qquad \forall \mathbf{u} \in Z \oplus W, \\ J^{+}(\mathbf{u}) < D_{a+b,\delta}, \qquad \forall \mathbf{u} \in \rho S_{V}, \ \rho \ge \rho_{a+b,\delta}.$

Idea of the proof

Lines of the proof

Proposition

Let λ_k be the first eigenvalue above a + b and $dist(a - b, \sigma(-\Delta)) > \delta$. Then

• There exists $E_{\delta} \in \mathbb{R}$, such that

 $J^+(\mathbf{u}) \geq E_\delta, \quad \forall \mathbf{u} \in W,$

There exist ε₀ > 0 e R_δ > 0, such that, a + b ∈ (λ_k − ε₀, λ_k),

 $\begin{aligned} J^{+}(\mathbf{u}) < E_{\delta} - 1, & \forall \ \mathbf{u} \in R_{\delta}S_{VZ}, \\ J^{+}(\mathbf{u}) < E_{\delta} - 1, & \forall \ \mathbf{u} \in V \text{ with } \|\mathbf{u}\|_{E} > R_{\delta}. \end{aligned}$

• For given a, b with $a + b \in (\lambda_k - \varepsilon_0, \lambda_k)$ and $dist(a - b, \sigma(-\Delta)) > \delta$, there exist $D_{a+b,\delta} \in \mathbb{R}$ and $\rho_{a+b,\delta} > R_{\delta}$ such that

 $\begin{aligned} J^{+}(\mathbf{u}) &\geq D_{a+b,\delta}, & \forall \ \mathbf{u} \in Z \oplus W, \\ J^{+}(\mathbf{u}) &< D_{a+b,\delta}, & \forall \ \mathbf{u} \in \rho S_{V}, \ \rho \geq \rho_{a+b,\delta}. \end{aligned}$

 $\exists \mathbf{u}_n, \mathbf{v}_n, \text{ critical points} \\ \text{of } J_n^+, \text{ at the levels} \\ c_n \in [D_{a+b,\delta}, E_{\delta} - 1] \\ d_n \in [E_{\delta}, T_{\delta}] \end{cases}$

3

Lines of the proof

W

 $\geq E_{\delta}$

Z Da+b, & I

The case of the principal eigenvalue

Idea of the proof

 $\exists \mathbf{u}_n, \mathbf{v}_n$, critical points

E 990

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

 $< E_{\delta} - 1$

 $< D_{a+b,\delta}$

10	**					
				LI		

Lines of the proof 0000000

The case of the principal eigenvalue

Idea of the proof

V e W have infinite dimension

Para n > k + m: J_{p}^{+} satisfies (PS).

 $\exists \mathbf{u}_n, \mathbf{v}_n$, critical points

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

10	**					
				LI		

Lines of the proof 0000000

The case of the principal eigenvalue

Idea of the proof

V e W have infinite dimension

Para n > k + m: J_{p}^{+} satisfies (PS).

Saddle Point geometry: $V_n \in Z \oplus W_n$ $V_n \oplus Z \in W_n$

 $\exists \mathbf{u}_n, \mathbf{v}_n$, critical points of J_n^+ , at the levels $c_n \in [D_{a+b,\delta}, E_{\delta} - 1]$ $d_n \in [E_{\delta}, T_{\delta}]$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A 10

3

Introduction
00000
000000

글 🕨 🖌 글 🕨

-

We prove that $\exists c \in [D_{a+b,\delta}, E_{\delta} - 1], d \in [E_{\delta}, T_{\delta}]$, such that $c_n \to c, d_n \to d$. Moreover there exist critical points $\mathbf{u}, \mathbf{v} \in E$, of the functional J^+ , such that $\mathbf{u}_n \to \mathbf{u}, \mathbf{v}_n \to \mathbf{v}, J^+(\mathbf{u}) = c$ and $J^+(\mathbf{v}) = d$.

