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The problem

The main problem

We consider the following system:





−∆u = au + bv ± (f1(x , v) + h1(x)) in Ω,

−∆v = bu + av ± (f2(x , u) + h2(x)) in Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.1±)

where

Ω ⊂ R
N bounded domain,

a, b ∈ R,

h1, h2 ∈ L2(Ω),

f1, f2 : Ω× R → R sublinear Carathéodory functions:
∃ S > 0, q ∈ (1, 2), such that |fi (x , t)| ≤ S(1 + |t|q−1), i = 1, 2.

Purpose: to obtain multiplicity of solutions, when the linear part is “near
resonance”: that is, a+ b or a− b near some eigenvalue λk ).
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The problem

Motivation: the scalar problem

Main motivation: de Paiva, M. [dPM08]: for the scalar equivalent

{
−∆u = λu ± f (x , u) + h(x) in Ω ,

u = 0 in ∂Ω,
(1.2±)

where h ∈ L2(Ω), f is sublinear, and

{
lim|t|→∞ F (x , t) = +∞ uniformly x ∈ Ω ,∫
Ω h φ dx = 0 ∀φ ∈ Hλk

.

it was proved that

a) there exists ε0 > 0, such that, if λ ∈ (λk − ε0, λk ), then two
solutions exist for problem (1.2+);

b) there exists ε1 > 0,such that, if λ ∈ (λk , λk + ε1) then two solutions
exist for problem (1.2−).
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The results for the system

The results for the system

For our system we assume an analogous condition:




(i) lim

|t|→∞
Fi (x , t) = +∞, unif. with resp. to x ∈ Ω, i = 1, 2,

(ii)
∫
Ω
h1φ+ h2ψ = 0, for every (φ, ψ) ∈ Z ,

(F)

Theorem

Assume the given hypotheses, let λk , λl ∈ σ(−∆),

Z = span { (φ, φ) : φ ∈ Hλk
} .

Then

(a) Given δ > 0, there exists ε0 > 0 such that, if
a− b ∈ (λl−1 + δ, λl − δ) and a+ b ∈ (λk − ε0, λk), then Problem
(1.1+) has two distinct solutions.

(b) Given δ > 0, there exists ε1 > 0 such that, if
a− b ∈ (λl−1 + δ, λl − δ) and a+ b ∈ (λk , λk + ε1), then Problem
(1.1−) has two distinct solutions.
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The results for the system

Theorem

Assume the given hypotheses, let λk , λl ∈ σ(−∆),

Z = span { (φ,−φ) : φ ∈ Hλk
} .

Then

(a) Given δ > 0, there exists ε0 > 0 such that, if
a+ b ∈ (λl−1 + δ, λl − δ) and a− b ∈ (λk − ε0, λk), then Problem
(1.1−) has two distinct solutions.

(b) Given δ > 0, there exists ε1 > 0 such that, if
a+ b ∈ (λl−1 + δ, λl − δ) and a− b ∈ (λk , λk + ε1), then Problem
(1.1+) has two distinct solutions.
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The results for the system

Double resonance

Theorem

Assume the given hypotheses, let λk , λl ∈ σ(−∆) (may be the same) and
Z = span { (φ, φ) : φ ∈ Hλk

, (φ,−φ) : φ ∈ Hλl
} . Then

(e) there exists ε2 > 0 such that, if a − b ∈ (λl , λl + ε2) and
a+ b ∈ (λk − ε2, λk ), then problem (1.1+) has two distinct
solutions.

