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2 Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros

1 Introduction

In this paper, we obtain a result concerning the existence of multiple positive C1(Ω)-weak
solutions of the Problem

(Pλ)

{
−∆m u = λf(u) in Ω,

u = 0 on ∂Ω,

where Ω is a convex bounded domain in RN with smooth boundary, N > m > 1, λ is a
positive parameter and f is a continuous nonnegative function which has zeros {z0 = 0 <
z1 < z2 < . . . < zk}; we will show the existence of at least 2k or 2k + 1 (depending on
the behavior of f at the origin) positive solutions for λ large. No hypothesis will be made
about the behavior at infinity of f . This result generalizes our previous work [ILM10],
where we considered only one positive zero and a growth near the origin at least as um−1.

We will assume the following hypotheses on the nonlinearity f :

(F1) f : [0, T ] → R is a continuous function and there exists a set {z0 = 0 < z1 <
z2 < . . . < zk} ⊆ [0, T ) such that f is locally Lipschitz continuous in (0, T ], f(0) =
f(z1) = · · · = f(zk) = 0 and f(x) > 0 for x ∈ (0, T ] \ {z1; . . . ; zk}.

(F2) There exist cj > 0 and σj ∈ (m− 1,m∗ − 1) such that

lim
t→zj

f(t)

|t− zj|σj
= cj , j = 1, ... , k,

where m∗ = (N−1)m
N−m denotes the Serrin’s exponent.

(F3) There exists L > 0 such that the map t 7→ f(t) + Ltm−1 is increasing for t ∈ [0, T ].

About the behavior of the nonlinearity near the origin, we will assume one of the
following two hypotheses:

(F4) There exists σ0 ∈ (m− 1,m∗ − 1) such that

lim
t→0+

f(t)

tσ0
= 1;

or

(F5) lim inf
t→0+

f(t)

tm−1
≥ 1.

Our main results are the following

Theorem 1.1. Assume that the hypotheses (F1) through (F3) hold and Ω is convex smooth
and bounded. If also hypothesis (F4) holds, then there exists λ∗ > 0 such that the Problem
(Pλ) has at least 2k + 1 C1-weak positive solutions v0,λ, uj,λ, vj,λ, j = 1, ... , k, for λ > λ∗.

Moreover, these solutions satisfy ‖v0,λ‖∞ → 0+, ‖uj,λ‖∞ → z−j and ‖vj,λ‖∞ → z+
j ,

j = 1, ... , k, when λ→∞.
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Theorem 1.2. Assume that the hypotheses (F1) through (F3) hold and Ω is convex smooth
and bounded. If also hypothesis (F5) holds, then there exists λ∗ > 0 such that the Problem
(Pλ) has at least 2k C1-weak positive solutions uj,λ, vj,λ, j = 1, ... , k, for λ > λ∗.

Moreover, these solutions satisfy ‖uj,λ‖∞ → z−j and ‖vj,λ‖∞ → z+
j , j = 1, ... , k, when

λ→∞.

Remark 1.3. In fact, it will be clear from the proofs that we might state our result with
more details: under the hypotheses of the Theorem 1.1 (resp. 1.2), there exist Λj : j =
0, ... , k such that for λ > Λj Problem (Pλ) has at least 2j + 1 (resp. 2j) C1-weak positive
solutions.

Moreover, it follows directly by the main theorems, that we may also consider a function
f with an infinite number of zeros, all satisfying a condition as in (F2), obtaining an
arbitrary number of solutions, for sufficiently large λ. An example could be f(x) = sin2(x).

As remarked above, this result generalizes our previous work [ILM10], where we con-
sidered only one positive zero and a growth near the origin as in hypotheses (F5). In that
work we obtained two solutions for λ large, one below the zero and another one exceeding
the zero. Both solutions satisfied the property that their maximum value converged to
the zero of the nonlinearity when λ→∞. This property was exploited in order to get a
bound on the L∞ norm which allowed to truncate the nonlinearity and then to consider
very week hypotheses about its behavior at infinity.

However, this L∞ estimate was obtained by a blowup argument and then relied on two
main results: one was the Liouville-type theorem in RN obtained in [IMSU10], the second,
which guarantees that the blow-up procedure leads to a problem in RN , is contained in
the following Lemma, which is a consequence of the results in [DS04].