Then **u**, **v** are two distinct solutions of our problem.

Introduction
00000
000000

-

We prove that $\exists c \in [D_{a+b,\delta}, E_{\delta} - 1], d \in [E_{\delta}, T_{\delta}]$, such that $c_n \to c, d_n \to d$. Moreover there exist critical points $\mathbf{u}, \mathbf{v} \in E$, of the functional J^+ , such that $\mathbf{u}_n \to \mathbf{u}, \mathbf{v}_n \to \mathbf{v}, J^+(\mathbf{u}) = c$ and $J^+(\mathbf{v}) = d$.

Then **u**, **v** are two distinct solutions of our problem.

э

We prove that $\exists c \in [D_{a+b,\delta}, E_{\delta} - 1], d \in [E_{\delta}, T_{\delta}]$, such that $c_n \to c, d_n \to d$. Moreover there exist critical points $\mathbf{u}, \mathbf{v} \in E$, of the functional J^+ , such that $\mathbf{u}_n \to \mathbf{u}, \mathbf{v}_n \to \mathbf{v}, J^+(\mathbf{u}) = c$ and $J^+(\mathbf{v}) = d$.

Then \mathbf{u}, \mathbf{v} are two distinct solutions of our problem.

Introduction 00 00000 00000 00000 The problem Lines of the proof

The case of the principal eigenvalue

Idea of the proof

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Near resonance with the principal eigenvalue

Scalar case: In Ramos-Sanchez (1997) [RS97], three distinct solutions for the scalr problem (1.2±), for $\lambda \in (\lambda_1 - \epsilon, \lambda_1)$ or $\lambda \in (\lambda_1, \lambda_1 + \epsilon)$. (using minimization and Mountain Pass)

Question: Can we find a third solution for the system (1.1±), when a + b or a - b is near λ_1)?

In Ou-Tang (2009) three solutions are obtained for a gradient System

We need some more regularity: we assume

- $\Omega \ a \ C^2$ bounded domain in \mathbb{R}^N ,
- $h_1, h_2 \in L^r(\Omega)$, where r > N,
- f_1, f_2 continuous functions in $\overline{\Omega} \times \mathbb{R}$, such that there exist $S > 0, q \in (1, 2)$, satisfying

$$|f_i(x,t)| \le S(1+|t|^{q-1}), \text{ for } i=1,2.$$
 (3.1)

• Hypothesis (**F**).

Introduction 00 00000 00000 00000 The problem Lines of the proof

The case of the principal eigenvalue

Idea of the proof

프 🖌 🔺 프 🕨 👘

Near resonance with the principal eigenvalue

Scalar case: In Ramos-Sanchez (1997) [RS97], three distinct solutions for the scalr problem (1.2±), for $\lambda \in (\lambda_1 - \epsilon, \lambda_1)$ or $\lambda \in (\lambda_1, \lambda_1 + \epsilon)$. (using minimization and Mountain Pass)

Question: Can we find a third solution for the system (1.1±), when a + b or a - b is near λ_1)?

In Ou-Tang (2009) three solutions are obtained for a gradient System

We need some more regularity: we assume

- Ω a C^2 bounded domain in \mathbb{R}^N ,
- $h_1, h_2 \in L^r(\Omega)$, where r > N,
- f_1, f_2 continuous functions in $\overline{\Omega} \times \mathbb{R}$, such that there exist $S > 0, q \in (1, 2)$, satisfying

$$|f_i(x,t)| \le S(1+|t|^{q-1}), \text{ for } i=1,2.$$
 (3.1)

• Hypothesis (F).

