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Abstract

We consider an elliptic system of Hamiltonian type with linear part depend-

ing on two parameters and a sublinear perturbation. We obtain the existence of

at least three solutions when the linear part is near resonance with the principal

eigenvalue, either from above or from below. For two of these solutions we also

obtain information on the sign of its components. The system is associated to
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a strongly indefinite functional and the solutions are obtained trough saddle

point theorem, after truncating the nonlinearity.
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1 Introduction

In this paper we consider an elliptic system of Hamiltonian type with linear part

depending on two parameters and a sublinear perturbation. Our purpose is to im-

prove the results obtained in [19], by proving the existence of at least three solutions

when the linear part is near resonance with the principal eigenvalue.

The system we are considering is the following:


−∆u = au+ bv ± (f1(x, v) + h1(x)) in Ω,

−∆v = bu+ av ± (f2(x, u) + h2(x)) in Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.1)

in particular, we will refer to problem (1.1) as (1.1+) or (1.1−), depending on the

sign preceding the two nonlinearities.

In (1.1), Ω ⊂ RN is a smooth bounded domain, h1, h2 ∈ Lr(Ω) for some r > N

and f1, f2 are sublinear nonlinearities, which in particular satisfy

fi : Ω× R→ R is a continuous function and there exist constants S > 0

and q ∈ (1, 2), such that |fi(x, t)| ≤ S(1 + |t|q−1), for i = 1, 2.

(1.2)
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We will also assume the following hypotheses on the functions f1,2 and h1,2:


(i-a) lim|t|→∞ F1(x, t) = +∞, uniformly with respect to x ∈ Ω,

(i-b) Fi(x, t) ≥ −CF , for i = 1, 2,

(ii)
∫

Ω h1φ+ h2ψ = 0, for every (φ, ψ) ∈ Z,

(F)

where Fi(x, t) =
∫ t

0 fi(x, s)ds and Z is a space which will be defined in the statements

of the theorems. Of course, one could assume (F-i-a) on F2 instead of F1 without

affecting the result.

In [19] we showed the existence of at least two solutions for problem (1.1) when

the linear part is near resonance: this situation is often called “almost-resonance” in

literature and for system (1.1) it means that a+ b or a− b is near to a eigenvalue of

the Laplacian. Our purpose here is to consider the particular case when the almost-

resonance occurs with respect to the first eigenvalue, and to show that in this case

it is possible to obtain a third solution.

Throughout the paper we denote by σ(−∆) the spectrum of the Laplacian in

H1
0 (Ω), that is the set of the eigenvalues λk where 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤

..., and by φk (k = 1, 2, ..) the corresponding eigenfunctions, which will be taken

orthogonal and normalized with ‖φk‖H1
0

= 1 and φ1 > 0.

Also, for l ∈ N and δ > 0 we define the interval

Il,δ =


(−1/δ, λ1 − δ) if l = 1,

(λl−1 + δ, λl − δ) if l ≥ 2,

where we will implicitly assume Il,δ 6= ∅.

We say that u = (u, v) is positive (resp. negative), when u > 0 and v > 0 (resp.

u < 0 and v < 0), and we say that its components have opposite signs when u > 0
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and v < 0 or u < 0 and v > 0.

Our main results are stated in the following Theorems: the first one deals with

the case where a+ b is near λ1, while a− b is far from σ(−∆).

Theorem 1.1. Let Ω be a open and bounded set in RN of regularity C2, l ∈ N and

Z = span { (φ1, φ1)} .

Suppose h1, h2 ∈ Lr(Ω) for some r > N , and f1, f2 satisfy the hypotheses (1.2) and

(F). Then

(a) given δ > 0, there exists ε0 > 0 such that, if a−b ∈ Il,δ and a+b ∈ (λ1−ε0, λ1),

then the problem (1.1+) has at least three distinct solutions, of which one is

positive and one is negative.

(b) given δ > 0, there exists ε1 > 0 such that, if a−b ∈ Il,δ and a+b ∈ (λ1, λ1+ε1),

then the problem (1.1–) has at least three distinct solutions, of which one is

positive and one is negative.

As a consequence of Theorem 1.1, it is possible to prove a similar result also for

the case where a− b is near λ1, while a+ b is far from σ(−∆).

Theorem 1.2. Let Ω be a open and bounded set in RN of regularity C2, l ∈ N and

Z = span { (φ1,−φ1)} .

Suppose h1, h2 ∈ Lr(Ω) for some r > N , and f1, f2 satisfy the hypotheses (1.2) and

(F). Then

(c) given δ > 0, there exists ε0 > 0 such that, if a+b ∈ Il,δ and a−b ∈ (λ1−ε0, λ1),

then the problem (1.1–) has at least three distinct solutions, two of which have

components of opposite sign.
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(d) given δ > 0, there exists ε1 > 0 such that, if a+b ∈ Il,δ and a−b ∈ (λ1, λ1+ε1),

then the problem (1.1+) has at least three distinct solutions, two of which have

components of opposite sign.

We observe that if we substitute hypotheses (F) with the following


(i) lim|t|→∞ Fi(x, t) = +∞, uniformly with respect to x ∈ Ω, i = 1, 2,

(ii)
∫

Ω h1φ+ h2ψ = 0, for every (φ, ψ) ∈ Z,

(F∗)

in the Theorems 1.1 and 1.2, then the results in [19] already guarantee the existence

of two solutions. What we do in this paper is to first show that hypothesis (F) is

sufficient also for obtaining the result in [19] (see Theorem 1.3 below), and then to

prove that, by exploiting the positivity of the eigenfunction φ1, we can get a third

solution, along with the information on the sign of two of the solutions. We remark

that, with respect to [19], here we are considering slightly stronger hypotheses on

the regularity of the functions in (1.1): in particular, we assume the continuity of

f1,2, the Lr regularity of h1,2 and the C2 regularity of Ω. This is needed in order

to obtain a better regularity for the weak solutions, which will allow us to compare

them with the first eigenfunction and then to prove that they do not change sign.

The main motivation for [19] and this paper are the results obtained in [22] and

[10] for the corresponding scalar problem


−∆u = λu± f(x, u) + h(x) in Ω ,

u = 0 on ∂Ω .

(1.3)

It is worth noting that in the case of a single equation it was first obtained, in

[22], the result of three solution near the first eigenvalue, and later, in [10], it was

proved that two solutions can be obtained near any eigenvalue. In the case of the
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Hamiltonian system (1.1), it turned out to be more natural to first prove a result

similar to the one in [10], which we did in [19], and then to obtain a third solution

near the first eigenvalue. This is due to the fact that the arguments used in [22] relied

on minimization and the Mountain Pass Theorem, while near a general eigenvalue

the two solutions were obtained, in [10], by finding two saddle point geometries.

In the case of problem (1.1), one has to deal with a strongly indefinite functional,

which implies that the solutions are always found as saddle points, even near the

first eigenvalue, so that it is not possible to extend directly the techniques from [22].

The idea of this paper is to adapt the techniques from [22] to the more complex

variational setting of [19], in order to be able to prove that the component in the

almost resonant eigenspace of one of the two existing solutions becomes dominant.