Lemma 1.4. Assume that Ω is a convex and smooth bounded domain, then there exists
δΩ > 0 (depending only on Ω), such that if h : [0,+∞)→ [0,∞) is a continuous function
which is positive and locally Lipschitz continuous in (0,∞), then the C1(Ω)-weak solutions
u of {

−∆m u = h(u), u ≥ 0, in Ω ,

u = 0 on ∂Ω ,

satisfy the property that there exists a point x ∈ Ω such that dist(x, ∂Ω) ≥ δΩ and u(x) =
‖u‖∞.

Instead of the Liouville-type theorem from [IMSU10], we will use here the following
Lemma, which is a consequence of Theorem 3.12 from [DM10].

Lemma 1.5. Assume that f : [0,∞)→ [0,∞) is a continuous function, N > m and u is
a nonconstant C1(Ω)−weak solution of

−∆mu ≥ f(u), u ≥ 0, in RN , (1.1)

with γ = infRN (u).
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Then f(γ) = 0 and

lim inf
t→γ+

f(t)

(t− γ)m∗−1
= 0 . (1.2)

Actually, by the hypotheses (F2), (F4) and (F5), no zero of f satisfies condition (1.2),
so that every solution of (1.1) must be constant.

With respect to [ILM10], this Lemma allows us to deal with multiple zeros in the
nonlinearity, but we still need to use Lemma 1.4: in order to apply it, as in [ILM10],
we will need to work with locally Lipschitz and strictly positive nonlinearities and with
a convex domain Ω. In the case of the nonlinearity f (which of course is not strictly
positive), we will obtain that there exist maximum points of the solutions which are
uniformly bounded away from the boundary of Ω, by taking the limit of solutions of
perturbed problems with positive nonlinearities.

Before going to the proofs, we give some remarks on the hypotheses. Hypothesis (F2)
is required for applying Lemma 1.5 as described above, but also in order to obtain a family
of supersolutions near each zero of f (see Lemma 2.2). In fact, it would be possible to
weaken this hypothesis (and (F4) in a similar way), by assuming the following instead:

(F ∗2 ) There exist σj ∈ (m− 1,m∗ − 1) such that

lim inf
t→z+j

f(t)

|t− zj|m∗−1
> 0 , j = 1, ... , k,

and

lim
t→zj

f(t)

|t− zj|m−1
= 0 , j = 1, ... , k;

the first condition is used in order to apply Lemma 1.5 and the second in order to obtain
the family of supersolutions. However, we will assume hypothesis (F2) throughout the
proofs for simplicity of the exposition.

Hypothesis (F3) is standard in order to use the method of sub- and supersolutions.
Hypothesis (F4) states that f has a similar behavior near the origin as it has near its
other zeros: as a consequence we will be able to obtain one additional solution near the
origin. On the other hand, Hypothesis (F5) makes it impossible to have a solution near
the origin for λ large, but implies the existence of a subsolution, that can be used to start
the sub- and supersolutions method.

In the semilinear case m = 2, our result is similar to the results in [Hes81] (see
also [GMI15]). For the case with only one positive zero in the nonlinearity we cite also
[Lio82, Liu99, IMSU10]. We remand to [IMSU10, ILM10] for further observations and
literature related to this kind of problems.

The paper is organized as follows: in Section 2 we state and prove all the results
needed to prove the main Theorems, which are then proved, respectively, in the Sections
3 and 4.
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2 Preliminary Lemmas

From now on we will always assume that Ω is a bounded and smooth domain; the convexity
will be explicitly assumed only when it is required.

Our first step will be to build a family of auxiliary problems with the nonlinearity
truncated and a positive term added.