Introduction 00 00000 00000 00000	Lines of the proof	The case of the principal eigenvalue \bigcirc \bullet	Idea of the proof
The result			

We will say

• $\mathbf{u} = (u, v)$ is positive (or negative), when u > 0 and v > 0 (or u < 0 and v < 0),

Theorem

Assume the given hypotheses and let $\lambda_h \in \sigma(-\Delta)$ and $Z = span\{(\phi_1, \phi_1)\}$. Then

(a) given $\delta > 0$, there exists $\varepsilon_0 > 0$ such that, if $a - b \in (\lambda_{h-1} + \delta, \lambda_h - \delta)$ and $a + b \in (\lambda_1 - \varepsilon_0, \lambda_1)$, then problem (1.1+) has three distinct solutions, of which, one is positive and one is negative.

(b) given $\delta > 0$, there exists $\varepsilon_1 > 0$ such that, if $a - b \in (\lambda_{h-1} + \delta, \lambda_h - \delta)$ and $a + b \in (\lambda_1, \lambda_1 + \varepsilon_1)$, then problem (1.1–) has three distinct solutions, of which, one is positive and one is negative.

3

Introduction 00 00000 00000 000000	Lines of the proof	The case of the principal eigenvalue O O	ldea of the proof ●○○○○○○○○
Idea of the proof			
ldea of th	ne proof		

First we truncate the nonlinearities: for i = 1, 2, we take continuous functions such that

$$\widetilde{f}_i(x,s) = \begin{cases} f_i(x,s), & \text{se } s \ge -1, \\ 0, & \text{se } s \le -2. \end{cases}$$

$$(4.1)$$

프 에 프 에

3

As a consequence hypothesis (**F**) is satisfied, but only at $+\infty$.

Introduction
00000

The case of the principal eigenvalue $\hfill \bigcirc$

Idea of the proof

Idea of the proof

Proposition

If
$$a - b \in (\lambda_{h-1} + \delta, \lambda_h - \delta)$$
 and $a + b < \lambda_1$, then

- there exists $E_{\delta} \in \mathbb{R}$, such that $J^+_{a,b}(\mathbf{u}) \geq E_{\delta}, \forall \mathbf{u} \in W$
- there exist sequences $\varepsilon_j \to 0^+$ and $R_j \to +\infty$, (depending on δ), such that if $a + b \in (\lambda_1 \varepsilon_j, \lambda_1)$, then

$$\begin{aligned} J_{a,b}^{+}(\mathbf{u}) &< E_{\delta} - 1, \qquad \forall \mathbf{u} \in R_{j} S_{VZ}, \\ \widetilde{J}_{a,b}^{+}(\mathbf{u}) &< -R_{j}, \qquad \forall \mathbf{u} \in V \text{ with } \|\mathbf{u}\|_{E} > R_{j}, & \\ \widetilde{J}_{a,b}^{+}(\mathbf{u}) &< -R_{j}, \qquad \forall \mathbf{u} = \mathbf{v} + k \psi_{1}, \ \mathbf{v} \in V, k \ge 0 \text{ and } \|\mathbf{u}\|_{E} = R_{j}. \end{aligned}$$

 for every j, fixing a + b ∈ (λ₁ − ε_j, λ₁) and dist(a − b, σ(−Δ)) > δ, there exist D_{a+b,δ} ∈ ℝ and ρ_{a+b,δ} > R_j, such that

$$\begin{split} \widetilde{J}_{a,b}^{+}(\mathbf{u}) &\geq D_{a+b,\delta}, \qquad \forall \ \mathbf{u} \in Z \oplus W, \\ \widetilde{J}_{a,b}^{+}(\mathbf{u}) &< D_{a+b,\delta}, \qquad \forall \ \mathbf{u} \in \rho S_{V}, \ \rho \geq \rho_{a+b,\delta}. \end{split}$$

E. MASSA, R. ROSSATO On a

Lines of the proof

The case of the principal eigenvalue $\hfill O$

Idea of the proof

3.5 3

Idea of the proof

A sequence of solutions

 $\exists \text{ critical points } \widetilde{\mathbf{u}}^{j} \text{ of } \widetilde{J}^{+}_{\mathbf{a}_{j},b_{j}} \text{ and } \mathbf{v}^{j} \text{ of } J^{+}_{\mathbf{a}_{j},b_{j}}, \text{ at the levels} \\ \widetilde{c}^{j} \in [D_{a+b,\delta}, -R_{j}] \ d^{j} \in [E_{\delta}, T_{j}]:$