Theorem

Assume the given hypotheses, let λk , λl ∈ σ(−∆) (may be the same) and
Z = span { (φ,−φ) : φ ∈ Hλk

, (φ, φ) : φ ∈ Hλl
} . Then

(f) there exists ε2 > 0 such that, if a − b ∈ (λk − ε2, λk) and
a+ b ∈ (λl , λl + ε2), then problem (1.1−) has two distinct solutions.
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The results for the system

Figure: Sketch of the regions with two solutions for problem (1.1−)
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The results for the system

More literature

Scalar problem:

λ1, ODE , bifurcation and degree. Mawhin-Schmitt (1990),
Badiale-Lupo (1989), Lupo-Ramos (1990)
λ1, PDE , bifurcation and degree. Chiappinelli-Mawhin-Nugari
(1992), Chiappinelli-de Figueiredo (1993),
λ1, PDE , variational techniques. Ramos-Sanchez (1997),
Ma-Ramos-Sanchez (1997), Ma-Pelicer (2002) (p-Laplacian)
λk , ODE , bifurcation and degree. Lupo-Ramos (1990)
λk , PDE , variational techniques. de Paiva-M. (2008), Ke-Tang
(2011)

Systems

in gradient form. Ou-Tang (2009), Suo-Tang (2010), An-Suo (2012),
in (a different) Hamiltonian form Ke-Tang (2011)
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Backgroung

Background

For the problem

{
−∆u = λu + h(x) in Ω ,

u = 0 in ∂Ω,
(1.1)

one has

If λ is NOT an eigenvalue: there there exists a unique solution.

If λ = λk is an eigenvalue: there exists no solution or infinte
solutions (depending if

∫
Ω h φ dx 6= 0 or = 0 ∀φ ∈ Hλk

)

However, the solution when λ ∈ (λk , λk + ε1) and the solution when
λ ∈ (λk − ε1, λk ) are ”different” in several ways.
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Backgroung

Variational methods

In order to find a solutions of
{

−∆u = f (x , u) in Ω ,
u = 0 in ∂Ω.

(1.2)

We define a functional J : H1
0 (Ω) → R :

J(u) =
1

2

∫

Ω

|∇u|2 −
∫

Ω

F (x , u)

(under suitable hypotheses) it turns out that J is smooth and critical
points of J (i.e. u : J ′(u) = 0) and solutions of the equation, are the
same thing.
So: how do we find critical points of J?

Example: J : R → R, J ∈ C1(R), limt→±∞ J(t) = +∞
implies J has a global minimum, which is a crtical point.
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Backgroung

Variational methods

Some classical Critical point theorems:

Definition

J ∈ C1(E ,R) satisfies the PS condition:

For each sequence {un} ⊆ E such that |J(un)| ≤ C and J ′(un) → 0
there exists a (strongly) convergent subsequence.

Theorem (Mountain Pass Theorem)

1 E Banach space; I ∈ C1(E ,R) satisfies the PS condition;
2 I(0)=0;
3 ∃ρ, α > 0 such that I (u) ≥ α for all u such that ‖u‖E = ρ;
4 ∃e ∈ E such that ‖e‖E > ρ and I (e) < 0.

Moreover, let

Γ = {γ ∈ C0([0, 1];E ) such that γ(0) = 0 and γ(1) = e};
c = infγ∈Γ supt∈[0,1] I (γ(t)).

Then c ≥ α and there exists a critical point at level c.
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Backgroung

Variational methods

Theorem (Saddle Point Theorem)

1 E Banach space; I ∈ C1(E ,R) satisfies the PS condition;
2 E = V ⊕W with dim(V ) <∞;
3 ∃β < α and ρ > 0 such that

– I (u) ≥ α for all u ∈ W;
– I (u) ≤ β for all u ∈ BV

ρ = {u ∈ V , ‖u‖ = ρ};
Moreover, let

Γ = {γ ∈ C0(BV
ρ ;E ) such that γ|∂BV

ρ
= id}

c = infγ∈Γ supt∈[0,1] I (γ(t)).