Assuming (F1) and (F2), we take Rj ∈ (zj, zj+1) for j = 1, ... , k − 1 and Rk ∈ (zk, T ).
Also, when (F4) holds, there exist ε0 ∈ (0, 1) and R0 ∈ (0, z1) such that for any t ∈ [0, R0]
we have

(1− ε0)tσ0 ≤ f(t) ≤ (1 + ε0)tσ0 . (2.1)

When we do not assume (F4) we just set arbitrary R0 ∈ (0, z1) and σ0 ∈ (m− 1,m∗− 1).
Then we define, for j = 0, ... , k,

fj(t) =

{
f(t+), if t ≤ Rj ,
f(Rj)

R
σj
j

tσj , if t > Rj ,
(2.2)

where t+ = max{0, t}, and we consider the auxiliary problems

(Qj,λ,τ )

{
−∆m u = λfj(u) + τ(u+)m−1 in Ω,

u = 0 on ∂Ω,

where τ ≥ 0 is a real parameter.
We remark that, by the strong maximum principle (see [Váz84]), the nontrivial solu-

tions of the Problem (Qj,λ,τ ) are positive and, by hypothesis (F1) and since σ0, ... , σk <
m∗ − 1, they are in C1,α(Ω) for some α ∈ (0, 1) (see [GV89]); moreover, since fj ≥ 0,
(Qj,λ,τ ) has no positive solution if τ > λ1: the first eigenvalue of the m-Laplacian in Ω.

Finally, we observe that if u is a solution of Problem (Qj,λ,τ ) and u < Rj, then it is
also a solution of Problem (Qi,λ,τ ) for i > j. In the case τ = 0, it is also a solution of
Problem (Pλ).

Roughly speaking, the proof of the main theorems will go on the following lines: we
will first obtain two solutions of (Qj,λ,τ ) for each j, with τ > 0: one is obtained via the
sub- and supersolutions method, and a second one by using topological degree. Being
τ > 0 we can apply Lemma 1.4 to these solutions. Then we take the limit for τ > 0 and
we obtain solutions having their maxima bonded away from the boundary. This fact will
allow us to obtain the cited L∞ estimates that justify the truncation of the nonlinearity
and also make it possible to distinguish the solutions between them.

We start by presenting several lemmas which will be used later. Some of them are
taken (or adapted) from [ILM10].

The first step will be to derive some a-priori estimates for the solutions of (Qj,λ,τ ),
j = 0, 1, ... , k; we remark that this result does not require the use of Lemma 1.4 and then
it holds also for τ = 0.

Lemma 2.1. Under hypotheses (F1), (F2) and (F4) or (F5), we have
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(1) given λ̃ > 0, there exists a constant Dλ̃ such that, if u ∈ C1(Ω) is a weak solution

of Problem (Qj,λ,τ ) with j ∈ {0, 1, ... , k}, λ > λ̃ and τ ≥ 0 then

‖u‖∞ ≤ Dλ̃ ;

(2) given λ > 0, there exist constants Cλ > 0 and α ∈ (0, 1) such that one has also the
estimate

‖u‖C1,α(Ω) ≤ Cλ . (2.3)

Sketch of the Proof. We sketch the proof here: the details can be fond in [ILM10].
For a given j ∈ {0, 1, ... , k} one supposes, for sake of contradiction, that there exists

a sequence {(un, λn, τn)}n∈N with un being a positive C1-solution of (Qj,λn,τn), λn > λ̃ and
τn ≥ 0, such that Sn := maxΩ un = un(xn) −−−→

n→∞
∞, where {xn} ⊂ Ω is a sequence of

points where the maximum is attained. We also have τn ≤ λ1, since no positive solution
of (Qj,λ,τ ) exists for τ > λ1.

One then makes a blow-up argument, that is, one defines a sequence wn by suitably
rescaling the solutions un and translating them in order to bring the maxima in the origin.
Finally, one proves that, up to a subsequence, wn → w in the C1 norm in compact sets,
where w is a C1-function satisfying, in the weak sense,

−∆mw = wσj ,

w > 0,

w(0) = maxw = 1,

in RN or in a half-space. This contradicts the Liouville-type theorem in [SZ02, Corollary
II] in the case of RN and in [Lor07, Zou08] for the half-space.

Observe that the limiting problem may be defined in a half-space because we are not
supposing τ > 0 at this point, then Lemma 1.4 does not apply and thus we do not know
if the sequence of maxima xn is bounded away from the boundary.