 \mathbf{v}^{j} is a solution of

$$\begin{cases} -\Delta u = a_{j}u + b_{j}v + (f_{1}(x, v) + h_{1}(x)); & \text{em } \Omega, \\ -\Delta v = b_{j}u + a_{j}v + (f_{2}(x, u) + h_{2}(x)); & \text{em } \Omega, \\ u(x) = v(x) = 0; & \text{em } \partial\Omega. \end{cases}$$
(4.2)

e $\widetilde{\mathbf{u}}^{j}$ is a solution of

$$\begin{cases} -\Delta u = a_j u + b_j v + (\tilde{f}_1(x, v) + h_1(x)); & \text{em } \Omega, \\ -\Delta v = b_j u + a_j v + (\tilde{f}_2(x, u) + h_2(x)); & \text{em } \Omega, \\ u(x) = v(x) = 0; & \text{em } \partial\Omega. \end{cases}$$
(4.3)

Next step: prove that, for j large, $\tilde{\mathbf{u}}^{j}$ is positive.

Lines of the proof

The case of the principal eigenvalue \bigcirc

Idea of the proof

3.5 3

Idea of the proof

A sequence of solutions

 $\exists \text{ critical points } \widetilde{\mathbf{u}}^{j} \text{ of } \widetilde{J}^{+}_{\mathbf{a}_{j},b_{j}} \text{ and } \mathbf{v}^{j} \text{ of } J^{+}_{\mathbf{a}_{j},b_{j}}, \text{ at the levels} \\ \widetilde{c}^{j} \in [D_{a+b,\delta}, -R_{j}] \ d^{j} \in [E_{\delta}, T_{j}]:$

 \mathbf{v}^{j} is a solution of

$$\begin{cases} -\Delta u = a_{j}u + b_{j}v + (f_{1}(x, v) + h_{1}(x)); & \text{em } \Omega, \\ -\Delta v = b_{j}u + a_{j}v + (f_{2}(x, u) + h_{2}(x)); & \text{em } \Omega, \\ u(x) = v(x) = 0; & \text{em } \partial\Omega. \end{cases}$$
(4.2)

e $\widetilde{\mathbf{u}}^{j}$ is a solution of

$$\begin{cases} -\Delta u = a_j u + b_j v + (\tilde{f}_1(x, v) + h_1(x)); & \text{em } \Omega, \\ -\Delta v = b_j u + a_j v + (\tilde{f}_2(x, u) + h_2(x)); & \text{em } \Omega, \\ u(x) = v(x) = 0; & \text{em } \partial\Omega. \end{cases}$$
(4.3)

Next step: prove that, for *j* large, $\tilde{\mathbf{u}}^{j}$ is positive.

Introduction 00 00000 00000 000000	Lines of the proof	The case of the principal eigenvalue O O	Idea of the proof ○○○○●○○○○
ldea of the proof			
We denote, f	or every $j \in \mathbb{N}$,		

$$\widetilde{\mathbf{u}}^{j} = \beta_{j} \boldsymbol{\psi}_{1} + \boldsymbol{\omega}_{j}, \qquad (4.4)$$

where $\beta_j \in \mathbb{R}$ and $\omega_j \in V \oplus W$.

