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Abstract

We consider an elliptic system with linear part depending on two parameters and a
sublinear perturbation. We obtain the existence of at least two solutions when the linear
part is near resonance. The system is associated to a strongly indefinite functional and the
solutions are obtained through saddle point theorem and Galerkin approximation.

Mathematical Subject Classification: 35J57 (49J35).
Key words and phrases: Semilinear elliptic systems, multiplicity of solutions, almost-resonant
problems, saddle point geometry.

1 Introduction

In this paper we consider the following system of elliptic equations:
−∆u = au+ bv ± (f1(x, v) + h1(x)) in Ω,

−∆v = bu+ av ± (f2(x, u) + h2(x)) in Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain, h1, h2 ∈ L2(Ω) and f1, f2 are sublinear nonlinearities, in
particular, they satisfy

fi : Ω× R→ R is a Carathéodory function and there exist constants S > 0

and q ∈ (1, 2), such that |fi(x, t)| ≤ S(1 + |t|q−1), for i = 1, 2.
(1.2)

We will also assume one of the following two sets of hypotheses on the functions f1,2 and h1,2:

lim
t→±∞

fi(x, t) = ±∞, uniformly with respect to x ∈ Ω, i = 1, 2, (f)
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or {
(i) lim|t|→∞ Fi(x, t) = +∞, uniformly with respect to x ∈ Ω, i = 1, 2,

(ii)
∫

Ω h1φ+ h2ψ = 0, for every (φ, ψ) ∈ Z,
(F)

where Fi(x, t) =
∫ t

0 fi(x, s)ds and Z is a space which will be defined in the statements of the
theorems.
We will refer to problem (1.1) as (1.1+) or (1.1−), depending on the sign preceding the two
nonlinearities. Our purpose is to obtain a multiplicity result when the linear part of (1.1) is near
resonance (this situation is often called “almost-resonance” in literature).

Throughout the paper we denote by σ(−∆) the spectrum of the Laplacian in H1
0 (Ω), that is

the set of the eigenvalues λk where 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ ..., and by φk (k = 1, 2, ..) the
corresponding eigenfunctions, which will be taken orthogonal and normalized with ‖φk‖H1

0
= 1.

Finally, we denote by Hλi the eigenspace corresponding to the eigenvalue λi.

The main motivation for this paper is [dPM08], where a similar result was proven in the
scalar case, in particular, it was considered the problem −∆u = λu± f(x, u) + h(x) in Ω ,

u = 0 on ∂Ω
(1.3)

(again, we will refer to this problem as (1.3+) or (1.3−), based on the sign before the nonlinearity
f). The main result stated that given an eigenvalue λk and h ∈ L2(Ω), if f satisfies conditions
analogous to (1.2) and (f) (or (F)), then

a) there exists ε0 > 0, such that for λ ∈ (λk − ε0, λk) there exist two solutions of (1.3+);

b) there exists ε1 > 0, such that for λ ∈ (λk, λk + ε1) there exist two solutions of (1.3−).

As remarked in [dPM08], the possibility to find two solutions is suggested by the following
observation: for λ /∈ σ(−∆) there always exists a solution of problem (1.3), which (for λ >
λ1) may be obtained through the saddle point theorem, however, in the saddle geometry, the
dimension of the negative space is different if we are above or below the eigenvalue λk.
This means that the geometry of the quadratic part of the functional changes when λ passes from
below to above an eigenvalue λk, and then it is possible to have both saddle point geometries
at the same time, if λ is near to λk and the perturbation f makes the functional change sign
in the eigenspace Hλk . In order to achieve this, the term ±f needs to have the appropriate
sing (different if we are above or below to λk) and to be “large enough”, in the sense of the
hypotheses (f) or (F).

In the case of system (1.1), the non-resonance condition reads a± b 6∈ σ(−∆). Our aim is to
guarantee the existence of at least two solutions when a + b or a − b are near to an eigenvalue
of the Laplacian. We will first obtain a result in the case where one of the values a ± b is
near resonance, while the other one is at a certain distance from the spectrum σ(−∆) (see the
Theorems 1.1-1.2). Then we will consider the case in which both values are near resonance (see
the Theorems 1.3-1.4).

The following theorem guarantees the existence of two distinct solutions when a+b is almost-
resonant, while a− b is far from the spectrum σ(−∆).
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Theorem 1.1. Let λk be an eigenvalue of (−∆), λl the first eigenvalue above a− b and

Z = span { (φ, φ) : φ ∈ Hλk} .

Suppose h1, h2 ∈ L2(Ω), f1, f2 satisfy hypotheses (1.2) and (f) (or (F)). Then

(a) given δ > 0, there exists ε0 > 0 such that, if dist(a−b, σ(−∆)) > δ and a+b ∈ (λk−ε0, λk),
then problem (1.1+) has two distinct solutions,

(b) given δ > 0, there exists ε1 > 0 such that, if dist(a−b, σ(−∆)) > δ and a+b ∈ (λk, λk+ε1),
then problem (1.1−) has two distinct solutions.

As a consequence of Theorem 1.1, it is simple to prove the corresponding result in the case
where a− b is almost-resonant, while a+ b is far from σ(−∆).

Theorem 1.2. Let λk be an eigenvalue of (−∆), λl the first eigenvalue above a+ b and

Z = span { (φ,−φ) : φ ∈ Hλk} .

Suppose h1, h2 ∈ L2(Ω), f1, f2 satisfy hypotheses (1.2) and (f) (or (F)). Then

(c) given δ > 0, there exists ε0 > 0 such that, if dist(a+b, σ(−∆)) > δ and a−b ∈ (λk−ε0, λk),
then problem (1.1−) has two distinct solutions,

(d) given δ > 0, there exists ε1 > 0 such that, if dist(a+b, σ(−∆)) > δ and a−b ∈ (λk, λk+ε1),
then problem (1.1+) has two distinct solutions.

By comparing item (a) of Theorem 1.1 with item (d) of Theorem 1.2, we observe that problem
(1.1+) has two solutions when a+ b is almost-resonant from below of the eigenvalue, and when
a − b is almost-resonant from above of the eigenvalue. In the following theorem we show the
existence of two solutions also when both resonances happen at the same time.

Theorem 1.3. Let λk and λl be two eigenvalues (not necessarily distinct) of (−∆), and

Z = span { (φ, φ) : φ ∈ Hλk , (φ,−φ) : φ ∈ Hλl} .

Suppose h1, h2 ∈ L2(Ω), f1, f2 satisfy hypotheses (1.2) and (f) (or (F)). Then

(e) there exists ε2 > 0 such that, if a− b ∈ (λl, λl + ε2) and a+ b ∈ (λk− ε2, λk), then problem
(1.1+) has two distinct solutions.

The case when problem (1.1−) has, at the same time, a + b almost-resonant from above of
the eigenvalue and a− b almost-resonant from below of the eigenvalue, follows again easily from
Theorem 1.3.

Theorem 1.4. Let λk and λl be two eigenvalues (not necessarily distinct) of (−∆), and

Z = span { (φ,−φ) : φ ∈ Hλk , (φ, φ) : φ ∈ Hλl} .

Suppose h1, h2 ∈ L2(Ω), f1, f2 satisfy hypotheses (1.2) and (f) (or (F)). Then

(f) there exists ε2 > 0 such that, if a− b ∈ (λk− ε2, λk) and a+ b ∈ (λl, λl + ε2), then problem
(1.1−) has two distinct solutions.
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Figure 1: Sketch of the regions of two solutions for problem (1.1−)
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Joining the theorems from 1.1 to 1.4, it is possible to infer a qualitative sketch of the regions,
in the plane (a + b, a − b), where one can guarantee the existence of at least two solutions for
problem (1.1−): see Figure 1. The sketch for problem (1.1+) would be analogous, with the axes
switched.

The paper is structured as follows: in section 2 we discuss the techniques we use and the bib-
liography related to our problem, in section 3 we set the notation and we prove some preliminary
lemmas, while in section 4 we will prove the main results.

2 Techniques, bibliography and remarks

The result in [dPM08] was obtained by finding two saddle point geometries, once with a linking
of order k−1, and another time with a linking of order k+m−1, where m is the multiplicity of
the eigenvalue λk); then one proved that these solutions were distinct since they lay at different
levels.