The contradiction proves that ‖u‖∞ ≤ C for any solution of Problem (Qj,λ,τ ) with

λ > λ̃ and τ ≥ 0, that is, the item (1) of the Lemma, and also for any solution with
a given λ and τ ≥ 0. In this second case, using the regularity theorem in [Lie88], one
obtains the uniform bound also for the C1,α norm, as claimed in the item (2).

Finally, since we deal with a finite number of indexes j, we can make the constants
not depend on this index.

Now, we look for suitable supersolutions for the Problems (Qj,λ,τ ) with j = 1, ... , k:
actually, the constant functions zj are always supersolutions if τ = 0, but we aim for
a family of supersolutions which are near to these constants and are still supersolutions
when τ is positive (and small). For this purpose, let e ∈ W 1,m

0 (Ω) be the solution of{
−∆me = 1 in Ω

e = 0 on ∂Ω

and n := ‖e‖∞.
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Lemma 2.2. Under hypothesis (F2), for any λ > 0, j ∈ {1, ... , k} there exist τ ∗j,λ, δj,λ > 0

such that uj,ξ = zj + ξ +
δj,λ
4n
e is a supersolution for (Qj,λ,τ ) for any ξ ∈ [−δj,λ, δj,λ/2] and

τ ∈ [0, τ ∗j,λ). Moreover, we may choose δj,λ as nonincreasing functions of λ and such that
zj − δj,λ > Rj−1.

Proof. The proof is analogous to that of Lemma 3.2 in [ILM10]. In particular, the result

is a consequence of σj > m− 1, which implies limt→zj
f(t)

|t−zj |m−1 = 0.

In view of Lemma 1.4, we give the following definition:

Definition 2.3. We say that a family of nonnegative functions defined in Ω satisfies the
δΩ-property if for every u in the family there exists a point x ∈ Ω such that dist(x, ∂Ω) ≥
δΩ and u(x) = ‖u‖∞, where δΩ is given in Lemma 1.4.

Remark 2.4. Under the hypotheses (F1) and (F2), if Ω is convex, then Lemma 1.4 implies
that the family of the C1(Ω)-weak solutions of the Problems (Qj,λ,τ ) with j ∈ {0, , ... , k}
and λ, τ > 0, satisfies the δΩ-property. In the case j = 0 this is true also for τ = 0.

The following Lemma is crucial for our argument: it states that if we know that a
family of solutions of the Problems (Qj,λ,τ ) satisfy the δΩ-property, then their infinity norm
must converge to the set of the zeros of fj, when λ→∞. This fact will be used in order to
prove that, for λ large, the solutions we obtain are distinct, and also in order to prove that
they stay below the point where fj is truncated, so that they are in fact solutions of the
original Problem (Pλ). In the proof we have to combine the a-priori estimate in Lemma
2.1, the Liouville-type result in Lemma 1.5, and the δΩ-property which will guarantee
that we converge to a limiting problem defined in RN and not in a half-space, since this
is necessary in order to apply Lemma 1.5.

Lemma 2.5. Assume hypotheses (F1), (F2) and (F4) or (F5). For a given j ∈ {0, ... , k} if
uj,λn,τn are solutions of the corresponding Problems (Qj,λn,τn) which satisfy the δΩ-property,
and λn →∞ while τn ≥ 0 is bounded, then the sequence ‖uj,λn,τn‖∞ has the limit set, for
n→∞, contained in {0, z1, ... , zj}.

Proof. Let us denote un = uj,λn,τn and let xn ∈ Ω be such that dn := dist(xn, ∂Ω) ≥ δΩ

and un(xn) = ‖un‖∞.

Letting wn(x) = un(xn + λ
− 1
m

n x) we see that wn satisfies

−∆mwn(x) = fj(wn) + λ−1
n τn(w+

n )m−1 in B(0, dnλ
1/m
n ) (2.4)

and wn(0) = un(xn).

As in the proof of point (2) in Lemma 2.1, we obtain (since wn is bounded in L∞ by
the point (1) in the same Lemma) also a uniform bound in the C1,α norm in compact
sets, for some α ∈ (0, 1); then, up to a subsequence, wn → w in the C1 norm in compact
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sets, where now w is a C1 function defined in RN , since dnλ
1/m
n → ∞. Thus, w is a

C1(RN)-weak solution of the Problem{
−∆mw = fj(w) in RN ,

w ≥ 0 .
(2.5)

In view of the Hypotheses (F2), (F4) and (F5), we can apply Lemma 1.5 to conclude that
w is constant, that is, w must be a zero of fj.