Then c ≥ α and there exists a critical point at level c.
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Backgroung

Variational methods

Let λ ∈ (λk−1, λk ) and consider again

{
−∆u = λu + h(x) in Ω ,

u = 0 in ∂Ω,
(1.3)

Let
V = ⊕k−1

i=1 Hλi
W = V⊥

J(u) =
1

2

∫

Ω

|∇u|2 − λ

2

∫

Ω

u2 −
∫

Ω

hu

By properties of the eigenspaces

∫

Ω

|∇u|2 ≤ λk−1

∫

Ω

u2 in V

∫

Ω

|∇u|2 ≥ λk

∫

Ω

u2 in W

In the end one gets the conditions of the Saddle Point Theorem.
If λ ∈ (λk−1, λk) it is the same... but with different spaces involved!
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scalar

Scalar problem

Let us go back to the scalr problem in [dPM08]:
{

−∆u = λu ± f (x , u) + h(x) in Ω ,
u = 0 in ∂Ω,

(1.2±)

where h ∈ L2(Ω), f is sublinear, and
{

lim|t|→∞ F (x , t) = +∞ uniformly x ∈ Ω ,∫
Ω h φ dx = 0 ∀φ ∈ Hλk

.

How do we prove that there exists ε0 > 0, such that, if λ ∈ (λk − ε0, λk),
then two solutions exist for problem (1.2+)?

The idea below this kind of problem is the following: passing the
eigenvalue the saddle point geometry changes: near the eigenvalue the
perturbation f makes it possible to have both saddle geometries at the
same time.
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scalar

Some notation

Functional:
J± : H1

0 (Ω) → R :
J(u) = 1

2

∫
Ω

(
|∇u|2 − λu2

)
dx ∓

∫
Ω F (x , u) dx −

∫
Ω h u dx

V = span{φ1, ... , φk−1} ,
Z = span{φk , ... , φk+m−1} = Hλk

,

W = (V ⊕ Z )⊥ ,
SV , SVZ , SZW , the unit spheres in V , V ⊕ Z , Z ⊕W
BV , BVZ , BZW , the unit balls.

If λ 6∈ σ(−∆) there exists a solution from Saddle Point Theorem.
however, a suitable behaviour of f may give rise to a further solution.
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scalar

One solution

V

Z

W

b

b
RSV

Z ⊕W

V

Z

W

RSVZ

W

(λ < λk) ck−1 = inf
γ∈Γk−1

sup
v∈RBV

J(γ(v)) .

Γk−1 = {γ ∈ C0(RBV ;H1
0 ) s.t. γ|RSV = Id} ,

(λ > λk) ck = inf
γ∈Γk

sup
v∈RBVZ

J(γ(v)) .

Γk = {γ ∈ C0(RBVZ ;H
1
0 ) s.t. γ|RSVZ = Id} ,

E. Massa, R. Rossato On almost resonant elliptic problems



Introduction Lines of the proof The case of the principal eigenvalue Idea of the proof

scalar

The case λ < λk

Proposition

In the given hypotheses:

∃ DW : J+(u) ≥ DW for u ∈ W ; (1.4)

there exist R+, ε0 > 0 such that, for any λ ∈ (λk − ε0, λk)

J+(u) < DW for u ∈ R+SVZ , (1.5)

for u ∈ V , ‖u‖ ≥ R+ ; D (1.6)

if now we fix λ ∈ (λk − ε0, λk) then

∃ Dλ : J+(u) ≥ Dλ for u ∈ Z ⊕W , (1.7)

∃ ρ+λ > R+ : J+(u) < Dλ for u ∈ ρ+λSV .
D (1.8)
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scalar

E E

V

Z

W

< DW

≥ DW
We have

ck ≥ DW ,

ck−1 ≥ Dλ ,

but also

ck−1 < DW ,

then the solutions are
distinct.
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scalar

Back to the system





−∆u = au + bv ± (f1(x , v) + h1(x)) in Ω,

−∆v = bu + av ± (f2(x , u) + h2(x)) in Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.1±)

Remarks:

The system is of Hamiltonian type; then variational but with
strongly indefinite functional: we use a Galerkin approximation.