In the case of our system, we will always deal with a functional (see the definition in (3.1))
which is strongly indefinite, in the sense that there exist two infinite dimensional subspaces of its
space of definition, such that the principal part of the functional is unbounded from above in one
and from below in the other (see the estimates in Lemma 4.1). This implies that the standard
linking theorems are no more available in order to find critical points. Some of the techniques
used in approaching this kind of problems may be seen in [BR79, dFF94, HvdV93, dFdOR04,
Mas06, Mas07]. Here, we will use an approximation technique (Galerkin procedure), namely,
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we will solve finite dimensional problems, where we can use the standard linking theorems, then
take limit on the dimension of such problems and prove that the limit is actually the critical
point we were looking for.

It is interesting to point out that, in [dPM08], the authors had to consider different kinds
of saddle point geometries when the parameter λ in (1.3) was approaching the eigenvalue from
below or from above. This was due to the fact that the situation was asymmetric in the sense that
the resonant subspace was part of the (finite-dimensional) negative subspace of the quadratic
part of the functional in one case, while it was in the (infinite-dimensional) positive one in the
other case. Since in this paper we use the Galerkin technique in order to deal with the lack
of compactness in both subspaces, there is no more this difference and then the saddle point
geometries turn out to be the same in the two cases (compare section 4.1 with section 4.3).

Multiplicity results like those in [dPM08] were known for the first eigenvalue and were studied
by many authors since the work of Mawhin and Schmitt [MS90], where the problem in dimen-
sion one is considered, using bifurcation from infinity and degree theory; we cite [BL89, LR90],
which also consider the one dimensional case, and [CMN92, CdF93], which deal with the higher
dimension problems; these works are all based on bifurcation theory. Results for higher eigen-
values were obtained in [LR90], again using bifurcation from infinity and degree theory, but only
for the one dimensional case and making use of the fact that in this case all the eigenvalues are
simple. In [RS97, MRS97], the same kind of problems were analyzed from a variational point of
view and at least three solutions were found when approaching the first eigenvalue from below
and from above, under conditions which are basically our set of hypotheses (F). The variational
approach was later exploited in [MP02] to obtain a similar result for the p-Laplacian operator
(see also [DNM01]).

After [dPM08], some improvements were obtained in [KT11b], in the sense of considering
a somewhat weaker condition on the nonlinearity f and the forcing term h: instead of the
condition

∫
Ω hu = 0 (which corresponds to (F-ii) here), a Landesman-Lazer type condition is

imposed, which in some cases allows the functions h to have a bounded (instead of necessarily
zero) component in the almost-resonant eigenspace.

Regarding almost-resonant problems in the case of systems, we cite [ST10, OT09, AS12,
KT11a]. The first three consider variational systems in gradient form, which means that the
principal part of the functional associated to the problem has a finite dimensional negative space,
so that many techniques used in the scalar case can be used directly in this case.
On the other hand, in [KT11a] the authors consider a system which is different from problem
(1.1) but, like in our case, the associated functional is strongly indefinite. They obtain two
solutions near resonance under a condition similar to the one they used in [KT11b], by using
generalized linking theorems for the case of strongly indefinite functionals (see [Rab86, MMP94]).
We remark that they consider a single variable parameter µ which takes the system near reso-
nance, while here we study the behavior of our system (1.1) with respect to both parameters a, b
(see also Remark 2.2, where we discuss why we have only two parameters in system (1.1)). It is
also worth saying that in their approach they still need two different proofs for the case above
and below the eigenvalue, like in [dPM08], which we could avoid in this paper, as explained
above.

We end this section with some remarks on our hypotheses and some model functions.

Remark 2.1. Hypothesis (f) is stronger than (F-i), but it does not require to impose the
additional “nonresonance” condition on h1,2 contained in (F-ii). For this reason we consider
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both sets of hypotheses. Observe that our hypotheses only deal with the asymptotical behavior
of f : no condition in the origin is required for our multiplicity result.
Model functions for hypothesis (f) could be

fi(x, u) = |u|q−2u , or fi(x, u) = ln(1 + |u|) arctan(u) .

For the case (F), one could consider, for example,

fi(x, u) = arctan(u) or fi(x, u) =

{
u if |u| ≤ 1 ,
1
u if |u| > 1 .

Observe that the last example would fit in the hypotheses used in [KT11b, KT11a], but not
even a null forcing term would satisfy their Landesman-Lazer type condition, while it satisfies
our (F-ii).

Remark 2.2. We observe that one could think of a more general system than (1.1), having four
different coefficient for the linear part:

−∆u = au+ cv ± (f1(x, v) + h1(x)) in Ω,

−∆v = du+ ev ± (f2(x, u) + h2(x)) in Ω,

u(x) = v(x) = 0 on ∂Ω.

(2.1)

However, since we aim to use variational methods, we are forced to take a = e in (2.1). Moreover,
we need the eigenvalues of the matrix of the coefficients to be real, and for this we impose cd ≥ 0.
If we also suppose cd 6= 0 then we may always transform (2.1) into (1.1) with b =

√
cd, by the

change of unknowns (U, V ) = (
√
d/c u, v), which preserves the hypotheses (f) and (F) (see for

example in [Mas07]).
As a consequence, if a = e and cd > 0, it is no loss of generality, to consider the system (2.1)

in the form (1.1).
The case c = d = 0 has no interest in this paper since it would never satisfy the hypotheses of
our Theorems 1.1 to 1.4.

3 Notation and preliminary lemmas

Throughout the paper we will use the notation H = H1
0 (Ω), E = H × H and we will use the

following norms: if u ∈ H and u = (u, v) ∈ E, then ‖u‖L2 =
√∫

Ω u
2 , ‖u‖[L2]2 =

√
‖u‖2L2 + ‖v‖2L2 ,

‖u‖H =
√∫

Ω |∇u|2 , ‖u‖E =
√
‖u‖2H + ‖v‖2H .

The internal products in L2(Ω)×L2(Ω) and in E, associated to the above norms, will be denoted
by 〈·, ·〉[L2]2 and 〈·, ·〉E , respectively. Observe that, by Poincaré inequality, ‖u‖L2 ≤ S ‖u‖H for
some positive constant S, but we will assume throughout the paper that S = 1 in order to
simplify the estimates.

We will define the applications F : E → R and H : E → R, given by

F(u, v) =

∫
Ω
F1(x, v) +

∫
Ω
F2(x, u), H(u, v) =

∫
Ω
h1v +

∫
Ω
h2u.
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Moreover, we define the bilinear form B : E × E → R:

B((u, v), (φ, ψ)) =

∫
Ω
∇u∇ψ +

∫
Ω
∇v∇φ− a

∫
Ω

(uψ + vφ)− b
∫

Ω
(uφ+ vψ).

We will consider the functionals J± : E → R, associated to the problems (1.1±), given by

J±(u, v) = ±1

2
B((u, v), (u, v))−F(u, v)−H(u, v) , (3.1)

actually, one can prove in a standard way that J± are C1 functionals and their critical points
are solutions for the problems (1.1±), respectively.
Denoting u = (u, v), φ = (φ, ψ) and φ = (ψ, φ), we have that

B(u,φ) = 〈u,φ〉E − a〈u,φ〉[L2]2 − b〈u,φ〉[L2]2 , (3.2)

J±(u) = ±1/2B(u,u)− (F(u) +H(u)) , (3.3)

(J±)′(u)[φ] = ±B(u,φ)−
(
F ′(u)[φ] +H ′(u)[φ]

)
. (3.4)

We collect in the following lemma several estimates that will be used in the rest of the paper.
We will denote by C, C1, C2, ... positive constants whose value is not important and which may
be different from line to line.

Lemma 3.1. Given f1, f2 satisfying (1.2) and h1, h2 ∈ L2(Ω), there exist constants S0 and H
such that

|H(u)| ≤ H ‖u‖[L2]2 , |H ′(u)[φ]| ≤ H ‖φ‖[L2]2 , (3.5)

|F(u)| ≤ S0

(
1 + ‖u‖q

[L2]2

)
,

∣∣F ′(u)[φ]
∣∣ ≤ S0

(
1 + ‖u‖q−1

[L2]2

)
‖φ‖[L2]2 , (3.6)

for every u = (u, v) ∈ E and φ = (φ, ψ) ∈ E.