This proves that, up to a subsequence, wn(0) = un(xn) = ‖un‖∞ → z ∈ {0, z1, ... , zj};
since this is true for any subsequence, we proved our claim.

We prove now a lemma which gives us two solutions of Qj,λ,τ with τ > 0, one below zj
and the other one exceeding it; the requirement is that we have a subsolution whose infinity
norm is between zj−1 and zj. One solution will be obtained by the sub- and supersolution
method; for the second one we apply a topological degree argument, adapting a result
obtained, for m = 2, by de Figueiredo and Lions in [dFL85], see also [ILS08, ILM10] for
the general case.

Lemma 2.6. Assume hypotheses (F1), (F2) and (F3); fix j ∈ {1, ... , k} and λ > 0.
Suppose that the Problems (Qj,λ,τ ), τ ≥ 0 have a common subsolution u > 0, satisfying
zj−1 < ‖u‖∞ < Rj−1.

Then for a given τ0 ∈ (0, τ ∗j,λ), Problem (Qj,λ,τ0) has 2 solutions uj,λ,τ0 , vj,λ,τ0 satisfying

zj−1 < ‖u‖∞ ≤ ‖uj,λ,τ0‖∞ < zj − δj,λ/4 < zj + δj,λ/4 < ‖vj,λ,τ0‖∞ .

Proof. For τ ∈ (0, τ ∗j,λ), we have the supersolution ũ = uj,−δj,λ = zj − δj,λ +
δj,λ
4n
e from

Lemma 2.2; by construction, we have u < Rj−1 < ũ < zj − δj,λ/2. Then the sub- and
supersolutions method gives a solution uj,λ,τ0 with the claimed properties.

In order to obtain the second solution we proceed as in [ILM10]. We denote by X
the Banach space of the C1-functions on Ω which are 0 on ∂Ω, endowed with the usual
C1-norm. Also, we will write u << v to say that u < v in Ω and ∂u

∂ν
> ∂v

∂ν
on ∂Ω, where ν

denotes the unitary outward normal to ∂Ω. Let L be given by (F3) and Kτ : X → X be
defined as follows: Kτv = u, where u is the unique solution of the Dirichlet problem{

−∆mu+ λLum−1 = λfj(v) + (λL+ τ)vm−1 in Ω,

u = 0 on ∂Ω ;
(2.6)

the mapping Kτ so defined is compact.
We consider the bounded open set

O = {u ∈ X : ‖u‖X < Cλ +Bλ + 1, u >> u} ,

where Cλ, Bλ > 0 will be chosen below (see in (2.7) and (2.9), respectively)
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We need that 0 /∈ (I − Kτ )(∂O) (i.e, no solution of (Qj,λ,τ ) lies on ∂O), so that the
degree deg(I −Kτ ,O, 0) will be well defined and independent of τ . To obtain this we get
Cλ from Lemma 2.1 part (2), so that

‖u‖X ≤ Cλ (2.7)

for all possible solutions of (Qj,λ,τ ) with τ ≥ 0.
Then, we claim that any solution u of (Qj,λ,τ ) such that u ≥ u in Ω satisfies u >> u

(and then it is not on ∂O).
Actually, we have, since τ > 0 and u > 0{

−∆mu+ λLum−1 = λfj(u) + (λL+ τ)um−1

−∆m(u) + λL (u)m−1 ≤ λfj(u) + λL(u)m−1 < λfj(u) + (λL+ τ)(u)m−1 ;
(2.8)

by hypothesis (F3), using u ≤ u and the comparison result in [dFGU09] (derived from
[AR06, FPT94]), the claim is proved.