• Given $\eta > 0$, there exists $C_{\eta} > 0$ (not depending on *j*), such that

$$\|\boldsymbol{\omega}_{\mathbf{j}}\|_{\mathcal{C}^1 \times \mathcal{C}^1} \le \eta |\beta_j| + C_{\eta}.$$
(4.5)

•
$$|\beta_j| \to +\infty$$
 (since $\widetilde{J}^+_{a_j,b_j}(\widetilde{\mathbf{u}}^j) = \widetilde{c}^j \to -\infty$)
• $\frac{\widetilde{\mathbf{u}}^j}{\beta_j} = \psi_1 + \frac{\omega_j}{\beta_j} \to \psi_1$, in $\mathcal{C}^1(\overline{\Omega}) \times \mathcal{C}^1(\overline{\Omega})$

•
$$\beta_j \to +\infty$$
, when $j \to \infty$.

Introduction	Lines of the proof	The case of the principal eigenvalue	Idea of the proof
00			00000000
00000			
Idea of the proof			
M/a damata fan anama i c NI			

We denote, for every $j \in \mathbb{N}$,

$$\widetilde{\mathbf{u}}^{j} = \beta_{j} \boldsymbol{\psi}_{1} + \boldsymbol{\omega}_{j}, \qquad (4.4)$$

where $\beta_j \in \mathbb{R}$ and $\omega_j \in V \oplus W$.

• Given $\eta > 0$, there exists $\widetilde{C}_{\eta} > 0$ (not depending on *j*), such that

$$\|\boldsymbol{\omega}_{\mathbf{j}}\|_{\mathcal{C}^{1}\times\mathcal{C}^{1}} \leq \eta|\beta_{j}| + \widetilde{C}_{\eta}.$$
(4.5)

•
$$|\beta_j| \to +\infty$$
 (since $\widetilde{J}^+_{a_j,b_j}(\widetilde{\mathbf{u}}^j) = \widetilde{c}^j \to -\infty$)
• $\frac{\widetilde{\mathbf{u}}^j}{\beta_j} = \psi_1 + \frac{\omega_j}{\beta_j} \to \psi_1$, in $\mathcal{C}^1(\overline{\Omega}) \times \mathcal{C}^1(\overline{\Omega})$

•
$$\beta_j \to +\infty$$
, when $j \to \infty$.

Introduction	Lines of the proof	The case of the principal eigenvalue	Idea of the proof
			000000000
00000			
00000			
Idea of the proof			

We denote, for every $j \in \mathbb{N}$,

$$\widetilde{\mathbf{u}}^{j} = \beta_{j} \boldsymbol{\psi}_{1} + \boldsymbol{\omega}_{j}, \qquad (4.4)$$

where $\beta_j \in \mathbb{R}$ and $\omega_j \in V \oplus W$.

• Given $\eta > 0$, there exists $\widetilde{C}_{\eta} > 0$ (not depending on *j*), such that

$$\|\boldsymbol{\omega}_{\mathbf{j}}\|_{\mathcal{C}^{1}\times\mathcal{C}^{1}} \leq \eta|\beta_{j}| + \widetilde{C}_{\eta}.$$
(4.5)

< = > < = >

э.

•
$$|\beta_j| \to +\infty$$
 (since $\widetilde{J}^+_{\mathbf{a}_j, b_j}(\widetilde{\mathbf{u}}^j) = \widetilde{c}^j \to -\infty$)
• $\frac{\widetilde{\mathbf{u}}^j}{\beta_j} = \psi_1 + \frac{\omega_j}{\beta_j} \to \psi_1$, in $\mathcal{C}^1(\overline{\Omega}) \times \mathcal{C}^1(\overline{\Omega})$

•
$$\beta_j \to +\infty$$
, when $j \to \infty$.

Introduction	Lines of the proof	The case of the principal eigenvalue	Idea of the proof
00			000000000
00000			
000000			
Idea of the proof			

We denote, for every $j \in \mathbb{N}$,

$$\widetilde{\mathbf{u}}^{j} = \beta_{j} \boldsymbol{\psi}_{1} + \boldsymbol{\omega}_{j}, \qquad (4.4)$$

where $\beta_j \in \mathbb{R}$ and $\omega_j \in V \oplus W$.