This will imply that such solution is positive. Finally, by symmetry, it will be easy

to obtain a negative solution, which is then a third solution.

We observe that from the proof of the Theorems 1.1 and 1.2, it will be clear that

two solutions still exist even if we assume the following weaker version of hypothesis

(F):


(i-a) limt→∞ F1(x, t) = +∞, uniformly with respect to x ∈ Ω,

(i-b) Fi(x, t) ≥ −CF , i=1,2,

(ii)
∫

Ω h1φ+ h2ψ = 0, for every (φ, ψ) ∈ Z,

(F+)

or its analogous with the limit being taken at −∞: see Remark 2.15.

As remarked above, a byproduct of this paper is an improvement of the results

in [19], in the sense that it is possible to assume hypothesis (F) instead of (F∗) in

most of the results proved there. In particular we will prove the following Theorem.

Theorem 1.3 (Improvement of [19]). In the Theorems 1.1 through 1.4 proved in

[19] one can assume hypothesis (F) in the form of this paper, provided that every
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function in Z \ {0} has both components not identically zero.

This condition is always true except in the case where λk = λl in the Theorems 1.3

and 1.4 (double resonance with respect to the same eigenvalue).

1.1 Techniques and related works

Multiplicity results for almost-resonant problems as (1.3) were studied by many

authors, since the work of Mawhin and Schmitt [20], where the problem (1.3) in

dimension one is considered, near the first eigenvalue, using bifurcation from infinity

and degree theory. We cite [3, 14], which also consider the one dimensional case, and

[6, 5], which deal with the higher dimension problem; these works are all based on

bifurcation theory. Results for higher eigenvalues were obtained in [14], again using

bifurcation from infinity and degree theory, but only for the one dimensional case

and making use of the fact that in this case all the eigenvalues are simple. The works

[22, 16] were the first to analyze this kind of problem from a variational point of view:

as already discussed, they obtained three solutions near the first eigenvalue, under

conditions which are analogous to those assumed here. The variational approach

was later exploited in [15] to obtain a similar result for the p-Laplacian operator

(see also [9]).

Regarding almost resonant problems in the case of systems, we cite [24, 21, 2, 13,

19]. In particular, the case of the first eigenvalue is considered in [21], where three

solutions are found for a system of gradient type, when approaching this eigenvalue

from below. We remark, however, that the case of systems of gradient type is quite

different from problem (1.1) (the Hamiltonian type), because the principal part of

the functional has a finite dimensional negative space, so that many techniques from

[22] can be applied directly.

The result in [19] was obtained by considering the functional associated to (1.1)

(see the definition in (2.1)) and finding two saddle point geometries, involving two
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different splits of its space of definition; then one proved that these solutions were

distinct since they lay at different levels.

As we observed above, in the case of a system as (1.1), the associated functional

is strongly indefinite, in the sense that there exist two infinite dimensional subspaces

of its space of definition such that the principal part of the functional is unbounded

from above in one and from below in the other. Several techniques have been used

in literature to deal with strongly indefinite problems, see [4, 8, 12, 7, 17, 18, 19]. In

particular, in [19], we used a Galerkin procedure in order to obtain critical points,

namely, we solved finite dimensional problems, where one could use the standard

linking theorems, then we took limit on the dimension of such problems and proved

that in the limit we actually found a critical point.

Here we will first truncate the nonlinearity and then, by adapting the arguments

from [19], we will produce two solutions for the truncated problem, along with some

improved estimates on their critical level. As a result, we will be able to prove that

one of these solutions has constant sign, but in view of the truncation this sign can

only be positive. In the end, by symmetry, we will also have a negative solution,

giving a total of three distinct solutions, in fact, the one with no information on the

sign can be distinguished by its critical level.

We remark that in [19] we also considered the following condition

lim
t→±∞

fi(x, t) = ±∞, uniformly with respect to x ∈ Ω, i = 1, 2, (f)

as an alternative to condition (F). Here we only work with hypothesis (F), since

in the case where condition (f) holds, one can always put the component in Z of

(h1, h2) into the definition of f1, f2 in order to have condition (F) satisfied, that is,

one defines f̂i(x, t) = fi(x, t) + ji(x) and ĥi(x) = hi(x) − ji(x), i = 1, 2, in such a

way that they satisfy (1.2) and condition (F).
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For further remarks regarding our problem (1.1) and the related bibliography we

remand to [19].

The paper is structured as follows: in the Section 2.1 we set the notation and

we state some preliminary results from [19]; in the Section 2.2 we obtain the saddle

point geometries that will provide the critical points, which are obtained in the

Section 2.3. Finally, the Section 2.4 will be devoted to prove the positivity of one of

the solution and in the Section 2.5 we will conclude the proof of the main results.

The proof of of the Theorem 1.3 is given in Remark 2.7.

2 Proof of the main results

In this section we will give the proofs of the main theorems. In particular, we give

in full details the proof of the point (a) in Theorem 1.1: the point (b) and Theorem

1.2 can be proved in a similar way. Some of the arguments are analogous to those

in [19] and will not be repeated, others are similar but with crucial differences and

then will be exposed in details here.

2.1 Notation and preliminary Lemmas

Throughout the paper we will use the notation H = H1
0 (Ω), E = H × H and we

will use the following norms: if u ∈ H and u = (u, v) ∈ E, then


‖u‖Lp =

(∫
Ω u

p
)1/p

, ‖u‖Lp×Lp =
(
‖u‖pLp + ‖v‖pLp

)1/p
,

‖u‖H =
√∫

Ω |∇u|2 , ‖u‖E =
√
‖u‖2H + ‖v‖2H .

The internal products in L2(Ω)×L2(Ω) and in E, associated to the above norms, will

be denoted by 〈·, ·〉[L2]2 and 〈·, ·〉E , respectively. Observe that, by Poincaré inequality,

‖u‖L2 ≤ S ‖u‖H for some positive constant S, but we will assume throughout the

paper that S = 1 in order to simplify the estimates. Also, we will denote by
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C, C1, C2, ... constants whose value is not important and which may be different

from line to line.

As in [19], we define the applications F : E → R and H : E → R, given by

F(u, v) =

∫
Ω
F1(x, v) +

∫
Ω
F2(x, u), H(u, v) =

∫
Ω
h1v +

∫
Ω
h2u,

and the bilinear form Ba,b : E × E → R:

Ba,b((u, v), (φ, ψ)) =

∫
Ω
∇u∇ψ +

∫
Ω
∇v∇φ− a

∫
Ω

(uψ + vφ)− b
∫

Ω
(uφ+ vψ).

Then, the C1 functionals associated to the problems (1.1±) can be written as

J±a,b(u) = ±1

2
Ba,b(u,u)− (F(u) +H(u)) . (2.1)

Also, denoting u = (u, v), φ = (φ, ψ) and φ = (ψ, φ), we have that

Ba,b(u,φ) = 〈u,φ〉E − a〈u,φ〉[L2]2 − b〈u,φ〉[L2]2 , (2.2)

(J±a,b)
′(u)[φ] = ±Ba,b(u,φ)−

(
F ′(u)[φ] +H ′(u)[φ]

)
. (2.3)

Finally the following Lemmas contain results, proved in [19], which will be used

in this paper.