By the above computations, we obtain that

deg(I −Kτ ,O, 0) = 0 for any τ > 0 ,

since (Qj,λ,τ ) has no solutions for τ > λ1.
At this point we fix τ = τ0, we consider the supersolution u := uj,0 > zj from Lemma

2.2, and we assume that no solution of (Qj,λ,τ0) touches it, otherwise such a solution would
satisfy the claim we are trying to prove and then we would be finished. Using the L∞

estimate in [Ana87] and then [Lie88] we obtain that we may choose the constant Bλ > 0
such that

‖Kτv‖X ≤ Bλ, ∀ v ∈ X : 0 ≤ v ≤ u; (2.9)

we consider the open subset of O

O′ = {u ∈ O : u < u in Ω}

and we claim that deg(I −Kτ0 ,O′, 0) = 1.
Observe that Kτ0 maps O′ into O′. Indeed, if v ∈ O′, then ‖Kτ0v‖X ≤ Bλ by (2.9),

and if we consider u = Kτ0v we have
−∆mu+ λLum−1 ≥ λf1(u) + (λL+ τ0)um−1,

−∆mu+ λLum−1 = λf1(v) + (λL+ τ0)vm−1,

−∆m(u) + λL (u)m−1 ≤ λfj(u) + λL(u)m−1 ≤ λfj(u) + (λL+ τ0)(u)m−1 ,

(2.10)

then, since u ≤ v ≤ u, the comparison principle in [Tol83] implies that u ≤ Kτ0v ≤ u.
Now, let u0 ∈ O′ and consider the constant mapping C : O′ → O′ defined by C(u) =

u0: one obtains that I − µKτ0(v)− (1− µ)u0, µ ∈ [0, 1], is a homotopy between I −Kτ0

and I − C in O′ without zeros on ∂O′: in fact, if v ∈ ∂O′ then (since O′ is convex)
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µKτ0(v) + (1 − µ)u0 ∈ O′ for µ 6= 1, and then it is different from v, while for µ = 1 we
have v 6= Kτ0(v) since we are assuming that no solution touches u.

Hence deg(I −Kτ0 ,O′, 0) = deg(I − C,O′, 0) = 1, as we claimed.
Then, applying the excision property, it follows that deg(I −Kτ0 ,O \ O′, 0) = −1, so

(Qj,λ,τ0) has a solution vj,λ,τ0 ∈ O\O′; in particular, if x0 is the maximum point of u then
vj,λ,τ0(x0) > u(x0) = zj + δj,λ/4, since otherwise it would be on ∂O′: we obtained the last
estimate ‖vj,λ,τ0‖∞ > zj + δj,λ/4.

Lemma 2.6 allows us to obtain the following Lemma, which will be used to iteratively
produce two solutions of Problem (Pλ), starting with a given solution.

Lemma 2.7. Assume hypotheses (F1), (F2), (F3), hypothesis (F4) or (F5), and the con-
vexity of Ω. Suppose that, for some j ∈ {1, ... , k}, there exists Λj−1 > 0 such that there
exists a solution vλ of (Qj,λ,0) for any λ > Λj−1, satisfying zj−1 < ‖vλ‖∞ < Rj−1.

Then there exists Λj ≥ Λj−1 such that (Qj,λ,0) has two more solutions uj,λ,0 and vj,λ,0,
satisfying

Rj−1 ≤ ‖uj,λ,0‖∞ ≤ zj − δj,λ/4 < zj + δj,λ/4 ≤ ‖vj,λ,0‖∞ < Rj . (2.11)

Moreover ‖uj,λ,0‖∞ → z−j and ‖vj,λ,0‖∞ → z+
j as λ→∞.

Proof. First we fix λ′ > Λj−1, and we observe that vλ′ is a subsolution for Problem (Qj,λ,τ )
for any τ ≥ 0 and λ > λ′.

Then we apply Lemma 2.6 with this j and this subsolution. As a result we get two
solutions uj,λ,τ and vj,λ,τ of (Qj,λ,τ ) satisfying

zj−1 < ‖vλ′‖∞ ≤ ‖uj,λ,τ‖∞ < zj − δj,λ/4 < zj + δj,λ/4 < ‖vj,λ,τ‖∞ ,

for every λ > λ′ and τ ∈ (0, τ ∗j,λ).
Since Ω is convex, these solutions satisfy the δΩ-property by Remark 2.4; our aim is to

obtain solutions for the case τ = 0 which also satisfy the δΩ-property: since this cannot
be guaranteed directly by Remark 2.4, we will obtain them by taking limit in the case
τ > 0.