• Given $\eta > 0$, there exists $\widetilde{C}_{\eta} > 0$ (not depending on *j*), such that

$$\|\boldsymbol{\omega}_{\mathbf{j}}\|_{\mathcal{C}^{1}\times\mathcal{C}^{1}} \leq \eta|\beta_{j}| + \widetilde{C}_{\eta}.$$
(4.5)

•
$$|\beta_j| \to +\infty$$
 (since $\widetilde{J}^+_{a_j,b_j}(\widetilde{\mathbf{u}}^j) = \widetilde{c}^j \to -\infty$)
• $\frac{\widetilde{\mathbf{u}}^j}{\beta_j} = \psi_1 + \frac{\omega_j}{\beta_j} \to \psi_1$, in $\mathcal{C}^1(\overline{\Omega}) \times \mathcal{C}^1(\overline{\Omega})$

•
$$\beta_j \to +\infty$$
, when $j \to \infty$.

Introduction 00 00000 00000 000000	Lines of the proof	The case of the principal eigenvalue O O	ldea of the proof ○○○○○●○○○
Idea of the proof			

- Then, for every $j > j_0$, we have that $\tilde{\mathbf{u}}^j$ is positive and then it is a solution of (1.1+).
- At this point we have two solutions: ũ^j e v^j: they are distinct since they lie at different levels.

For the third solutions, we consider the system

$$\begin{cases} -\Delta u = au + bv + (-f_1(x, -v) + (-h_1(x))); & \text{in } \Omega, \\ -\Delta v = bu + av + (-f_2(x, -u) + (-h_2(x))); & \text{in } \Omega, \\ u(x) = v(x) = 0; & \text{on } \partial\Omega. \end{cases}$$
(4.6)

- if (u, v) is a solution of (4.6), then (-u, -v) is a solution of (1.1+)
- if $\widehat{J}_{a,b}$ is the functional associated to (4.6), then $\widehat{J}_{a,b}(\mathbf{u}) = J_{a,b}^+(-\mathbf{u})$, $\forall \mathbf{u} \in E$
- $g_i(x, t) = -f_i(x, -t)$ satisfy the same hypotheses as f_i .

Introduction 00 00000 00000 000000	Lines of the proof	The case of the principal eigenvalue O O	Idea of the proof ○○○○○●○○○
Idea of the suppl			

- Then, for every $j > j_0$, we have that $\tilde{\mathbf{u}}^j$ is positive and then it is a solution of (1.1+).
- At this point we have two solutions: ũ^j e v^j: they are distinct since they lie at different levels.

For the third solutions, we consider the system

$$\begin{cases} -\Delta u = au + bv + (-f_1(x, -v) + (-h_1(x))); & \text{in } \Omega, \\ -\Delta v = bu + av + (-f_2(x, -u) + (-h_2(x))); & \text{in } \Omega, \\ u(x) = v(x) = 0; & \text{on } \partial\Omega. \end{cases}$$
(4.6)

- if (u, v) is a solution of (4.6), then (-u, -v) is a solution of (1.1+)
- if $\widehat{J}_{a,b}$ is the functional associated to (4.6), then $\widehat{J}_{a,b}(\mathbf{u}) = J^+_{a,b}(-\mathbf{u})$, $\forall \mathbf{u} \in E$
- $g_i(x,t) = -f_i(x,-t)$ satisfy the same hypotheses as f_i .

Introduction	Lines of the proof	The case of the principal eigenvalue
00 00000 00000 000000		

Proceeding as before, we get

- there exist $\hat{\mathbf{u}}^{j}$ positive solutions of (4.6) for j large, moreover $\widehat{J}_{\mathbf{a}_{j},b_{j}}(\hat{\mathbf{u}}^{j}) \rightarrow -\infty$.
- then $-\widehat{\mathbf{u}}^{j}$ are negative solutions of $(1.1+)_{j}$, and $J^{+}_{a_{i},b_{i}}(-\widehat{\mathbf{u}}^{j}) \to -\infty$.