Lemma 2.1. Given f1, f2 satisfying (1.2) and h1, h2 ∈ L2(Ω), there exist constant

S0 and H such that

|H(u)| ≤ H ‖u‖[L2]2 , |H ′(u)[φ]| ≤ H ‖φ‖[L2]2 , (2.4)
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|F(u)| ≤ S0

(
1 + ‖u‖q

[L2]2

)
,

∣∣F ′(u)[φ]
∣∣ ≤ S0

(
1 + ‖u‖q−1

[L2]2

)
‖φ‖[L2]2 ,

(2.5)

for every u = (u, v) ∈ E and φ = (φ, ψ) ∈ E.

Lemma 2.2. The eigenvalues of the form Ba,b are given by

µ±i =
−b± (λi − a)

λi
, i ∈ N , (2.6)

with corresponding eigenfunctions (normalized in E)

ψ±i =
(φi,±φi)√

2
, i ∈ N .

In particular,

‖ψi‖E = 1, 〈ψi,ψj〉E = δi,j , Ba,b(ψi,ψj) = µiδi,j , 〈ψi,ψj〉[L2]2 = λ−1
|i| δi,j ,

(2.7)

for i, j ∈ Z0 := Z \ {0}.

Moreover, if we write u =
∑
i∈Z0

ciψi, then

‖u‖2E =
∑
i∈Z0

c2
i , Ba,b(u,u) =

∑
i∈Z0

µic
2
i , ‖u‖

2
[L2]2 =

∑
i∈Z0

λ−1
|i| c

2
i . (2.8)

2.2 Finding two saddle point geometries

In order to be able to obtain a positive solution, we will first need to truncate the

nonlinearities. Actually, the purpose of this truncation is to forbid the existence of a

large negative solution, which then will allow us to prove the existence of a positive

one. This positive solution will be a solution also of the original problem.

Given the functions f1, f2 satisfying (1.2), we define, for i = 1, 2, two new func-
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tions

f̃i(x, s) =


fi(x, s), if s ≥ −1 ,

(s+ 2)fi(x,−1) if s ∈ [−2,−1] ,

0, if s ≤ −2 .

(2.9)

Observe that, by the above definition, the functions f̃1, f̃2 also satisfy (1.2). We also

observe that if hypothesis (F) holds, then the following holds too


(i-a) limt→∞ F̃1(x, t) = +∞, uniformly with respect to x ∈ Ω,

(i-b) F̃i(x, t) ≥ −CF , for i = 1, 2,

(ii)
∫

Ω h1φ+ h2ψ = 0, for every (φ, ψ) ∈ Z.

(F̃)

Now, we define

F̃i(x, t) =

∫ t

0
f̃i(x, s)ds, for i = 1, 2 F̃(u, v) =

∫
Ω
F̃1(x, v) +

∫
Ω
F̃2(x, u) ,

and we consider the C1 functional J̃+
a,b : E → R, given by

J̃+
a,b(u) =

1

2
Ba,b(u,u)−

(
F̃(u) +H(u)

)
. (2.10)

In order to find two saddle point geometries we define, as in [19], the following

subspaces of E


V = span{ψi : i ∈ Z0, µi < 0 and µi 6= µ1 },

Z = span{ψi : i ∈ Z0, µi = µ1 },

W = span{ψi : i ∈ Z0, µi > 0 and µi 6= µ1 };

(2.11)

in particular, it is important to observe that if a + b ∈ (λ1 − ε, λ1) for some ε > 0,
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then

0 < µ1 =
λ1 − (a+ b)

λ1
<

ε

λ1
. (2.12)

With the definitions above, we may now state a Lemma, which is a particular

case of Lemma 4.1 in [19].

Lemma 2.3. Suppose a− b ∈ Il,δ for some l ∈ N and δ > 0, while a+ b < λ1. Then

there exists a constant Ka+b,Il,δ > 0, depending on the sum a + b and on Il,δ, such

that

Ba,b(u,u) ≤ −Ka+b,Il,δ ‖u‖
2
E , ∀ u ∈ V , (2.13)

Ba,b(u,u) ≥ Ka+b,Il,δ ‖u‖
2
E , ∀ u ∈ Z ⊕W . (2.14)

If, moreover, a+ b ∈ (λ1/2, λ1), then there exists GIl,δ > 0, depending on Il,δ, such

that

Ba,b(u,u) ≤ −GIl,δ ‖u‖
2
E , ∀ u ∈ V , (2.15)

Ba,b(u,u) ≥ GIl,δ ‖u‖
2
E , ∀ u ∈W . (2.16)

Remark 2.4. If a + b is near enough to λ1, then, for every a − b ∈ Il,δ, one has

µi = µ1 only for i = 1, that is, the Z defined in (2.11) is exactly the same as the

one defined in the statement of Theorem 1.1 (compare (2.12) and (2.6)).

We also prove the following Lemma, which will help to estimate the contribution

of the nonlinearity.

Lemma 2.5. If hypotheses (1.2) and (F̃) hold, then there exists a nondecreasing

function

D : (0,+∞)→ R such that

(i) lim
R→+∞

D(R) = +∞ , (ii) lim
R→+∞

D(R)

R2
= 0 , (2.17)
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and ∫
Ω
F̃1(x,Ru) ≥ D(R) for every u ∈ E, (2.18)

where

E =
{
u ∈ H1

0 (Ω) : u > α in Ωu ⊆ Ω and |Ωu| > α
}

(2.19)

and α > 0 is such that φ1 > 4α in a set Ωα with |Ωα| > 2α.

Proof. Equation (2.18) is satisfied by defining

D(R) := inf

{∫
Ω
F̃1(x, ρu) : ρ ≥ R, u ∈ E

}
.

Observe that the infimum is well defined since
∫

Ω F̃1(x, ρu) ≥ −|Ω|CF by condition

(F̃-i-b), and it is a nondecreasing function of R by definition.

Now, fixed a value H > 0, we will show that we can find a R̃ large enough so

that
∫

Ω F̃1(x,Ru) ≥ H for any R ≥ R̃ and u ∈ E : this implies (2.17-i).

In order to do this, we set M = (H + |Ω|CF )α−1: by (F̃-i-a) we have that there

exists s0 such that F̃1(x, s) > M for s > s0.

If u ∈ E , then for R > s0/α, one has Ru > s0 in Ωu and then one gets

∫
Ωu
F̃1(x,Ru) ≥Mα .

Since, by (F̃-i-b),
∫

Ω\Ωu F̃1(x,Ru) ≥ −|Ω|CF , one finally obtains

∫
Ω
F̃1(x,Ru) ≥Mα− |Ω|CF = H .

Finally, observe that φ1 ∈ E by the definition of α, then we can estimate, using

hypothesis (1.2),

D(R) ≤
∫

Ω
F̃1(x,Rφ1) ≤ C(1 +Rq) ,
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which implies (2.17-ii).