Proof. These estimates are rather standard. By Hölder inequality,∣∣∣∣∫
Ω
h1v

∣∣∣∣ ≤ ‖h1‖L2 ‖v‖L2 and

∣∣∣∣∫
Ω
h2u

∣∣∣∣ ≤ ‖h2‖L2 ‖u‖L2 . (3.7)

Then for a suitable H > 0, depending on h1 and h2, we get

|H(u)| ≤ H

2
‖u‖L2 +

H

2
‖v‖L2 ≤ H ‖u‖[L2]2 . (3.8)

The second estimate in (3.5) follows immediately, since H ′(u)[φ] = H(φ).
Now, by (1.2), we have∣∣∣∣∫

Ω
F1(x, v)

∣∣∣∣ ≤ ∫
Ω
C (1 + |v|q) = C

(
|Ω|+ ‖v‖qLq

)
≤ C1

(
1 + ‖v‖q

L2

)
(3.9)

and an analogous estimate holds for
∫

Ω F2(x, u). Then

|F(u)| ≤ C1(1 + ‖v‖q
L2) + C1(1 + ‖u‖q

L2) ≤ 2C1(1 + ‖u‖q
[L2]2

), (3.10)
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where we used that ‖u‖rL2 + ‖v‖rL2 ≤ 2 max (‖u‖rL2 , ‖v‖rL2) ≤ 2 ‖u‖r[L2]2 . On the other hand,

∣∣F ′(u)[φ]
∣∣ =

∣∣∣∣∫
Ω
f1(x, v)ψ + f2(x, u)φ

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
f1(x, v)ψ

∣∣∣∣+

∣∣∣∣∫
Ω
f2(x, u)φ

∣∣∣∣ ,
where

∣∣∫
Ω f1(x, v)ψ

∣∣ ≤ ∫Ω S(1 + |v|q−1)|ψ|. Using Hölder inequality with r = 2
3−q < 2, we get∣∣∣∣∫

Ω
f1(x, v)ψ

∣∣∣∣ ≤ C
(
‖ψ‖L1 +

(∫
Ω
|v|q−1 2

q−1

) q−1
2

‖ψ‖Lr
)
≤ C1

(
‖ψ‖L2 + ‖v‖q−1

L2 ‖ψ‖L2

)
;

(3.11)
again, an analogous estimate holds for

∣∣∫
Ω f2(x, u)φ

∣∣ and then

∣∣F ′(u)[φ]
∣∣ ≤ C1(1 + ‖v‖q−1

L2 ) ‖ψ‖L2 + C1(1 + ‖u‖q−1
L2 ) ‖φ‖L2 ≤ C2

(
1 + ‖u‖q−1

[L2]2

)
‖φ‖[L2]2 .

In order to study the functional J+, we define, as in [Mas07], an orthogonal basis for E
which diagonalizes B: let us consider the eigenvalue problem to find µ ∈ R and (u, v) ∈ E such
that

B((u, v), (φ, ψ)) = µ〈(u, v), (φ, ψ)〉E , ∀(φ, ψ) ∈ E. (3.12)

We write u =
∑
j∈N

cjφj and v =
∑
j∈N

djφj . By using (φ, ψ) = (0, φi) and (φ, ψ) = (φi, 0) in (3.12),

since the eigenfunctions φi are mutually orthogonal, we get that (3.12) is equivalent to a− λi µλi + b

µλi + b a− λi

ci
di

 = 0, ∀i ∈ N, (3.13)

which has nontrivial solutions when µ is such that the determinant of the above matrix is zero
for some i ∈ N, that is, (a− λi)2 − (µλi + b)2 = 0.

In view of the above computations, we define the two sequences of eigenvalues

µ±i =
−b± (λi − a)

λi
, i ∈ N

and the corresponding eigenfunctions (normalized in E)

ψ±i =
(φi,±φi)√

2
, i ∈ N.

As a consequence we have

‖ψi‖E = 1, 〈ψi,ψj〉E = δi,j , B(ψi,ψj) = µiδi,j , 〈ψi,ψj〉[L2]2 = λ−1
|i| δi,j , (3.14)

for i, j ∈ Z0 := Z \ {0}. Moreover, if we write u =
∑
i∈Z0

ciψi, then

‖u‖2E =
∑
i∈Z0

c2
i , B(u,u) =

∑
i∈Z0

µic
2
i , ‖u‖2[L2]2 =

∑
i∈Z0

λ−1
|i| c

2
i . (3.15)
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4 Proof of the main results

In this section we will give the proofs of the main theorems, in particular, we give in full details
the proof of point (a) in Theorem 1.1. We find two saddle point geometries in section 4.1,
from which we obtain (in section 4.2) two sequences of critical points of finite dimensional
approximations of the functional J+ and we show, in section 4.4, how to obtain two distinct
solutions of problem (1.1) from these sequences. In section 4.3 we explain what has to be adapted
when dealing with the case (b) of Theorem 1.1, while Theorem 1.2 is proved at the end of section
4.4. Finally, in section 4.5, we prove the Theorems 1.3 and 1.4. Section 4.6, is devoted to the
proof of two technical lemmas (a kind of PS condition) used in the proofs of the main results.

4.1 Two saddle point geometries when a+ b is almost-resonant from below

In this section we build the saddle point geometries that will provide critical points for the
functional J+, when a+ b is sufficiently near to λk from below and a− b is far from σ(−∆).

Let us fix λk (of multiplicity m ∈ N, in particular let λk = λk+m−1) and λl, the eigenvalues
stated in Theorem 1.1. We define the subspaces of E

V = span{ψi : i ∈ Z0, µi < 0 and µi 6= µk },
Z = span{ψi : i ∈ Z0, µi = µk },
W = span{ψi : i ∈ Z0, µi > 0 and µi 6= µk },

(4.1)

and we denote by BV , BV Z , BW and BZW the unitary closed balls, with respect to the norm
‖·‖E , in the spaces V , V ⊕ Z, W and Z ⊕W respectively, and by SV , SV Z , SW and SZW their
relative boundaries. We also define the sets of indexes

ZV = {i ∈ Z0 : µi < 0 and µi 6= µk} ,
ZZ = {i ∈ Z0 : µi = µk} ,

ZW = {i ∈ Z0 : µi > 0 and µi 6= µk} .
Observe that if a+ b ∈ (λk − ε, λk) for some ε > 0, then

0 < µk =
λk − (a+ b)

λk
<

ε

λk
. (4.2)

We start by proving a lemma which provides estimates is the subspaces V , Z and W .

Lemma 4.1. Suppose a ± b 6∈ σ(−∆) and fix λk being the first eigenvalue above a + b, of
multiplicity m, and λl the first eigenvalue above a− b.

If dist(a− b, σ(−∆)) > δ > 0, then there exists a constant Ka+b,δ > 0, depending on the sum
a+ b and on δ, such that

B(u,u) ≤ −Ka+b,δ ‖u‖2E , ∀ u ∈ V , (4.3)

B(u,u) ≥ Ka+b,δ ‖u‖2E , ∀ u ∈ Z ⊕W . (4.4)

Moreover, if a+ b is near enough to λk (in particular, if a+ b > 0 and dist(a+ b, σ(−∆) \
{λk}) > α > 0), then there exists Gα,δ > 0, depending on α and δ, such that

B(u,u) ≤ −Gα,δ ‖u‖2E , ∀ u ∈ V , (4.5)

B(u,u) ≥ Gα,δ ‖u‖2E , ∀ u ∈W . (4.6)
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Remark 4.2. As will become clear from the proof below, the constants Ka+b,δ and Gα,δ also
depend on k and l, but we do not include this dependence in the notation since we are considering
them fixed along the proofs.

Proof of Lemma 4.1. By hypothesis, λk is the first eigenvalue above a+ b, then

a+ b ∈ (λk−1, λk), if k ≥ 2 or a+ b < λ1. (4.7)

If k ≥ 2, then the sequence
{
µi = 1− a+b

λi

}
i∈N

is increasing, with µk−1 < 0 and µk > 0, thus

min
i∈N
|µi| = min {µk,−µk−1} = min

{
1− a+ b

λk
,
a+ b

λk−1
− 1

}
> 0 .

If a+ b < λ1, then

inf
i∈N
|µi| ≥ min

{
1, 1− a+ b

λ1

}
> 0 .