Idea of the proof

3

Conclusion:

$$-\widehat{\mathbf{u}}^{j} \neq \widetilde{\mathbf{u}}^{j}$$
: one positive, one negative.
 $-\widehat{\mathbf{u}}^{j} \neq \mathbf{v}^{j}$: $J^{+}_{a_{j},b_{j}}(-\widehat{\mathbf{u}}^{j}) \rightarrow -\infty$ e $J^{+}_{a_{j},b_{j}}(\mathbf{v}^{j}) > E_{\delta}$

Then (1.1+) has three distinct solutions (of which, one positive and one negative), near enough to the eigenvalue.

-

Proceeding as before, we get

- there exist $\hat{\mathbf{u}}^{j}$ positive solutions of (4.6) for j large, moreover $\widehat{J}_{\mathbf{a}_{j},b_{j}}(\hat{\mathbf{u}}^{j}) \rightarrow -\infty$.
- then $-\widehat{\mathbf{u}}^{j}$ are negative solutions of $(1.1+)_{j}$, and $J^{+}_{a_{i},b_{i}}(-\widehat{\mathbf{u}}^{j}) \to -\infty$.

Conclusion:

Idea of the proof

$$-\widehat{\mathbf{u}}^{j} \neq \widetilde{\mathbf{u}}^{j}$$
: one positive, one negative.
 $-\widehat{\mathbf{u}}^{j} \neq \mathbf{v}^{j}$: $J^{+}_{\mathbf{a}_{j},b_{j}}(-\widehat{\mathbf{u}}^{j}) \rightarrow -\infty$ e $J^{+}_{\mathbf{a}_{j},b_{j}}(\mathbf{v}^{j}) > E_{\delta}$.

Then (1.1+) has three distinct solutions (of which, one positive and one negative), near enough to the eigenvalue.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

-

Proceeding as before, we get

- there exist $\hat{\mathbf{u}}^{j}$ positive solutions of (4.6) for j large, moreover $\widehat{J}_{\mathbf{a}_{j},b_{j}}(\hat{\mathbf{u}}^{j}) \rightarrow -\infty$.
- then $-\widehat{\mathbf{u}}^{j}$ are negative solutions of $(1.1+)_{j}$, and $J^{+}_{a_{i},b_{i}}(-\widehat{\mathbf{u}}^{j}) \to -\infty$.

Conclusion:

Idea of the proof

$$\begin{array}{l} -\widehat{\mathbf{u}}^{j}\neq\widetilde{\mathbf{u}}^{j} \colon \text{ one positive, one negative.} \\ -\widehat{\mathbf{u}}^{j}\neq\mathbf{v}^{j} \colon J^{+}_{a_{j},b_{j}}(-\widehat{\mathbf{u}}^{j})\rightarrow-\infty \text{ e } J^{+}_{a_{j},b_{j}}(\mathbf{v}^{j})>E_{\delta} \end{array}$$

Then (1.1+) has three distinct solutions (of which, one positive and one negative), near enough to the eigenvalue.

E. Massa, R. A. Rossato, *Multiple solutions for an elliptic system near resonance*. Journal of Mathematical Analysis and Applications (Print), v. 420, p. 1228-1250, 2014.

E. Massa, R. A. Rossato, *Three solutions for an elliptic system near resonance with the principal eigenvalue*, to appear in Differential and Integral Equations.

< 3 b

Lines of the proof

The case of the principal eigenvalue \odot

Idea of the proof

Idea of the proof

- F. O. de Paiva and E. Massa, Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, J. Math. Anal. Appl. 342 (2008), no. 1, 638–650.
- M. Ramos and L. Sanchez, A variational approach to multiplicity in elliptic problems near resonance, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 2, 385–394. MR 1447958 (98a:35043)