For a fixed value of λ > λ′, we consider a sequence τn → 0 and we focus on the
solutions un := uj,λ,τn (resp. vn := vj,λ,τn).

By Lemma 2.1 point (2), we have a uniform bound for ‖un‖C1,α(Ω) for some α ∈ (0, 1).

Then, up to a subsequence, un → uj,λ,0 and vn → vj,λ,0 in C1(Ω), where uj,λ,0, vj,λ,0 are
nonnegative weak solution of (Qj,λ,0).
Since zj−1 < ‖vλ′‖∞ ≤ ‖un‖∞ < zj − δj,λ/4 we obtain zj−1 < ‖vλ′‖∞ ≤ ‖uj,λ,0‖∞ ≤
zj − δj,λ/4 (resp, ‖vn‖∞ > zj + δj,λ/4 implies ‖vj,λ,0‖∞ ≥ zj + δj,λ/4). Thus uj,λ,0 is
nontrivial and distinct from vj,λ,0.

Finally, we know by remark 2.4 that there exist xn ∈ Ω such that dn := dist(xn, ∂Ω) ≥
δΩ and un(xn) = ‖un‖∞ (resp. vn(xn) = ‖vn‖∞). Then, up to a further subsequence,
xn → x ∈ Ω with dist(x, ∂Ω) ≥ δΩ and taking limit uj,λ,0(x) = ‖uj,λ,0‖∞ (resp. vj,λ,0(x) =
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‖vj,λ,0‖∞). We have thus obtained solutions uj,λ,0 and vj,λ,0 of (Qj,λ,0) satisfying the δΩ-
property and such that

zj−1 < ‖vλ′‖∞ ≤ ‖uj,λ,0‖∞ ≤ zj − δj,λ/4 < zj + δj,λ/4 ≤ ‖vj,λ,0‖∞ . (2.12)

Then, we can apply Lemma 2.5 and, comparing with (2.12), we deduce that ‖uj,λ,0‖∞ →
z−j and ‖vj,λ,0‖∞ → z+

j as λ→∞.
Thus there exists Λj such that Rj−1 < ‖uj,λ,0‖∞ , ‖vj,λ,0‖∞ < Rj for λ > Λj, which

completes the estimates in (2.11).

3 The proof of Theorem 1.1

In this section we prove Theorem 1.1. In order to apply Lemma 2.7 we need to have a first
solution: this is obtained variationally via the Mountain Pass Theorem, actually, because
of hypothesis (F4), the origin is a minimum for the functional associated to our truncated
problem.

Lemma 3.1. Under the hypothesis (F1), (F2) and (F4), if Ω is convex, there exists Λ0 > 0
such that the Problem (Q0,λ,0) has at least one positive solution v0,λ,0 for λ > Λ0, satisfying
‖v0,λ,0‖∞ < R0.
Moreover, ‖v0,λ,0‖∞ → 0+ as λ→∞.

Proof. The functional associated to Problem (Q0,λ,0) is given by

Iλ(u) =
‖u‖m

m
− λ

∫
Ω

F0(u).

where F0(u) =
∫ u

0
f0(t) dt. It is easy to verify that it satisfies the Mountain Pass geometry.

Actually, by the definition of R0, (2.1) and (2.2), we get

(1− ε0)
tσ0+1

σ0 + 1
≤ F0(t) ≤ (1 + ε0)

tσ0+1

σ0 + 1
,

so that
‖u‖m

m
− λ 1 + ε0

σ0 + 1

∫
Ω

uσ0+1 ≤ Iλ(u) ≤ ‖u‖
m

m
− λ1− ε0

σ0 + 1

∫
Ω

uσ0+1;

since σ0 + 1 > m, the norm dominates near the origin, which then is a minimum point,
while the functional becomes negative in every direction far from the origin.

Finally, since the nonlinearity has a growth at infinity as tσ0 , which is subcritical, it
verifies the well-known Ambrosetti–Rabinowitz condition; then we may apply the Moun-
tain Pass Theorem to obtain a positive solution v0,λ,0 of Problem (Q0,λ,0).