In the scalar case we had a different proof for the case above or
below the eigenvalue (saddle point theorems or linking spheres
theorem, depending if the almost resonant eigenspace is part of the
finite / infinite dimensional subspace in the splitting). For the
system, having to use Galerkin aproximation, the geometry is always
the same: a finite dimensional saddle point.
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Lines of the proof

Idea of the Proof

We consider the functionals

J±a,b(u, v) = ±1

2
Ba,b((u, v), (u, v)) −F(u, v) −H(u, v). (2.1)

defined in E = H1
0 (Ω)× H1

0 (Ω), where

F(u, v) =

∫

Ω

F1(x , v) +

∫

Ω

F2(x , u), H(u, v) =

∫

Ω

h1v +

∫

Ω

h2u,

Ba,b((u, v), (φ, ψ)) =

∫

Ω

∇u∇ψ+
∫

Ω

∇v∇φ−a

∫

Ω

(uψ+vφ)−b

∫

Ω

(uφ+vψ).
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Lines of the proof

We consider the eigenvalues and eigenfunctions of B:

µ±i =
−b ± (λi − a)

λi
, ψ±i =

(φi ,±φi)√
2λi

, i ∈ N.

Then

‖ψi‖E = 1, 〈ψi ,ψj〉E = δi ,j , B(ψi ,ψj) = µiδi ,j , i , j ∈ Z0 = Z\{0}.

a± b = λi ⇒ µ±i = 0 (2.2)

So we define
V = span{ψi : i ∈ Z0, µi < 0 }: negative subspace
Z = span{ψi : i ∈ Z0, µi = µk }: almost resonant subspace
W = span{ψi : i ∈ Z0, µi > 0 e µi 6= µk }

BV , BVZ , BW , BZW closed unitary balls in V , V ⊕ Z , W e Z ⊕W
SV , SVZ , SW e SZW their relative boundaries
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Lines of the proof

En = span[ψ−n, . . . ,ψn] ⊆ E ,

Vn = V ∩ En e Wn = W ∩ En

(Z ⊆ En, for every n > k +m)

J+n the functional J+ restricted to the subspace En.
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Lines of the proof

Two Saddle Geometries

Let λk be the first eigenvalue above a+ b and dist(a− b, σ) > δ.

V

Z

W

b

b
ρSV

Z ⊕W

V

Z

W

RδSVZ

W

a+ b 6∈ σ(−∆)
J+(u) ≥ Da+b,δ, u ∈ Z ⊕W
J+(u) < Da+b,δ, u ∈ ρSV , ρ ≥ ρa+b,δ

a+ b ր λk ⇔ µk ց 0
J+(u) ≥ Eδ, u ∈ W ,

J+(u) < Eδ, u ∈ RδSVZ
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Let λk be the first eigenvalue above a+ b and dist(a− b, σ(−∆)) > δ.
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There exist ε0 > 0 e Rδ > 0,such that, a+ b ∈ (λk − ε0, λk ),
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there exist Da+b,δ ∈ R and ρa+b,δ > Rδ such that

J+(u) ≥ Da+b,δ, ∀ u ∈ Z ⊕W ,

J+(u) < Da+b,δ, ∀ u ∈ ρSV , ρ ≥ ρa+b,δ. A2
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B1 B2

V

Z

W

< Eδ − 1

≥ Eδ
V e W have infinite
dimension

Para n > k +m:
J+n satisfies (PS).

Saddle Point geometry:
Vn e Z ⊕Wn

Vn ⊕ Z e Wn

∃un, vn, critical points
of J+n , at the levels
cn ∈ [Da+b,δ,Eδ − 1]
dn ∈ [Eδ,Tδ]
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We prove that ∃c ∈ [Da+b,δ,Eδ − 1], d ∈ [Eδ,Tδ], such that
cn → c , dn → d .
Moreover there exist critical points u, v ∈ E , of the functional J+, such
that un → u, vn → v, J+(u) = c and J+(v) = d .