In both cases, there exists a constant Ka+b > 0, depending on a+ b (and on k), such that

|µi| ≥ Ka+b, for every i ∈ N. (4.8)

In the same way, since λl is the first eigenvalue above a− b and dist(a− b, σ(−∆)) > δ > 0,
we have

a− b ∈ (λl−1 + δ, λl − δ), if l ≥ 2 or a− b < λ1 − δ. (4.9)

If l ≥ 2, the sequence
{
µ−i = −1 + a−b

λi

}
i∈N

is decreasing, with µ−(l−1) > 0 and µ−l < 0, then

min
i∈N
|µ−i| = min

{
µ−(l−1),−µ−l

}
= min

{
−1 +

a− b
λl−1

,−a− b
λl

+ 1

}
≥ δ

λl
> 0 .

If a− b < λ1 − δ, then

inf
i∈N
|µ−i| ≥ min

{
1, 1− a− b

λ1

}
≥ min

{
1,

δ

λ1

}
> 0 .

In both cases, there exists a constant Kδ > 0, depending on δ (and on l), such that

|µ−i| ≥ Kδ, for every i ∈ N. (4.10)

From (4.8) and (4.10) we conclude that there exists a constant Ka+b,δ > 0, depending on
a+ b and δ, such that

|µ±i| ≥ Ka+b,δ, for every i ∈ N. (4.11)

If u ∈ V , we can write u =
∑
j∈ZV

cjψj , but µj ≤ −Ka+b,δ for j ∈ ZV , implying, by (3.15), that

B(u,u) =
∑
j∈ZV

µjc
2
j ≤ −Ka+b,δ ‖u‖2E , which proves (4.3).

In the same way, if u =
∑

j∈ZZ∪ZW

cjψj ∈ Z ⊕ W , since µj ≥ Ka+b,δ for every j ∈ ZZ ∪ ZW

(actually µk > 0), we get B(u,u) =
∑

j∈ZZ∪ZW

µjc
2
j ≥ Ka+b,δ ‖u‖2E , proving (4.4).
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In order to obtain (4.5) and (4.6) we observe that if a+b > 0 and dist(a+b, σ(−∆)\{λk}) >
α > 0 we have, if k ≥ 2,

min
i∈N\{k,...,k+m−1}

|µi| = min {µk+m,−µk−1} = min

{
1− a+ b

λk+m
,
a+ b

λk−1
− 1

}
>

min

{
α

λk+m
,
α

λk−1

}
=

α

λk+m
> 0 . (4.12)

If k = 1, one gets

min
i∈N\{1}

|µi| = 1− a+ b

λ2
≥ α

λ2
> 0 .

In both cases, we get that |µi| is bounded from below, uniformly with respect to a + b, for
i ∈ N\{k, . . . , k +m− 1}. Then there exists Gα,δ > 0, depending on α and δ (and on k, l), such
that

|µi| ≥ Gα,δ, for every i ∈ Z0 \ {k, . . . , k +m− 1}, (4.13)

from which it follows that B(u,u) ≤ −Gα,δ ‖u‖2E for every u ∈ V and that B(u,u) ≥ Gα,δ ‖u‖2E
for every u ∈W .

Remark 4.3. By comparing the estimates (4.10) and (4.13) with (4.2), we observe that, once
that α and δ have been fixed, for ε small enough, µi = µk only for i = k, .., k +m− 1, then the
Z defined in (4.1) is exactly the same as the one defined in the statement of Theorem 1.1.

Lemma 4.1 is what we need in order to obtain the two saddle point geometries described in
the following propositions.

Proposition 4.4. Under the hypotheses of Theorem 1.1, if dist(a− b, σ(−∆)) > δ > 0, suppose
a + b 6∈ σ(−∆) and λk is the first eigenvalue above a + b, then there exist Da+b,δ ∈ R and
ρa+b,δ > 0, such that

J+(u) ≥ Da+b,δ, ∀ u ∈ Z ⊕W, (4.14)

J+(u) < Da+b,δ, ∀ u ∈ ρSV , ρ ≥ ρa+b,δ. (4.15)

Proof. Let u ∈ Z ⊕W . By (4.4) and (3.5-3.6), we have

J+(u) ≥ Ka+b,δ ‖u‖2E − S0

(
1 + ‖u‖qE

)
−H ‖u‖E . (4.16)

Since Ka+b,δ > 0 and q ∈ (1, 2), the function of ‖u‖E above is bounded from below, then there
exists Da+b,δ ∈ R satisfying (4.14).

On the other hand, if u ∈ V , by (4.3) and (3.5-3.6), we get

J+(u) ≤ −Ka+b,δ ‖u‖2E + S0

(
1 + ‖u‖qE

)
+H ‖u‖E , (4.17)

and then the above function goes to−∞ when ‖u‖E → +∞, implying that there exists ρa+b,δ > 0
satisfying (4.15).

Remark 4.5. We observe that the hypotheses (f) and (F) have not been used in the above proof,
actually, they are required only in the next proposition.
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Proposition 4.6. Under the hypotheses of Theorem 1.1, if dist(a − b, σ(−∆)) > δ > 0 and
λk is the first eigenvalue above a + b, then there exists ε0 > 0, depending on δ, such that for
a+ b ∈ (λk − ε0, λk), there exist Eδ, Da+b,δ ∈ R, ρa+b,δ > Rδ > 0, such that (4.14), (4.15) hold
and

J+(u) ≥ Eδ, ∀ u ∈W, (4.18)

J+(u) < Eδ − 1, ∀ u ∈ RδSV Z , (4.19)

J+(u) < Eδ − 1, ∀ u ∈ V with ‖u‖E > Rδ. (4.20)

Proof. Set α = 1
2dist(λk, σ(−∆) \ {λk}) and let a + b ∈ (λk − ε0, λk), where initially we only

impose ε0 < α, which implies dist(a+ b, σ(−∆) \ {λk}) > α.

• Let u ∈W . By (4.6) and (3.5-3.6), we have

J+(u) ≥ Gα,δ ‖u‖2E − S0

(
1 + ‖u‖qE

)
−H ‖u‖E . (4.21)

Since Gα,δ > 0 and q ∈ (1, 2), there exists Eδ ∈ R, satisfying (4.18). We observe that the
constant Eδ depends also on α, which we omit in the notation since at this point we may
consider it fixed.

• Let now u ∈ V . By (4.5) and (3.5-3.6), we have

J+(u) ≤ −Gα,δ ‖u‖2E + S0

(
1 + ‖u‖qE

)
+H ‖u‖E . (4.22)

The estimate (4.20) will hold true provided Rδ > R̃, where R̃ > 0 may be chosen depending
only on δ and α, but independent from a, b.

• In order to prove that there exists Rδ > R̃ satisfying (4.19) for some ε0 ∈ (0, α), assume
for sake of contradiction that, for any sequences εj → 0+ and {Rj}, where Rj > R̃ for
every j ∈ N, there exist uj ∈ RjSV Z and aj , bj ∈ R such that aj + bj ∈ (λk − εj , λk),
dist(aj − bj , σ(−∆)) > δ and

J+
j (uj) ≥ Eδ − 1 .

Here and below we denote by J+
j (resp. Bj) the functional J+ (resp. the form B) computed

with a = aj and b = bj . Moreover
{
µji

}
i∈Z0

will be the eigenvalues of Bj , while the

corresponding eigenfunctions do not depend on j.

Without loss of generality, we may assume that Rj → ∞ and εjR
2
j → 0. We write

uj = vj + zj , where vj ∈ V and zj ∈ Z, for every j ∈ N.