Using the above Lemmas, we can prove the Proposition 2.6 below, where we show

that the functional J+
a,b satisfies a saddle point geometry between the subspaces V ⊕Z

and W , while the functional J̃+
a,b satisfies another saddle point geometry between

the subspaces V and Z ⊕W , when near resonance. Also, the estimates (2.24) and

(2.25) below will be useful to prove that the critical levels are distinct.

These two saddle point geometries are similar to those obtained in [19], the differ-

ence is that here we will need to consider a decreasing sequence of left neighborhoods

of λ1 and produce a corresponding sequence of saddle point geometries with a+ b in

those neighborhoods, with the property that one of the corresponding critical levels

decreases to minus infinity along this sequence. Another difference with [19] is that,

because of the truncation (2.9) that we have performed here, the estimate (2.25)

holds only on a “halfcircle” (k ≥ 0).

Proposition 2.6. Under the hypotheses of Theorem 1.1, if a−b ∈ Il,δ for some δ >

0, then there exist sequences εj → 0+ and Rj → +∞, both depending on Il,δ, such

that if a+ b ∈ (λ1 − εj , λ1), then there exist EIl,δ , Da+b,Il,δ ∈ R, ρa+b,Il,δ > Rj > 0,

satisfying

J̃+
a,b(u) ≥ Da+b,Il,δ , ∀ u ∈ Z ⊕W, (2.20)

J̃+
a,b(u) < Da+b,Il,δ , ∀ u ∈ ρSV , ρ ≥ ρa+b,Il,δ , (2.21)

J+
a,b(u) ≥ EIl,δ , ∀ u ∈W, (2.22)

J+
a,b(u) < EIl,δ − 1, ∀ u ∈ RjSV Z , (2.23)

J̃+
a,b(u) < −D(Rj)/2, ∀ u ∈ V with ‖u‖E > Rj , (2.24)

J̃+
a,b(u) < −D(Rj)/2, ∀ u = v + kψ1, with v ∈ V, k ≥ 0 and ‖u‖E = Rj ,(2.25)

where the function D(R) is defined in Lemma 2.5.
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Proof. The proof of this Proposition is similar to the proofs of the Propositions 4.4

and 4.6 in [19].

In fact, using the estimates (2.4-2.5), one can easily deduce (2.20) from (2.14)

and (2.21) from (2.13).

By considering a + b ∈ (λ1/2, λ1) (that is, setting εj < λ1/2 for every j ∈ N), we

can also deduce (2.22) from (2.16).

Suppose now u ∈ V , with ‖u‖E > Rj . By (2.15) and (2.4-2.5), we have

J̃+
a,b(u) +D(Rj)/2 ≤ J̃+

a,b(u) +D(‖u‖E)/2 ≤

≤ −GIl,δ ‖u‖
2
E + S0

(
1 + ‖u‖qE

)
+H ‖u‖E +D(‖u‖E)/2. (2.26)

By (2.17-ii), there exists R0 > 0, which may be chosen depending only on Il,δ, but

independent from a, b, such that if Rj > R0, then J̃+
a,b(u) +D(Rj)/2 < 0, implying

(2.24).

One can also prove that there exist ε0, R0 (depending on Il,δ), such that the

estimate (2.23) will be satisfied if we take εj < ε0 < λ1/2 and Rj > R0: this is a

consequence of estimate (4.19) in Proposition 4.6 from [19], and it can be proved by

an argument similar to the one we will give below for proving (2.25): the difference is

that (2.23) needs to hold for J+
a,b, instead of J̃+

a,b, then we can consider the hypothesis

(F) and so we can take u = v + kψ1 ∈ RjSV Z without the restriction k ≥ 0. More

details can be found in [19], see also Remark 2.7.

In order to prove the existence of the two sequences {εj} and {Rj}, satisfying

(2.25), let us suppose, for sake of contradiction, that every sequences εj → 0+ and

Rj → ∞, satisfying εj < ε0 and Rj > R0, admit subsequences (which we still

denote by εj , Rj) such that for every j, there exist aj , bj ∈ R, vj ∈ V , cj > 0,

such that uj := vj + cjψ1 ∈ RjSV Z , aj + bj ∈ (λ1 − εj , λ1), aj − bj ∈ Il,δ and

J̃+
aj ,bj

(uj) ≥ −D(Rj)/2. Without loss of generality, we may suppose that R2
jεj → 0.
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By (2.15) and (2.12), we get

Baj ,bj (uj ,uj) <
εj
λ1
c2
j −GIl,δ ‖vj‖

2
E , (2.27)

and then

−D(Rj)/2 ≤ J̃+
aj ,bj

(uj) <
εj
λ1
c2
j −GIl,δ ‖vj‖

2
E − F̃(uj)−H(uj). (2.28)

By dividing inequality (2.28) by R2
j and reordering we get

GIl,δ
R2
j

‖vj‖2E ≤
εj

λ1R2
j

c2
j +

D(Rj)

2R2
j

− F(uj) +H(uj)

R2
j

. (2.29)

We note that
|F(uj)+H(uj)|

R2
j

≤
S0

(
1+‖uj‖q

[L2]2

)
+H‖uj‖[L2]2

R2
j

≤ C(1+Rj+R
q
j)

R2
j

→ 0 when

j → ∞, since q ∈ (1, 2). Moreover
D(Rj)

R2
j
→ 0 by (2.17-ii) and

εj
λ1R2

j
c2
j ≤

εj
λ1
→ 0.

Thus it follows that

‖vj‖E
Rj

→ 0 , (2.30)

and since ‖vj‖2E = R2
j − c2

j , we also get

cj
Rj
ψ1 → ψ1, uniformly, when j →∞. (2.31)

At this point we need to assume that hypotheses (F) holds (and then also (F̃)

holds).

We denote by P1u and P2u the components of a vector u ∈ E, that is, u =

(P1u, P2u).

Let α > 0 and Ωα be as in Lemma 2.5; by applying Egorov’s Theorem to both

components of
vj
Rj

, in view of (2.30), we get a subset Fα of Ω, with |Fα| < α, such

that
vj
Rj
→ 0, uniformly in Ω \ Fα. As a consequence, using also (2.31), there exists
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j0 large enough, such that

cj
Rj

φ1√
2
> 2α and

∣∣∣∣ vjRj
∣∣∣∣ < α in Ωα \ Fα, for every j ≥ j0.

Thus, in Ωα \ Fα we have

Pi

(
uj
Rj

)
=

cj
Rj

φ1√
2

+ Pi

(
vj
Rj

)
> 2α− α > α ,

for i = 1, 2. Since |Ωα \ Fα| > 2α − α = α, we have that Pi

(
uj
Rj

)
∈ E (see (2.19))

and then by Lemma 2.5

∫
Ω
F̃1(x,RjP2(ûj)) ≥ D(Rj). (2.32)

Since
∫

Ω F̃2(x,RjP1(ûj)) is bounded from below by −CF |Ω|, it follows that

F̃(uj) = F̃(Rjûj) ≥ D(Rj)− CF |Ω| . (2.33)

Moreover, by hypothesis (F̃-ii) we have H(uj) = H(vj), and then

GIl,δ ‖vj‖
2
E +H(uj) = GIl,δ ‖vj‖

2
E +H(vj) ≥ GIl,δ ‖vj‖

2
E −H ‖vj‖E ; (2.34)

as a consequence, there exists C1 > 0, such that

GIl,δ ‖vj‖
2
E +H(uj) ≥ −C1.