Then u, v are two distinct solutions of our problem.
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The problem

Near resonance with the principal eigenvalue

Scalar case: In Ramos-Sanchez (1997) [RS97], three distinct solutions for
the scalr problem (1.2±), for λ ∈ (λ1 − ǫ, λ1) or λ ∈ (λ1, λ1 + ǫ). (using
minimization and Mountain Pass)

Question: Can we find a third solution for the system (1.1±), when a+ b
or a − b is near λ1)?

In Ou-Tang (2009) three solutions are obtained for a gradient System

We need some more regularity: we assume

Ω a C2 bounded domain in R
N ,

h1, h2 ∈ Lr (Ω), where r > N ,
f1, f2 continuous functions in Ω× R, such that there exist
S > 0, q ∈ (1, 2), satisfying

|fi (x , t)| ≤ S(1 + |t|q−1), for i = 1, 2. (3.1)

Hypothesis (F).
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The result

We will say

u = (u, v) is positive (or negative), when u > 0 and v > 0 (or u < 0
and v < 0),

Theorem

Assume the given hypotheses and let λh ∈ σ(−∆) and
Z = span { (φ1, φ1)} . Then
(a) given δ > 0, there exists ε0 > 0 such that, if

a− b ∈ (λh−1 + δ, λh − δ) and a+ b ∈ (λ1 − ε0, λ1), then problem
(1.1+) has three distinct solutions, of which, one is positive and one
is negative.

(b) given δ > 0, there exists ε1 > 0 such that, if
a− b ∈ (λh−1 + δ, λh − δ) and a+ b ∈ (λ1, λ1 + ε1), then problem
(1.1−) has three distinct solutions, of which, one is positive and one
is negative.
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Idea of the proof

Idea of the proof

First we truncate the nonlinearities: for i = 1, 2, we take continuous
functions such that

f̃i (x , s) =

{
fi (x , s), se s ≥ −1 ,

0, se s ≤ −2 .
(4.1)

As a consequence hypothesis (F) is satisfied, but only at +∞.
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Proposition

If a− b ∈ (λh−1 + δ, λh − δ) and a+ b < λ1, then

there exists Eδ ∈ R, such that J+a,b(u) ≥ Eδ, ∀ u ∈ W

there exist sequences εj → 0+ and Rj → +∞, ( depending on δ),
such that if a+ b ∈ (λ1 − εj , λ1), then

J+a,b(u) < Eδ − 1, ∀u ∈ RjSVZ ,

J̃+a,b(u) < −Rj , ∀ u ∈ V with ‖u‖E > Rj , A4

J̃+a,b(u) < −Rj , ∀u = v + kψ1, v ∈ V , k ≥ 0 and ‖u‖E = Rj .

for every j , fixing a + b ∈ (λ1 − εj , λ1) and dist(a− b, σ(−∆)) > δ,
there exist Da+b,δ ∈ R and ρa+b,δ > Rj , such that

J̃+a,b(u) ≥ Da+b,δ, ∀ u ∈ Z ⊕W ,

J̃+a,b(u) < Da+b,δ, ∀ u ∈ ρSV , ρ ≥ ρa+b,δ. A5
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Idea of the proof

B4 B5

V

Z

W

J+ < Eδ − 1

J̃+ < −Rj

J+ ≥ Eδ

∃ critical points
ũj
n of J̃+aj ,bj |En

and

vjn of J+aj ,bj |En
,

at the levels
c̃ j
n ∈ [Da+b,δ,−Rj ]
d j
n ∈ [Eδ,Tj ]

n → +∞ :
∃ critical points
ũj of J̃+aj ,bj and

vj of J+aj ,bj ,
at the levels
c̃ j ∈ [Da+b,δ,−Rj ]
d j ∈ [Eδ,Tj ]
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A sequence of solutions

∃ critical points ũj of J̃+aj ,bj and vj of J+aj ,bj , at the levels

c̃ j ∈ [Da+b,δ,−Rj ] d
j ∈ [Eδ,Tj ]:

v j is a solution of



−∆u = aju + bjv + (f1(x , v) + h1(x)); em Ω,

−∆v = bju + ajv + (f2(x , u) + h2(x)); em Ω,

u(x) = v(x) = 0; em ∂Ω.