By (4.2), the k-th eigenvalue of the form Bj satisfies 0 < µjk <
εj
λk

, then Bj(zj , zj) ≤
εj
λk
‖zj‖2E . Using also (4.5), we have

Bj(uj ,uj) = Bj(zj , zj) +Bj(vj ,vj) ≤
εj
λk
‖zj‖2E −Gα,δ ‖vj‖

2
E , (4.23)

and then, for every j ∈ N, it follows that

Eδ − 1 ≤ J+
j (uj) ≤

εj
λk
‖zj‖2E −Gα,δ ‖vj‖

2
E −F(uj)−H(uj) . (4.24)
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Dividing equation (4.24) by R2
j and reordering, we get

Gα,δ
R2
j

‖vj‖2E ≤
εj

λkR
2
j

‖zj‖2E −
Eδ − 1

R2
j

− F(uj) +H(uj)

R2
j

. (4.25)

We note that
|F(uj)+H(uj)|

R2
j

≤
S0

(
1+‖uj‖q

[L2]2

)
+H‖uj‖[L2]2

R2
j

≤ C(1+Rj+R
q
j)

R2
j

→ 0 when j → ∞,

since q ∈ (1, 2). Moreover Eδ−1
R2
j
→ 0 and

εj
λkR

2
j
‖zj‖2E ≤

εj
λk
→ 0. Thus it follows that

‖vj‖E
Rj

→ 0 , (4.26)

and since ‖vj‖2E = R2
j − ‖zj‖2E , we also get

‖zj‖E
Rj

→ 1 . (4.27)

Now, for every j ∈ N, we define ẑj =
zj
Rj

, v̂j =
vj
Rj

and ûj = ẑj + v̂j . Then, by (4.26) and

(4.27), there exists ẑ0 ∈ Z with ‖ẑ0‖E = 1, such that (up to a subsequence) ẑj → ẑ0 in
E and uniformly (since the dimension of Z is finite) and v̂j → 0 in E, when j →∞. We
denote by P1u and P2u the components of a vector u ∈ E, that is, u = (P1u, P2u). Since
‖ẑ0‖E = 1, it follows that at least one of the components, P1ûj or P2ûj , does not converge
to zero in E. Without loss of generality, we suppose that P1ûj does not converge to zero
in E. Then we have {

P1ẑj
j→∞−−−→ P1ẑ0 6= 0, uniformly in Ω,

P1v̂j
j→∞−−−→ 0, in L2(Ω).

(4.28)

As a consequence, there exist χ > 0 and j0 ∈ N such that, for j > j0, the sets Ωj :=
{x ∈ Ω : |P1ûj(x)| > χ} satisfy |Ωj | > χ. Actually, by (4.28), there exists χ > 0 such

that, for j large enough, there exist sets Ω̃j with |Ω̃j | > χ such that |P1ẑj(x)| > 2χ and

|P1v̂j(x)| < χ, a.e. in Ω̃j , so that |P1ûj(x)| > χ a.e. in Ω̃j .

At this point we need to consider separately the hypotheses (f) and (F).

If hypotheses (1.2) and (f) hold, then given M > 0, there exists CM ∈ R such that
F1,2(x, t) ≥M |t| − CM . Then, by taking M = 1+H

χ2 , we obtain, for j > j0, the estimate∫
Ω
F2(x,Rj(P1ûj)) ≥MRj

∫
Ω
|P1ûj | −DM ≥MRjχ

2 −DM , (4.29)

where DM =
∫

ΩCM . Moreover, since F1(x, P2ûj) ≥ −CM ,∫
Ω
F1(x,Rj(P2ûj)) ≥ −DM . (4.30)

It follows from the last two estimates and from (3.5), that

F(Rjûj) +H(Rjûj) ≥MRjχ
2 − 2DM −RjH = Rj − 2DM . (4.31)
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Inserting (4.31) in (4.24), we get

Eδ − 1 ≤ εj
λk
‖Rj ẑj‖2E −Gα,δ ‖Rjv̂j‖

2
E −Rj + 2DM , (4.32)

and then

Gα,δR
2
j ‖v̂j‖2E +Rj ≤

εjR
2
j

λk
+ 2DM − Eδ + 1 , (4.33)

which gives rise to a contradiction, since the right hand side of the inequality is bounded,
while the left hand side tends to +∞, when j →∞.

We conclude that there exist Rδ > R̃ and ε0 ∈ (0, α) which satisfy (4.19).

We consider now the case in which hypotheses (1.2) and (F) hold. We first show that

lim
R→∞

inf
j>j0

∫
Ω
F2(x,RP1(ûj)) = +∞. (4.34)

In fact, we show that given M > 0, there exists R0 large enough, such that∫
Ω
F2(x,RP1(ûj)) ≥M, ∀j ≥ j0 and R ≥ R0. (4.35)

First observe that there exists CF > 0, such that

Fi(x, t) ≥ −CF , for every (x, t) ∈ Ω× R and i = 1, 2 ;

actually, by (F-i) there exists t0 > 0 such that Fi(x, t) ≥ 0 for |t| > t0 and by (1.2)
Fi(x, t) ≥ −S(t0 + tq0/q) for |t| ≤ t0.

Then we define M1 = M+|Ω|CF
χ . By point (F-i), there exists s0 > 0 such that,

F2(x, t) > M1, ∀|t| > s0. (4.36)

Also, for every R > s0
χ , we have Ωj ⊆ {x ∈ Ω : |RP1(ûj(x))| > s0}. Then, since |Ωj | > χ,

it follows that∫
Ω
F2(x,RP1(ûj)) ≥

∫
Ωj

F2(x,RP1(ûj)) +

∫
Ω\Ωj

−CF ≥

≥
∫

Ωj

M1 − CF |Ω| ≥M1χ− CF |Ω| = M. (4.37)

Thus, (4.34) is satisfied, since
∫

Ω F1(x,RP2(ûj)) is bounded from below; it follows that

F(uj) = F(Rjûj)→ +∞, when j → +∞. (4.38)

Moreover, by Remark 4.3 and (F-ii), we have that H(uj) = H(vj), then we may estimate

Gα,δ ‖vj‖2E +H(uj) = Gα,δ ‖vj‖2E +H(vj) ≥ Gα,δ ‖vj‖2E −H ‖vj‖E . (4.39)

As a consequence, there exists δ2 > 0 such that Gα,δ ‖vj‖2E +H(uj) ≥ −δ2.
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Then, from (4.24), we get

F(uj) ≤
εj ‖zj‖2E
λk

− Eδ + 1 + δ2, (4.40)

which gives rise to a contradiction, as in the previous case, since the right hand side is
bounded, while the left hand side tends to +∞.

We conclude again that there exist Rδ > R̃ and ε0 ∈ (0, α) which satisfy (4.19).

The constants in the statement of the proposition can be obtained as follows: we first get
Eδ ∈ R satisfying (4.18), then we obtain ε0 > 0 and Rδ > 0 satisfying (4.19) and (4.20). These
estimates hold uniformly for a + b ∈ (λk − ε0, λk). Then, fixing a + b in this interval, we can
obtain a constant Da+b,δ ∈ R satisfying (4.14). Finally, we get ρa+b,δ > 0 satisfying (4.15);
observe that we may also choose ρa+b,δ > Rδ, as desired.

Remark 4.7. Proposition 4.4 holds for any fixed value of a+ b in the interval (λk−1, λk). This
geometry will produce a solution of problem (1.1+). On the other hand, the geometry from
Proposition 4.6 holds for a+ b near to the eigenvalue λk, from below. This other geometry will
also give a solution of problem (1.1+). As a result, for such values of a + b, both geometries
hold, so that we will have two solutions of problem (1.1+). However, we will still need to prove
that they are not the same.

4.2 Obtaining two sequences of critical points

As observed in the introduction, the functional J+ defined in (3.1) is strongly indefinite. In order
to overcome this difficulty, we will define a sequence of finite dimensional problems, where we
can apply the classical saddle point theorem, and then we will take limit to obtain the solutions
of problem (1.1).

We define, for every n > k +m,

En = span[ψ−n, . . . ,ψn] ⊆ E,

Vn = V ∩ En and Wn = W ∩ En.

By Remark 4.3, we may assume that Z ⊆ En for every n > k+m. We will denote by Bn
V , Bn

V Z

and Bn
ZW the closed unitary balls, with respect to the norm of E, in the subspaces Vn, Vn ⊕ Z

and Z ⊕Wn respectively, and by SnV , SnV Z and SnZW their relative boundaries. Finally, let J+
n

be the functional J+ restricted to the subspace En.

Under the hypotheses of Theorem 1.1, the claims in Proposition 4.6 hold. Then, fixed a, b
such that dist(a − b, σ(−∆)) > δ > 0 and a + b ∈ (λk − ε0, λk), the functional J+

n satisfies the
same estimates in the subespaces Vn, Z and Wn.
Moreover, the following lemma (whose proof is given in section 4.6) implies that the functionals
J+
n satisfy the PS condition.