Then, from (2.28) and (2.33), we get

εjc
2
j

λ1
+ C1 ≥ F̃(uj)−D(Rj)/2 ≥ D(Rj)/2− CF |Ω| , (2.35)

which gives rise to a contradiction, since the left hand side is bounded (in fact,
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εjc
2
j ≤ εjR2

j → 0), while the right hand side tends to +∞ by (2.17-i).

We conclude that there exist sequences {εj} and {Rj}, with εj → 0+ and Rj →

∞, satisfying (2.25).

The sequences and the constants in the statement of the Proposition can be

obtained as follows: we first get EIl,δ ∈ R satisfying (2.22), then we obtain the

sequences εj → 0+ and Rj → +∞, satisfying (2.23), (2.24) and (2.25). Observe

that, for each fixed j ∈ N, these estimates hold uniformly for any a, b with a + b ∈

(λ1 − εj , λ1) and a − b ∈ Il,δ. Then, for every j ∈ N, by fixing a and b in the

above intervals, we can obtain the constants Da+b,Il,δ ∈ R and ρa+b,Il,δ > 0, such

that (2.20) and (2.21) hold. Observe that we may also choose, for every j, a radius

ρa+b,Il,δ > Rj , as desired.

Remark 2.7 (Proof of Theorem 1.3). In [19] we assumed the hypothesis (F∗) instead

of (F). However, in most cases one can proceed as we did in the above proof so that

hypothesis (F) is sufficient.

Actually, in Proposition 4.6 of [19], we were dealing with a sequence uj like in the

previous proof, which we split as uj = vj + zi where zj was the component in the

almost resonant eigenspace Z. We were able to prove the analogous of equation

(2.30) here for vj, while instead of (2.31) we proved that zj/Rj converged to a

nontrivial element of Z.

Provided Z does not contain nontrivial elements having a zero component, we can

assert that both components of zj/Rj do not tend to zero, so that it is possible to

assume condition (F∗-i) on only one of the two functions F1,2, provided the other

one is bounded from below.

Observe that in the case we are considering in this paper the space Z always

satisfies the condition above, so our application of the results of [19] can be done

under hypothesis (F).



20 Three solutions for an elliptic system

2.3 Existence of solutions for the truncated problem

From now on we will consider a sequence of coefficients aj , bj such that aj +bj → λ−1

and we will prove the existence of critical points for the functionals J̃+
aj ,bj

and J+
aj ,bj

,

which correspond to solutions of almost resonant problems with coefficients aj , bj .

We consider the system


−∆u = au+ bv + (f̃1(x, v) + h1(x)); in Ω,

−∆v = bu+ av + (f̃2(x, u) + h2(x)); in Ω,

u(x) = v(x) = 0; on ∂Ω.

(2.36)

We will reference by (1.1+)j and (2.36)j the systems (1.1+) and (2.36), respectively,

with a = aj and b = bj .

Our aim is to prove the following Proposition.

Proposition 2.8. In the hypotheses of Theorem 1.1, given δ > 0, let, for every

j ∈ N,

• εj > 0 be those obtained in Proposition 2.6,

• aj , bj, be such that aj + bj ∈ (λ1 − εj , λ1) and aj − bj ∈ Il,δ.

Then, for j large enough, the problem (1.1+)j has three distinct solutions, of

which one is positive and another one is negative.

We will first prove the existence of two solutions. In order to do this, we proceed

as in [19]: see the sections 4.2 and 4.4 there.

First of all we observe that the inequalities (2.20) and (2.21) define a Saddle Point

Geometry for the functionals J̃+
aj ,bj

, between the subspaces Z ⊕W and V , while the

inequalities (2.22) and (2.23) define a Saddle Point Geometry for the functionals

J+
aj ,bj

, between the subspaces W and V ⊕ Z.
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Then, by using a Galerkin approximation and then taking the limit, in order to

overcome the lack of compactness due to the fact that the functionals are strongly

indefinite, one can prove that there exist v j , ũ j ∈ E, critical points of the functionals

J+
aj ,bj

and J̃+
aj ,bj

, respectively.

Finally, by using also (2.24) and (2.25), one verifies that the corresponding critical

levels are, respectively, d j ∈ [EIl,δ , Tεj ] and c̃ j ∈ [Daj+bj ,Il,δ ,−D(Rj)/2], where EIl,δ ,

Daj+bj ,Il,δ and Rj are given in Proposition 2.6, while Tεj are numbers depending only

on εj . Observe that in order to take the limit, one needs to use the two kinds of

(PS) conditions contained in the lemmas 4.8 and 4.13 of [19], which also apply to

the functional J̃+
aj ,bj

since f̃1, f̃2 satisfy (1.2).

As a consequence, v j is a weak solution of (1.1+)j , and ũ j is a weak solution of

(2.36)j . In the next section we will prove that ũ j is positive for j large enough; this

will imply, in view of (2.9), that it is also a solution of (1.1+)j .

2.4 Estimating the sign of ũ j

In this section we consider the weak solutions ũ j of (2.36)j , with the aim of proving

that, for j large enough, they are also weak solutions of the problems (1.1+)j . In

view of the definition of the functions f̃1, f̃2 in (2.9), it will be enough to prove that

ũ j is positive in Ω.

In order to prove that ũ j is positive, we will obtain suitable estimates which show

that the component of ũ j orthogonal to the eigenspace Z = span {ψ1}, becomes

small (in the C1 norm) with respect to the component in the direction of ψ1.

This section is divided in two parts: in the first we prove the Lemmas containing

the necessary estimates, and then we prove, in the following one, the positivity of

ũ j .

A fundamental tool for proving the estimates will be the following result of Lp

regularity of weak solutions, which is a particular case of Theorem 8.2 in [1].
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Theorem 2.9 (From Theorem 8.2 in [1]). Let Ω be a open and bounded set in RN

of class C2, L > 0 and 1 < p <∞.

Then there exists a constant A, depending only on N,Ω, p and L, such that, if

u ∈ Lq(Ω), with 1 < q <∞, is a weak solution of


−∆u+ cu = f(x), in Ω,

u(x) = 0, on ∂Ω,

(2.37)

with |c| ≤ L and f ∈ Lp(Ω), then u ∈W 2,p(Ω) ∩W 1,p
0 (Ω) and

‖u‖W 2,p ≤ A (‖u‖Lp + ‖f‖Lp) . (2.38)

2.4.1 Auxiliary Lemmas

In the following we will denote by P be the orthogonal projection of L2(Ω) onto

span {φ1} and by Q = I−P the complementary projection. We first state a Lemma

from [22].