(4.2)

e ũ j is a solution of



−∆u = aju + bjv + (f̃1(x , v) + h1(x)); em Ω,

−∆v = bju + ajv + (f̃2(x , u) + h2(x)); em Ω,

u(x) = v(x) = 0; em ∂Ω.

(4.3)

Next step: prove that, for j large, ũ j is positive.
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We denote, for every j ∈ N,

ũ j = βjψ1 + ωj , (4.4)

where βj ∈ R and ωj ∈ V ⊕W .

Given η > 0, there exists C̃η > 0 (not depending on j), such that

‖ωj‖C1×C1 ≤ η|βj |+ C̃η. (4.5)

|βj | → +∞ (since J̃+aj ,bj (ũ
j) = c̃ j → −∞)

ũ j

βj
= ψ1 +

ωj

βj
→ ψ1, in C1(Ω)× C1(Ω)

Then, ∃ j0, such that ∀j ≥ j0, ũ
j is positive, if βj > 0, or negative, if

βj < 0.

βj → +∞, when j → ∞.
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ũ j = βjψ1 + ωj , (4.4)

where βj ∈ R and ωj ∈ V ⊕W .

Given η > 0, there exists C̃η > 0 (not depending on j), such that

‖ωj‖C1×C1 ≤ η|βj |+ C̃η. (4.5)

|βj | → +∞ (since J̃+aj ,bj (ũ
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j is positive, if βj > 0, or negative, if

βj < 0.

βj → +∞, when j → ∞.

E. Massa, R. Rossato On almost resonant elliptic problems



Introduction Lines of the proof The case of the principal eigenvalue Idea of the proof

Idea of the proof

We denote, for every j ∈ N,
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Then, for every j > j0, we have that ũ j is positive and then it is a
solution of (1.1+).

At this point we have two solutions: ũ j e vj : they are distinct since
they lie at different levels.

For the third solutions, we consider the system





−∆u = au + bv + (−f1(x ,−v) + (−h1(x))); in Ω,

−∆v = bu + av + (−f2(x ,−u) + (−h2(x))); in Ω,

u(x) = v(x) = 0; on ∂Ω.

(4.6)

if (u, v) is a solution of (4.6), then (−u,−v) is a solution of (1.1+)

if Ĵa,b is the functional associated to (4.6), then Ĵa,b(u) = J+a,b(−u),
∀u ∈ E

gi(x , t) = −fi (x ,−t) satisfy the same hypotheses as fi .
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Proceeding as before, we get

there exist û j positive solutions of (4.6) for j large, moreover

Ĵaj ,bj (û
j) → −∞.

then −û j are negative solutions of (1.1+)j , and J+aj ,bj (−û j) → −∞.

Conclusion:
−û j 6= ũ j : one positive, one negative.
−û j 6= v j : J+aj ,bj (−û j) → −∞ e J+aj ,bj (v

j) > Eδ.

Then (1.1+) has three distinct solutions (of which, one positive and one
negative), near enough to the eigenvalue.
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Conclusion:
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j) > Eδ.

Then (1.1+) has three distinct solutions (of which, one positive and one
negative), near enough to the eigenvalue.

E. Massa, R. Rossato On almost resonant elliptic problems



Introduction Lines of the proof The case of the principal eigenvalue Idea of the proof

Idea of the proof

Proceeding as before, we get
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Ĵaj ,bj (û
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