Lemma 4.8. Suppose a ± b 6∈ σ(−∆), f1, f2 satisfy (1.2) and h1, h2 ∈ L2(Ω). Fix n > k + m
and suppose {ui} ⊂ En is a sequence such that∣∣(J±n )′(ui)[φ]

∣∣ ≤ εi ‖φ‖E, for every φ ∈ En, (4.41)

where εi → 0. Then {ui} admits a subsequence which converges in En.
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In these conditions, for every n > k +m, we can apply the saddle point theorem two times:
in fact, equations (4.14) and (4.15) define a saddle point geometry between the subspaces Vn
and Z ⊕Wn, while equations (4.18) and (4.19) define a second saddle point geometry, between
the subspaces Vn ⊕ Z and Wn. As a consequence, we obtain the existence of the critical points
u+
n ,v

+
n ∈ En of the functionals J+

n , at the critical levels

c+
n = inf

γ∈ΓnV

sup
u∈ρa+b,δBnV

J+
n (γ(u)) ≥ Da+b,δ, (4.42)

d+
n = inf

γ∈ΓnV Z

sup
v∈RδBnV Z

J+
n (γ(v)) ≥ Eδ, (4.43)

where

ΓnV = {γ ∈ C(ρa+b,δB
n
V , En) : γ(u) = u if ‖u‖E = ρa+b,δ} , (4.44)

ΓnV Z = {γ ∈ C(RδBn
V Z , En) : γ(v) = v if ‖v‖E = Rδ} . (4.45)

Since u+
n ,v

+
n are just critical points of the functional J+ restricted to certain subspaces, they

are not solutions of our problem. The solutions that we will find, in section 4.4, will be critical
points of J+ whose critical levels will be the limit of subsequences of c+

n and d+
n . Thus, we need

estimates on c+
n , d

+
n that guarantee the existence of convergent subsequences and also that the

limit levels are distinct. Such estimates are given in the next lemma.

Lemma 4.9. Under the conditions of Proposition 4.6, fixed a, b such that dist(a− b, σ(−∆)) >
δ > 0 and a + b ∈ (λk − ε0, λk), there exists Tδ > 0 such that c+

n ∈ [Da+b,δ, Eδ − 1] and
d+
n ∈ [Eδ, Tδ], for every n > k +m.

Proof. The estimates from below come from (4.42-4.43), as a direct consequence of the saddle
point theorem.

In order to obtain the estimates from above, we first note that it is possible to build a map
γ0 ∈ ΓnV such that γ0(ρa+b,δB

n
V ) is the union of the annulus {u ∈ Vn : ‖u‖E ∈ [Rδ, ρa+b,δ]} with

a hemisphere contained in RδS
n
V Z , having RδS

n
V as boundary: for instance, we may take

γ0(p) =

{
p , if Rδ ≤ ‖p‖E ≤ ρa+b,δ ,

p+
√

(Rδ)2 − ‖p‖2E ψk , if ‖p‖E ≤ Rδ .

Then, by (4.19) and (4.20), we get sup
u∈ρa+b,δBnV

J+
n (γ0(u)) < Eδ − 1, and then c+

n < Eδ − 1.

On the other hand, since the identity belongs to ΓnV Z , one has d+
n ≤ sup

v∈RδBnV Z
J+(v).

If u ∈ V ⊕ Z, let z ∈ Z and v ∈ V be such that u = z + v. Since a+ b ∈ (λk − ε0, λk), one has

−Ka+b,δ < 0 < µk ≤
ε0

λk
. (4.46)

Then by (4.46), (4.3) and (3.5-3.6), we have

J+(u) ≤ ε0

λk
‖z‖2E −Ka+b,δ ‖v‖2E + S0(1 + ‖u‖qE) +H ‖u‖E

≤ ε0

λk
‖u‖2E + S0(1 + ‖u‖qE) +H ‖u‖E ,

implying that J+ is bounded from above (uniformly with respect to n), in the bounded sets
RδB

n
V Z . As a consequence there exist Tδ > 0 which bounds d+

n from above.



E. Massa and R. Rossato 17

4.3 The saddle point geometries when a+ b is almost-resonant from above

In this section we will show how to obtain critical levels analogous to (4.42) and (4.43), in the
case (b) of Theorem 1.1, by adapting the arguments used in the previous sections for the case
(a).

We consider the functional J− defined in (3.1), which is the same as the functional J+,
except for the fact that it has the form (−B) in the place of the original form B. Thus, we
define the two sequences of eigenvalues of (−B):

µ̃±i = −µ±i = −−b± (λi − a)

λi
, i ∈ N ,

which correspond to the same eigenfunctions ψ±i = (φi,±φi)√
2

, i ∈ N.

Then we define the subspaces Ṽ , Z̃ and W̃ in the same manner as in (4.1), but using the
eigenvalues µ̃i : i ∈ Z0 in the place of µi : i ∈ Z0.

We observe that if a+ b ∈ (λk, λk + ε), for some ε > 0, then

0 < µ̃k =
(a+ b)− λk

λk
<

ε

λk
, (4.47)

analogous to (4.2).
We only need to show that Lemma 4.1 holds for (−B) with the new definition of the sub-

spaces: the rest of the arguments will follow as in section 4.1.

Lemma 4.10. Suppose a ± b 6∈ σ(−∆) and fix λk being the largest eigenvalue below a + b, of
multiplicity m, and λl the first eigenvalue above de a− b.

If dist(a− b, σ(−∆)) > δ > 0, then there exists a constant Ka+b,δ > 0, depending on the sum
a+ b and on δ, such that

−B(u,u) ≤ −Ka+b,δ ‖u‖2E , ∀ u ∈ Ṽ , (4.48)

−B(u,u) ≥ Ka+b,δ ‖u‖2E , ∀ u ∈ Z̃ ⊕ W̃ . (4.49)

Moreover, if a+ b is near enough to λk (in particular, if dist(a+ b, σ(−∆) \ {λk}) > α > 0),
then there exists Gα,δ > 0, depending on α and δ, such that

−B(u,u) ≤ −Gα,δ ‖u‖2E , ∀ u ∈ Ṽ , (4.50)

−B(u,u) ≥ Gα,δ ‖u‖2E , ∀ u ∈ W̃ . (4.51)

Proof. The proof of this lemma follows as in Lemma 4.1.
In fact, since we are considering the eigenvalues of the form (−B), the sequence µ̃i, with

i ∈ N, is decreasing while the sequence µ̃−i, with i ∈ N, is increasing. However, one can prove
as before that an estimate like (4.11) holds for these new eigenvalues. Then (4.48) and (4.49)

hold true, by the definition of Ṽ , Z̃ and W̃ .
Considering a+ b near enough to λk, we also get, as in the proof of Lemma 4.1, the existence

of the constant Gα,δ satisfying (4.50) and (4.51).

Reasoning as in Remark 4.3, we observe that for ε small enough, Z̃ is exactly the same as
the Z defined in the statement of Theorem 1.1.
Thus, Lemma 4.10 and estimate (4.47) allow us to show an analogous of the Propositions 4.4

and 4.6 for the functional J−, with the new subspaces Ṽ , Z̃ and W̃ .
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Proposition 4.11. Under the hypotheses of Theorem 1.1, if dist(a−b, σ(−∆)) > δ > 0, suppose
a + b 6∈ σ(−∆) and λk is the largest eigenvalue below a + b, then there exist Da+b,δ ∈ R and

ρa+b,δ > 0, such that J− satisfies (4.14) and (4.15) in the subspaces Ṽ , Z̃ and W̃ .

Proposition 4.12. Under the hypotheses of Theorem 1.1, if dist(a − b, σ(−∆)) > δ > 0 and
λk is the largest eigenvalue below a+ b, then there exists ε1 > 0, depending on δ, such that for
a+ b ∈ (λk, λk + ε1), there exist Eδ, Da+b,δ ∈ R, ρa+b,δ > Rδ > 0, such that J− satisfies (4.14),

(4.15), (4.18), (4.19) and (4.20) in the subspaces Ṽ , Z̃ and W̃ .

The Propositions 4.11 and 4.12 are enough to guarantee, as in section 4.2, the existence of
two sequences of critical points {u−n } and {v−n }, of the functionals J−n = J−|En , at critical levels
c−n , d

−
n , analogous to (4.42) and (4.43).

4.4 Existence of solutions in the limit

In this section we conclude the proof of Theorem 1.1, by showing that, up to subsequences, the
sequences of critical points {u+

n } and {v+
n } obtained in section 4.1 converge to distinct solutions

of (1.1+), while {u−n } and {v−n }, from section 4.3, converge to distinct solutions of (1.1−). At
the end of the section we also prove Theorem 1.2.

We first state a lemma, which will be proven in section 4.6.