Lemma 2.10 (Lemma 2.1 from [22]). Let p ≥ 2 be fixed. Then there exist ε > 0 and

k1 > 0, both depending on p, such that if λ ∈ (λ1− ε, λ1], g ∈ Lp(Ω) and u ∈ H1
0 (Ω)

is a solution of problem


−∆u = λu+ g(x), in Ω,

u = 0, on ∂Ω,

(2.39)

where u = ζφ1 +w with ζ ∈ R and w ∈ Q(L2(Ω)), then the following estimate holds:

‖w‖W 2,p ≤ k1 ‖g‖Lp . (2.40)

Idea of the proof (see also [23]). First observe that, by the Fredholm’s alternative,
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the linear problem 
−∆w = λ1w + g̃, in Ω,

w = 0, on ∂Ω,

(2.41)

has a unique solution w ∈ H1
0 (Ω) ∩Q(L2(Ω)), for every g̃ ∈ Q(L2(Ω)).

By the regularity result in Theorem 2.9, it follows that w ∈ W 2,p(Ω) ∩ H1
0 (Ω) ∩

Q(L2(Ω)), provided that g̃ ∈ Q(L2(Ω)) ∩ Lp(Ω). As a consequence, we may define

the map

T : Q(L2(Ω)) ∩ Lp(Ω)→W 2,p(Ω) ∩H1
0 (Ω) ∩Q(L2(Ω)),

which, to every g̃ ∈ Q(L2(Ω)) ∩ Lp(Ω), associates T (g̃) = w ∈ W 2,p(Ω) ∩H1
0 (Ω) ∩

Q(L2(Ω)).

Using the closed graph theorem one can prove that this map is continuous and then

there exists a constant Cp > 0, depending on p, such that

‖w‖W 2,p ≤ Cp ‖g̃‖Lp . (2.42)

Now, if u = ζφ1 + w is a solution of (2.39), then w ∈ Q(L2(Ω)) ∩ H1
0 (Ω) is a

solution of 
−∆w = λ1w − (λ1 − λ)w +Qg, in Ω,

w = 0, on ∂Ω.

(2.43)

Applying Theorem 2.9 we get w ∈W 2,p(Ω), and by (2.42),

‖w‖W 2,p ≤ Cp ‖(λ1 − λ)w −Qg‖Lp

≤ Cp (|λ1 − λ| ‖w‖Lp + ‖Qg‖Lp) ≤ Cpε ‖w‖W 2,p + C ‖g‖Lp ,

thus

(1− Cpε) ‖w‖W 2,p ≤ C ‖g‖Lp , (2.44)
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and the result follows by taking ε > 0, such that Cpε < 1.

Now we prove a technical Lemma which will be needed in the following. It is an

adaption of Lemma 9.17 in [11].

Lemma 2.11. Let p ≥ 2, δ > 0 and l ∈ N be fixed. Then there exists k2 > 0

depending on p and on Il,δ, such that if µ ∈ Il,δ, then the following estimate holds:

‖u‖W 2,p ≤ k2 ‖∆u+ µu‖Lp , for every u ∈W 2,p(Ω) ∩H1
0 (Ω). (2.45)

Proof. Let us suppose, for sake of contradiction, that there exist sequences

{µn} ⊂ Il,δ and {un} ⊂W 2,p(Ω) ∩H1
0 (Ω),

such that ‖un‖W 2,p = 1 and ‖∆un + µnun‖Lp(Ω) → 0, when n→∞.

Then, since Il,δ is bounded, up to a subsequence we have


µn → µ ∈ Il,δ,

un ⇀ u ∈W 2,p(Ω),

un → u ∈ Lp(Ω).

(2.46)

As a consequence, for every φ ∈ C∞0 (Ω), which implies φ ∈ Lp/(p−1)(Ω), we get

0 = lim
n→∞

∫
Ω

(∆un + µnun)φ =

∫
Ω

(∆u+ µu)φ .

Since u ∈ H1
0 (Ω) and then vanishes at the boundary, u is a solution of


−∆u = µu, in Ω,

u = 0, on ∂Ω,

(2.47)
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which implies that u = 0, since µ 6∈ σ(−∆).

On the other hand, since un ∈W 2,p, we have f(x) := −∆un(x)− µnun(x) ∈ Lp.

Then, by applying Theorem 2.9, we get the a-priori estimate

‖un‖W 2,p ≤ A(‖un‖Lp + ‖∆un + µnun‖Lp), for every n ∈ N, (2.48)

where the constant A > 0 is independent from the index n (it depends on p, Ω and

Il,δ). Since the left hand side is equal to 1, while the right hand side goes to A ‖u‖Lp

when n→∞, it follows that ‖u‖Lp ≥
1
A > 0, which contradicts u = 0.

Exploiting Lemma 2.11, we can obtain a result, which is the analogous of Lemma

2.10 for the case of a linear system near resonance.

Lemma 2.12. Let p ≥ 2, δ > 0 and l ∈ N be fixed. Then there exist ε > 0 and

k0 > 0, depending on p and on Il,δ, such that, if a − b ∈ Il,δ, a + b ∈ (λ1 − ε, λ1),

g = (g1, g2) ∈ Lp × Lp and u = (u, v) ∈ E is a solution of the problem


−∆u = au+ bv + g1(x), in Ω,

−∆v = bu+ av + g2(x), in Ω,

u = v = 0, on ∂Ω ,

(2.49)

where u = βψ1 + ω with β ∈ R and ω ∈ V ⊕W , then the following estimate holds

‖ω‖W 2,p×W 2,p ≤ k0 ‖g‖Lp×Lp . (2.50)
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Proof. Adding and subtracting the two equations in (2.49), we get


−∆s = (a+ b)s+ g1(x) + g2(x), in Ω,

−∆d = (a− b)d+ g1(x)− g2(x), in Ω,

s = d = 0, on ∂Ω,

(2.51)

where s = u+ v and d = u− v. For the first equation, it follows from Lemma 2.10

that there exist ε > 0 and k1 > 0 (depending on p), such that if a+ b ∈ (λ1− ε, λ1],

then

‖Q(s)‖W 2,p ≤ k1 ‖g1 + g2‖Lp . (2.52)

For the second equation, it follows from Theorem 2.9 and Lemma 2.11 that there

exists a constant k2 > 0 (depending on p and Il,δ), such that

‖d‖W 2,p ≤ k2 ‖g1 − g2‖Lp . (2.53)

Now, writing ω = (ω1, ω2), we have Q(s) = ω1 + ω2 and d = ω1 − ω2. Then

ω =
(
Q(s)+d

2 , Q(s)−d
2

)
and so

‖ω‖W 2,p×W 2,p ≤
∥∥∥∥Q(s) + d

2

∥∥∥∥
W 2,p

+

∥∥∥∥Q(s)− d
2

∥∥∥∥
W 2,p

≤ (‖Q(s)‖W 2,p + ‖d‖W 2,p)

≤ (k1 ‖g1 + g2‖Lp + k2 ‖g1 − g2‖Lp) ≤ (k1 + k2) (‖g1‖Lp + ‖g2‖Lp)

≤ (k1 + k2)2
p−1
p ‖g‖Lp×Lp .

Lemma 2.12 allows us to prove the following Lemma 2.13, where we obtain an

estimate, in the C1 norm, of the component orthogonal to Z of a weak solution of

(2.36), in terms of its component in Z.
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Lemma 2.13. Let f1, f2 satisfy (1.2) and h1, h2 ∈ Lr(Ω), for some r > N . More-

over, fix δ > 0, l ∈ N and let ε be the one obtained in Lemma 2.12 with p = r.

Given η > 0, there exists C̃η > 0, depending on η, Il,δ and r, such that, if a−b ∈ Il,δ,

a + b ∈ (λ1 − ε, λ1) and ũ = βψ1 + ω is a critical point of J̃+
a,b, where β ∈ R and

ω ∈ V ⊕W , then the following estimate holds:

‖ω‖C1×C1 ≤ η|β|+ C̃η. (2.54)

Proof. Let ũ = (ũ, ṽ) be a critical point of the functional J̃+
a,b, so that it is a weak

solution of problem (2.36). We denote

f̃(ũ) = (f̃1(x, ṽ(x)), f̃2(x, ũ(x))) and h = (h1(x), h2(x)).

Observe that, in view of the hypotheses on the functions f1, f2, h1, h2, if ũ, ṽ ∈ Lp(Ω)

for some p ∈ [1, r], then f̃(ũ),h ∈ Lp(Ω) × Lp(Ω), and then by Theorem 2.9 we

conclude that ũ, ṽ ∈W 2,p(Ω).

We claim that ũ ∈W 2,r(Ω)×W 2,r(Ω).

In order to prove this, one has to apply iteratively Sobolev embeddings and Theorem

2.9, until one obtains ũ, ṽ ∈ W 2,p(Ω) for some p ≥ N/2. For such p one has

W 2,p(Ω) ↪→ Lr(Ω), and then as above ũ, ṽ ∈W 2,r(Ω).

Since ũ is a weak solution of (2.36), we already have ũ, ṽ ∈ L2(Ω) and then

ũ, ṽ ∈W 2,2(Ω) by Theorem 2.9.

If N ≤ 4, then we are done.

If N > 4, since W 2,2(Ω) ↪→ Lp1(Ω), where p1 = 2N
N−4 > 2, we get ũ, ṽ ∈ Lp1(Ω)

and then ũ, ṽ ∈ W 2,p1(Ω). If N − 2p1 > 0, then we use W 2,p1(Ω) ↪→ Lp2(Ω), where

p2 = Np1
N−2p1

, and then ũ, ṽ ∈ W 2,p2(Ω). By repeating this argument we obtain

that ũ, ṽ ∈ W 2,pi(Ω), where the sequence {pi} is defined recursively by p0 = 2 and

pi+1 = Npi
N−2pi

. In order to prove our claim we only have to show that there exists
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i0 ∈ N, such that pi0 ≥ N/2. Suppose for sake of contradiction that pi ∈ (2, N/2)

for every i ∈ N, which implies pi+1 > pi. Then the sequence {pi} would be bounded

and increasing, and then would converge to L ∈ [2, N/2]. However by taking limit

in the recursion formula we get L = NL
N−2L which implies L = 0, a contradiction.

We have then proved that ũ ∈W 2,r(Ω)×W 2,r(Ω). By Lemma 2.12, there exists

k0 > 0 such that

‖ω‖W 2,r×W 2,r ≤ k0

∥∥∥f̃(ũ) + h
∥∥∥
Lr×Lr

. (2.55)

Since r > N , we have the continuous embedding W 2,r(Ω) ↪→ C1(Ω) and then

‖ω‖C1×C1 ≤ C ‖ω‖W 2,r×W 2,r ≤ Ck0

∥∥∥f̃(ũ) + h
∥∥∥
Lr×Lr

≤ Ck0

∥∥∥f̃(ũ)
∥∥∥
Lr×Lr

+ Ck0Hr,

(2.56)

where Hr = ‖h‖Lr×Lr .

Now we observe that by hypothesis (1.2), given γ > 0, there exists Dγ > 0 such

that |f̃i(x, t)| ≤ γ|t|+Dγ for every t ∈ R and i = 1, 2. Thus

∥∥∥f̃(ũ)
∥∥∥
Lr×Lr

≤ C1

(
γ ‖ũ‖Lr×Lr +Dγ

)
.

By combining this inequality with (2.56), it follows

‖ω‖C1×C1 ≤ CC1k0γ ‖ũ‖Lr×Lr + Ck0(Hr + C1Dγ)

≤ C2γ|β| ‖ψ1‖Lr×Lr + C2γ ‖ω‖Lr×Lr + D̃γ

≤ C2γ ‖ψ1‖Lr×Lr |β|+ C3γ ‖ω‖C1×C1 + D̃γ ,

where D̃γ = Ck0(Hr + C1Dγ).

Then, given η > 0, we can find γ > 0, such that C2γ ‖ψ1‖Lr×Lr <
η
2 and C3γ <

1
2 ;

we can thus obtain the desired result with C̃η = 2D̃γ .

We observe that the choice of γ (and then of C̃η) depends on k0 and r, that is,
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on r, Il,δ.

2.4.2 Positivity of ũ j

In this section we prove that there exists j0 such that ũ j is positive in Ω, for every

j ≥ j0. Remember (see section 2.3) that ũ j is a critical point of the functional J̃+
aj ,bj

at the critical level c̃ j ≤ −D(Rj)/2, and since D(Rj)→ +∞, we have

J̃+
aj ,bj

(ũ j) = c̃ j → −∞, when j →∞. (2.57)

For every j ∈ N, we denote

ũ j = βjψ1 + ωj , (2.58)

where βj ∈ R and ωj ∈ V ⊕W . We note that

|βj | → +∞ , when j →∞.

Actually, if (a subsequence of) {βj} were bounded, then, by Lemma 2.13,
{
ũ j
}

would be bounded. As a consequence, J̃+
aj ,bj

(ũ j) would be bounded too, since the

coefficients aj , bj take values in a fixed bounded set. This contradicts (2.57).

By Lemma 2.13, it follows that, for arbitrary η > 0,

lim sup
j→∞

‖ωj‖C1×C1
|βj |

≤ lim sup
j→∞

(
η +

C̃η
|βj |

)
= η, (2.59)

which implies

ωj
βj
→ 0, in C1(Ω)× C1(Ω), when j →∞, (2.60)
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and then

ũ j

βj
= ψ1 +

ωj
βj
→ ψ1, in C1(Ω)× C1(Ω), when j →∞. (2.61)

Since both components of ψ1 are positive and have positive inward derivative at the

boundary, there exists j0 such that, for every j ≥ j0, one has that ũ j is positive if

βj > 0 and ũ j is negative if βj < 0. In order to prove that ũ j is positive, we need

to prove the following Lemma.

Lemma 2.14. Let βj be given by (2.58). Then βj → +∞, when j →∞.

Proof. We already know that |βj | → ∞. Thus we suppose, for sake of contradiction,

that (for some subsequence) βj → −∞. In this case, by (2.61), ũ j is negative for j

large enough.