Lemma 4.13. Suppose a±b 6∈ σ(−∆), f1, f2 satisfy (1.2) and h1, h2 ∈ L2(Ω). Suppose {ui} ⊂ E
is a sequence such that ui ∈ Ei, for every i ∈ N, and∣∣(J±i )′(ui)[φ]

∣∣ ≤ εi ‖φ‖E, for every φ ∈ Ei, (4.52)

where εi → 0. Then {ui} is bounded in E.

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We will only prove item (a), since item (b) follows by the same argument
when applied to the sequences obtained in section 4.3.

First, we note that, by Lemma 4.9, there exist c+ ∈ [Da+b,δ, Eδ − 1] and d+ ∈ [Eδ, Tδ] such
that, passing to a subsequence, c+

n → c+ and d+
n → d+ for n→∞.

We claim that there exists u+ ∈ E, critical point of the functional J+, such that J+(u+) =
c+. By the saddle point theorem, we know that, for every n > k +m,

J+
n (u+

n ) = c+
n , (4.53)

(J+
n )′(u+

n )[φ] = 0, for every φ ∈ En. (4.54)

As a consequence, we may apply Lemma 4.13, to deduce that the sequence {u+
n } is bounded in

E and then there exists u+ ∈ E such that, passing to a further subsequence,{
u+
n = (un, vn) ⇀ u+ = (u, v) in E,

u+
n = (un, vn)→ u+ = (u, v) in L2 × L2.

(4.55)

Let h > k +m. By testing (4.54) with (0, ψ) ∈ Eh and (φ, 0) ∈ Eh, we get, for n > h,
∫

Ω
∇un∇ψ − a

∫
Ω
unψ − b

∫
Ω
vnψ −

∫
Ω
f1(x, vn)ψ −

∫
Ω
h1ψ = 0,∫

Ω
∇vn∇φ− a

∫
Ω
vnφ− b

∫
Ω
unφ−

∫
Ω
f2(x, un)φ−

∫
Ω
h2φ = 0.

(4.56)
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By (4.55) and the continuity of the Nemytskii operators associated to f1 and f2 (see for example
in [dF89]), we have, in the limit,

∫
Ω
∇u∇ψ − a

∫
Ω
uψ − b

∫
Ω
vψ −

∫
Ω
f1(x, v)ψ −

∫
Ω
h1ψ = 0,∫

Ω
∇v∇φ− a

∫
Ω
vφ− b

∫
Ω
uφ−

∫
Ω
f2(x, u)φ−

∫
Ω
h2φ = 0,

(4.57)

that is, (J+)′(u+)[φ] = 0, for every φ = (φ, ψ) ∈ Eh. Since
⋃
h∈NEh is dense in E, it follows

that (J+)′(u+) = 0, and then u+ = (u, v) is a critical point of the functional J+.
We show now that u+

n → u+, strongly in E, which implies that J+(u+) = c+.
Let Pn : H → span{φ1, . . . , φn} be the orthogonal projection. Then Pnu → u, Pnv → v in H
and since (vn − Pnv, un − Pnu) ∈ En, we can use it as a test function in in (4.54) to obtain

(J+
n )′(un, vn)[vn − Pnv, un − Pnu] = 0, for every n > k +m. (4.58)

Since un − Pnu, vn − Pnv → 0 in L2 and un, vn are bounded in L2, by using (1.2), we get the
following convergences:

a

∫
Ω
vn(vn − Pnv) +

∫
Ω
un(un − Pnu) + b

∫
Ω
un(vn − Pnv) +

∫
Ω
vn(un − Pnu)→ 0,∫

Ω
f1(x, vn)(un − Pnu) +

∫
Ω
f2(x, un)(vn − Pnv)→ 0,∫

Ω
h1(un − Pnu) +

∫
Ω
h2(vn − Pnv)→ 0.

(4.59)

Then it follows by (4.58) that∫
Ω
∇vn∇(vn − Pnv) +

∫
Ω
∇un∇(un − Pnu)→ 0, (4.60)

which implies∫
Ω
|∇vn|2−

∫
Ω
∇vn∇v+

∫
Ω
|∇un|2−

∫
Ω
∇un∇u+

∫
Ω
∇vn∇(v−Pnv)+

∫
Ω
∇un∇(u−Pnu)→ 0.

(4.61)
The last two terms in (4.61) go to zero because (Pnv, Pnu)→ (v, u) in E and (vn, un) is bounded
in E. It follows that∫

Ω
|∇vn|2 −

∫
Ω
∇vn∇v +

∫
Ω
|∇un|2 −

∫
Ω
∇un∇u→ 0,

that is, ‖(un, vn)‖E → ‖(u, v)‖E and then (un, vn)→ (u, v) strongly in E.
We then conclude that J+(u+

n )→ J+(u+) and then J+(u+) = c+.
By the same argument, there exists v+ ∈ E, critical point of J+, such that v+

n → v+ in E
and J+(v+) = d+. Moreover, u+ 6= v+ since J(u+) = c+ ≤ Eδ − 1 and J(v+) = d+ ≥ Eδ.

We have then proved point (a) of Theorem 1.1.

Theorem 1.2 follows now easily by a change of variables.
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Proof of Theorem 1.2. This result is a direct consequence of Theorem 1.1: let (u, v) be one of
the solutions of (1.1+) and define (u, v) = (u,−v). Then{

−∆u = au− bv − [−f1(x,−v)− h1(x) ] in Ω,

−∆v = −bu+ av − [ f2(x, u) + h2(x) ] in Ω,
(4.62)

that is, (u, v) is a solution of problem (1.1−) with the new coefficients ã = a and b̃ = −b, the
new nonlinearities f̃1(x, v) = −f1(x,−v), f̃2(x, u) = f2(x, u), which still satisfy (1.2) and (f)
(resp. (F-i)), and the new L2(Ω) functions h̃1 = −h1, h̃2 = h2.

If we are considering hypothesis (F), the condition
∫

Ω h1φ + h2ψ = 0 for (φ, ψ) ∈ Z which

appears in Theorem 1.1, becomes
∫

Ω h̃1φ+ h̃2ψ = 0 for (φ,−ψ) ∈ Z, as in Theorem 1.2.
The proof of item (d) follows in the same way from item (b) of Theorem 1.1.

4.5 Double almost-resonance

In this section we outline the proof of the multiplicity results stated in the Theorems 1.3-1.4,
which deal with two cases of double almost-resonance, that is, when the values a+ b and a− b
are near to eigenvalues of the Laplacian operator, at the same time.
The proof will follow the same lines as that of Theorem 1.1 item (a).

Let us fix λk (of multiplicity m ∈ N, in particular λk = λk+m−1) and λl (of multiplicity
t ∈ N, in particular λl = λl+t−1) the eigenvalues stated in Theorem 1.3.

Observe that if a− b ∈ (λl, λl + ε) and a+ b ∈ (λk− ε, λk), for some ε > 0, then µk = 1− a+b
λk

and µ−l = a−b
λl
− 1 satisfy

0 < µk, µ−l <
ε

min {λk, λl}
. (4.63)

In order to reproduce once more the geometry of Proposition 4.6, we define the spaces V,Z,W
in the following way:

V = span{ψi : i ∈ Z0, µi < 0, µi 6= µ−l and µi 6= µk },
Z = span{ψi : i ∈ Z0, µi = µk or µi = µ−l },
W = span{ψi : i ∈ Z0, µi > 0, µi 6= µ−l and µi 6= µk }.

(4.64)

We describe below how to build the geometry which guarantees the existence of critical levels
analogous to (4.42) and (4.43), stressing the main differences in the proofs.
We start with a lemma, similar to Lemma 4.1, which gives estimates in the subspaces V , Z and
W .

Lemma 4.14. Suppose a ± b 6∈ σ(−∆) and fix λk being the first eigenvalue above a + b, of
multiplicity m, and λl the largest eigenvalue below a − b, of multiplicity t. Then there exists a
constant βa,b > 0, depending on a and b, such that

B(u,u) ≤ −βa,b ‖u‖2E , ∀ u ∈ V , (4.65)

B(u,u) ≥ βa,b ‖u‖2E , ∀ u ∈ Z ⊕W . (4.66)

Moreover, if a+ b > 0 is near enough to λk and a− b to λl (in particular, if dist(a+ b, σ(−∆) \
{λk}) > α > 0 and dist(a − b, σ(−∆) \ {λl}) > α > 0), then there exists ηα > 0, depending on
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α, such that

B(u,u) ≤ −ηα ‖u‖2E , ∀ u ∈ V , (4.67)

B(u,u) ≥ ηα ‖u‖2E , ∀ u ∈W . (4.68)

Remark 4.15. As observed in Remark 4.2, about Lemma 4.1, here the constants βa,b and ηα
also depend on k and l, which we are considering fixed along the proofs.

Proof of Lemma 4.14. The proof of this lemma follows by the same argument as that of Lemma
4.1, however, here a − b is not bounded away from the spectrum σ(−∆), as a consequence,
the constant in the first two estimates depends also on the difference a − b. In particular, we
can set βa,b = inf {|µi|, i ∈ Z0} (the ı́nfimum is positive since µi → ±1 when i → ±∞) and
ηα = {inf |µi|, i ∈ ZV ∪ ZW } ≥ α

max{λk+m,λl+t} .

Again, for ε small enough, the space Z defined in (4.64) is exactly the same as the Z defined
in the statement of Theorem 1.3.
Thus, in view of Lemma 4.14, we obtain the geometries in the propositions below.

Proposition 4.16. Under the hypotheses of Theorem 1.3, suppose a ± b 6∈ σ(−∆), λk is the
first eigenvalue above a+ b and λl is the first below a− b, then there exist Λa,b ∈ R and ωa,b > 0,
such that

J+(u) ≥ Λa,b, ∀u ∈ Z ⊕W, (4.69)

J+(u) < Λa,b, ∀u ∈ ωSV , ω ≥ ωa,b. (4.70)

Proof. The existence of Λa,b ∈ R satisfying (4.69), follows from (4.66) as in Proposition 4.4,
while the existence of ωa,b > 0 satisfying (4.70), follows from (4.65).

Proposition 4.17. Under the hypotheses of Theorem 1.3, suppose λk is the first eigenvalue
above a+b and λl is the first below a−b. Then there exists ε2 > 0, such that for a+b ∈ (λk−ε2, λk)
and a − b ∈ (λl, λl + ε2), there exist Θ, Λa,b ∈ R, ωa,b > r0 > 0, such that (4.69), (4.70) hold
and

J+(u) ≥ Θ, ∀u ∈W, (4.71)

J+(u) < Θ− 1, ∀u ∈ r0SV Z , (4.72)

J+(u) < Θ− 1, ∀u ∈ V with ‖u‖E > r0. (4.73)

Proof. Set

α =
1

2
min { dist(λk, σ(−∆) \ {λk} ), dist(λl, σ(−∆) \ {λl} ) }

and let a + b ∈ (λk − ε2, λk) and a − b ∈ (λl, λl + ε2), where we initially only impose ε2 < α,
which implies dist(a+ b, σ(−∆) \ {λk}) > α and dist(a− b, σ(−∆) \ {λl}) > α.

• The existence of Θ satisfying (4.71) follows directly from (4.68) as in Proposition 4.6. Since
we fixed α we omit its dependence in the notation for the constant Θ.

• Let u ∈ V . By (4.67) and (3.5-3.6),

J+(u) ≤ −ηα ‖u‖2E + S0(1 + ‖u‖qE) +H ‖u‖E . (4.74)

Since ηα > 0 and q ∈ (1, 2) the estimate (4.73) will be satisfied provided r0 > r̃, where
r̃ > 0 can be chosen depending only on α, not on a or b.
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• In order to prove that there exists r0 > r̃ satisfying (4.72) for some ε2 ∈ (0, α), reasoning
as in Proposition 4.6, we suppose by sake of contradiction that for any sequences εj → 0+

and {rj}, with rj > r̃ for every j ∈ N, there exist uj ∈ rjSV Z and aj , bj ∈ R such that
aj + bj ∈ (λk − εj , λk), aj − bj ∈ (λl, λl + εj) and J+

j (uj) ≥ Θ− 1.

Without loss of generality we may assume that rj → ∞ and εjr
2
j → 0. We write uj =

vj + zj , where vj ∈ V and zj ∈ Z, for every j ∈ N. By (4.63) and (4.67), we have

Bj(uj ,uj) = Bj(vj ,vj) +Bj(zj , zj) ≤
εj

min {λl, λk}
‖zj‖2E − ηα ‖u‖

2
E . (4.75)

Then, for every j ∈ N, it follows

Θ− 1 ≤ J+(uj) ≤
εj

min {λl, λk}
‖zj‖2E − ηα ‖u‖

2
E −F(uj)−H(uj). (4.76)

Now, proceeding as in the proof of Proposition 4.6, we reach a contradiction analogous to
(4.33) or to (4.40).

The constants in the statement of the proposition can be obtained as follows: we first get
Θ ∈ R satisfying (4.71), then we obtain ε2 > 0 and r0 > 0 satisfying (4.72) and (4.73). These
estimates hold uniformly for a + b ∈ (λk − ε2, λk) and a − b ∈ (λl, λl + ε2). Then, fixing a, b
respecting these conditions, we can obtain a constant Λa,b ∈ R satisfying (4.69). Finally, we get
ωa,b > 0 satisfying (4.70); observe that we may also choose ωa,b > r0, as desired.

With the geometries obtained above and the estimate (4.63) in the place of (4.46), by re-
peating the same arguments from sections 4.2 and 4.4, we conclude that the functional J+ has
two distinct critical points in E, corresponding to solutions of problem (1.1+), and then proving
Theorem 1.3.

Theorem 1.4 follows from Theorem 1.3 by the same argument used to prove Theorem 1.2.

4.6 The PS-conditions

In this section we give the proof of the Lemmas 4.8 and 4.13, which show that the functionals
J±n satisfy the PS-condition in the finite dimensional space En, for every n > k +m, and that
the sequences of constrained critical points obtained in the sections 4.2 and 4.3 are bounded.

Proof of Lemma 4.8 and Lemma 4.13. The two lemmas have different statements but the proof
in quite similar.

By the hypothesis a ± b 6∈ σ(−∆), the eigenvalues µi : i ∈ Z0 are all different from zero,
then we may divide the space E in the two orthogonal components

E− = span{ψi : i ∈ Z0, µi < 0} and E+ = span{ψi : i ∈ Z0, µi > 0} ,

and for every j > k + m, we set E+
j = E+ ∩ Ej and E−j = E− ∩ Ej . Since µi → ±1 when

i→ ±∞, we may set ξ := inf {|µi| : i ∈ Z0} > 0 and we have{
B(u,u) ≤ −ξ ‖u‖2E , for every u ∈ E−,

B(u,u) ≥ ξ ‖u‖2E , for every u ∈ E+.
(4.77)

Obviously ξ depends on a, b, but this in of no importance in this proof.
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We write ui = zi+pi, where zi ∈ E− and pi ∈ E+. We will show that zi and pi are bounded
in E.
Actually, by testing (4.41) (resp. (4.52)) with φ = zi we get∣∣B(ui, zi)∓F ′(ui)[zi]∓H ′(ui)[zi]

∣∣ ≤ εi ‖zi‖E . (4.78)

By (3.14), we have B(ui, zi) = B(zi, zi), then

− εi ‖zi‖E ≤ B(zi, zi) + S0

(
1 + ‖ui‖q−1

E

)
‖zi‖E +H ‖zi‖E . (4.79)

Using (4.77), it follows that

− εi ‖zi‖E ≤ −ξ ‖zi‖2E + S0

(
1 + ‖ui‖q−1

E

)
‖zi‖E +H ‖zi‖E ; (4.80)

dividing by ‖zi‖E and reordering, we get

ξ ‖zi‖E ≤ εi + S0 ‖ui‖q−1
E + (S0 +H). (4.81)

On the other hand, by testing (4.41) (resp. (4.52)) with φ = pi and reasoning as above, we
get

B(pi,pi)− S0

(
1 + ‖ui‖q−1

E

)
‖pi‖E −H ‖pi‖E ≤ εi ‖pi‖E ; (4.82)

by using (4.77), reordering and dividing by ‖pi‖E , it follows that

ξ ‖pi‖E ≤ εi + S0 ‖ui‖q−1
E + (S0 +H). (4.83)

From (4.81) and (4.83), we get

ξ ‖ui‖E ≤ 2εi + 2S0 ‖ui‖q−1
E + 2(S0 +H), (4.84)

implying that {ui} is bounded in E, since q − 1 < 1.
This concludes the proof of Lemma 4.13. In the case of Lemma 4.8, since {ui} ⊆ En, which

is finite dimensional, it follows that it has a convergent subsequence.
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