By the definition of f̃1, f̃2 and for being continuous, there exists M > 0 such

that, for i = 1, 2,

|f̃i(x, t)| ≤M, and |F̃i(x, t)| ≤ 2M, for every x ∈ Ω, t ≤ 0. (2.62)

As a consequence, we have

∥∥∥f̃(ũ j)
∥∥∥

[L2]2
≤ 2M |Ω|

1
2 , (2.63)

and then we can apply Lemma 2.12 to obtain

‖ωj‖E ≤ ‖ωj‖W 2,2×W 2,2 ≤ k0

∥∥∥f̃(ũ j) + h
∥∥∥

[L2]2
≤ 2Mk0|Ω|

1
2 + k0 ‖h‖[L2]2 <∞.

(2.64)

Also, one has

F̃(ũ j) ≤ 4M |Ω|
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and, in view of (F̃-ii) and (2.4)

H(ũ j) = βjH(ψ1) +H(ωj) = H(ωj) ≤ H ‖ωj‖E .

Since

Baj ,bj (ũ
j , ũ j) = Baj ,bj (βjψ1, βjψ1) +Baj ,bj (ωj ,ωj) , (2.65)

we get

J̃+
aj ,bj

(ũ j) =
β2
j

2
Baj ,bj (ψ1,ψ1) +

1

2
Baj ,bj (ωj ,ωj)−

(
F̃(ũ j) +H(ũ j)

)
≥

β2
j

2
Baj ,bj (ψ1,ψ1) +

1

2
Baj ,bj (ωj ,ωj)−H ‖ωj‖E − 4M |Ω|.(2.66)

Since Baj ,bj (ψ1,ψ1) =
λ1−(aj+bj)

λ1
> 0 and the terms containing ωj are bounded

in E by (2.64), we get a contradiction with (2.57).

As observed, the consequence of this Lemma is that ũ j is positive, for every

j ≥ j0. By the definition of f̃1, f̃2, since ũ j is a weak solution of (2.36)j , it follows

that it is also a weak solution of (1.1+)j and that

J+
aj ,bj

(ũ j) = J̃+
aj ,bj

(ũ j) ∈ [Daj+bj ,Il,δ ,−D(Rj)/2]. (2.67)

2.5 The three solutions

We are now in the position to prove Proposition 2.8 and then our main results.

Proof of Proposition 2.8. The functions v j and ũ j are solutions of (1.1+)j , the

second one being positive. Since J+
aj ,bj

(v j) ≥ EIl,δ while J+
aj ,bj

(ũ j) → −∞, they

are distinct, for j large enough.
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In order to obtain a third solution, we consider the system


−∆u = au+ bv + (−f1(x,−v) + (−h1(x))), in Ω,

−∆v = bu+ av + (−f2(x,−u) + (−h2(x))), in Ω,

u(x) = v(x) = 0, on ∂Ω.

(2.68)

We observe that if (u, v) is a solution of (2.68), then (−u,−v) is a solution of (1.1+).

We denote gi(x, t) = −fi(x,−t) and

Gi(x, t) =

∫ t

0
gi(x, s)ds =

∫ t

0
−fi(x,−s)ds =

∫ −t
0

fi(x, σ)dσ = Fi(x,−t), (2.69)

for i = 1, 2. It follows that g1, g2 and −h1,−h2 satisfy (1.2) and (F).

Moreover, if Ĵa,b is the functional associated to the Problem (2.68), then it is simple

to verify that Ĵa,b(u) = Ja,b(−u), for every u ∈ E: actually the quadratic part of

the functional is even, while Fi(x, t) = Gi(x,−t), and hit = (−hi)(−t), for every

t ∈ R and i = 1, 2.

Thus, we can repeat all the arguments used above (it may be necessary to redefine

εj , Rj , aj , and bj in such a way that they work for the problems (1.1) and (2.68) at

the same time), and in the end we obtain a sequence
{
û j
}
j∈N ⊂ E and j1 ∈ N, such

that for every j ≥ j1, û j is a weak positive solution of (2.68)j and Ĵaj ,bj (û
j)→ −∞.

We conclude that −û j is a negative solution (then distinct from ũ j) of (1.1+)j ,

for j ≥ j1. Moreover, J+
aj ,bj

(−û j) → −∞, implying that −û j is distinct also from

v j .

Proof of Theorem 1.1. Item (a): suppose, for sake of contradiction, that the claim

of the Theorem were false. As a consequence, for some δ > 0, there would exist

sequences {aj} , {bj} such that aj − bj ∈ Il,δ and aj + bj → λ−1 , for which problem

(1.1+)j does not have three solutions. Without loss of generality we may suppose
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that aj + bj ∈ (λ1 − εj , λ1). However, this would contradict Proposition 2.8.

Item (b): as in [19], this case can be proved by the same technique used for the

case (a), if we work with the functional

J−a,b(u) = −1/2Ba,b(u,u)− (F(u) +H(u)) ,

and we define the spaces V,Z,W as in (2.11), but making use of the eigenvalues of

−Ba,b, instead of those of Ba,b.

In fact, observe that the Lemma 2.10 can be extended straightforwardly to the case

λ ∈ [λ1, λ1 + ε) (actually the sign of λ− λ1 is never used in the proof) and then the

following Lemmas can be extended too.

Finally, when a+ b ∈ (λ1, λ1 + ε), the eigenvalue corresponding to ψ1 is

0 <
(a+ b)− λ1

λ1
= −Ba,b(ψ1,ψ1) <

ε

λ1
.

The positivity of this eigenvalue is all we need to prove the Lemma 2.14 in this case

(see equation (2.66)).

Proof of Theorem 1.2. This Theorem follows directly from Theorem 1.1, by per-

forming the change of unknown (U, V ) = (u,−v), as in [19].

Remark 2.15. As we claimed in section 1, if hypothesis (F+) holds instead of (F),

then one can still truncate the nonlinearities as in (2.9), so that they satisfy (F̃). As

a consequence, in the case of Theorem 1.1, one still gets one positive solution ũj as

a critical point of J̃aj ,bj at a level below −D(Rj)/2. On the other hand, the solution

vj was obtained without the need of any hypothesis like (F), so this solution still

exists and again it is distinct from the previous one for lying at a different level.

Also, if the limit in (F+-i-a) is at −∞, then one can get two solutions, one being

negative, in the case of Theorem 1.1. In the case of Theorem 1.2 one gets two
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solution, one having components of opposite sign.
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Amparo à Pesquisa do Estado de São Paulo (FAPESP)/Brazil and by CNPq/Brazil.

R. A. Rossato was supported by: processo no. 2010/06411-4, Fundação de Amparo
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Ph.D. thesis, ICMC - USP, Brazil (2014, http://www.teses.usp.br/teses/

disponiveis/55/55135/tde-13042015-164728/).

[24] H.-M. Suo, C.-L. Tang, Multiplicity results for some elliptic systems near reso-

nance with a nonprincipal eigenvalue, Nonlinear Anal. 73 (7) (2010) 1909–1920.



E. Massa and R. Rossato 37

Full title:

Three solutions for an elliptic system near resonance with the principal eigenvalue

Running title:

Three solutions for an elliptic system

Corresponding Author:

Eugenio Massa: tel ++55 16 33736635, fax ++55 16 33739650.

Departamento de Matemática,
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