By remark 2.4 we have that v0,λ,0 satisfies the δΩ-property, then by Lemma 2.5 we
obtain that ‖v0,λ,0‖∞ → 0+ as λ→∞.

As a consequence, there exists Λ0 > 0 such that ‖v0,λ,0‖∞ < R0 for every λ > Λ0.
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Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. The proof is by induction, where Lemma 3.1 gives the starting
point and Lemma 2.7 is the induction step.

In fact, by Lemma 3.1 there exists one solution of Problem (Q0,λ,0) satisfying 0 <
‖vλ‖∞ < R0, for any λ > Λ0; then it is also a solution of the Problems (Q1,λ,0) and (Pλ).

Thus, by applying Lemma 2.7 k times, starting with j = 1, we obtain two more
solutions at each step; in view of the estimate (2.11), these two solutions are always
distinct from the previous ones, are also solutions of Problem (Pλ), and the larger one
will serve as vλ when applying again Lemma 2.7. So we obtain a total of 2k + 1 positive
solutions of Problem (Pλ), for λ > Λk. The convergence result also comes from Lemma
2.7

4 The proof of Theorem 1.2

In order to prove Theorem 1.2 we need again at least one solution that allows to apply
Lemma 2.7. In this case, we fist obtain a subsolution, whose existence is guaranteed by
Hypothesis (F5), and then, using Lemma 2.6, we obtain two solutions.

Lemma 4.1. Under Hypotheses (F1), (F2) and (F5), given λ > λ1 there exists ε > 0 such
that εφ1 < R0 and εφ1 is a subsolution for Problem (Q1,λ,τ ) for any τ ≥ 0 and λ > λ.

Proof. In standard way, using (F5), we may find a ε > 0 (as small as desired and depending
only on λ) such that λf1(t) > λ1t

m−1 for any t ∈ (0,max {εφ1}) and any λ > λ; then εφ1

is a subsolution for Problem (Q1,λ,τ ) for any τ ≥ 0 and λ > λ.

Lemma 4.2. Under Hypotheses (F1), (F2), (F3) and (F5), if Ω is convex, there exists
Λ1 such that the Problem (Q1,λ,0) has at least two positive solutions u1,λ,0 and v1,λ,0 for
λ > Λ1, satisfying

0 < ‖εφ1‖∞ ≤ ‖u1,λ,0‖∞ ≤ z1 − δ1,λ/4 < z1 + δ1,λ/4 ≤ ‖v1,λ,0‖∞ < R1 .

Moreover, ‖u1,λ,0‖∞ → z−1 and ‖v1,λ,0‖∞ → z+
1 as λ→∞.

Proof. By Lemma 4.1 we are in the position to apply Lemma 2.6 with j = 1 and the
subsolution u = εφ1.

As a result we get, for every λ > λ and τ ∈ (0, τ ∗1,λ), solutions u1,λ,τ and v1,λ,τ of
(Q1,λ,τ ) satisfying 0 < ‖εφ1‖∞ ≤ ‖u1,λ,τ‖∞ < z1 − δ1,λ/4 < z1 + δ1,λ/4 < ‖v1,λ,τ‖∞

Since Ω is convex, these solutions satisfy the δΩ-property by Remark 2.4.
Then, by reasoning as in the proof of Lemma 2.7 we may take the limit for τ → 0 and

we obtain solutions u1,λ,0 and v1,λ,0 of (Q1,λ,0) satisfying

0 < ‖εφ1‖∞ ≤ ‖u1,λ,0‖∞ ≤ z1 − δ1,λ/4 < z1 + δ1,λ/4 ≤ ‖v1,λ,0‖∞ , (4.1)

which also satisfy the δΩ-property.
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Then we may apply Lemma 2.5. Since ‖u1,λ,0‖∞ cannot tend to zero by (4.1), we
deduce that ‖u1,λ,0‖∞ , ‖v1,λ,0‖∞ → z1, in fact, ‖u1,λ,0‖∞ → z−1 and ‖v1,λ,0‖∞ → z+

1 by
(4.1).

As a consequence, there exists Λ1 such that u1,λ,0, v1,λ,0 < R1 for λ > Λ1.

Now we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. The proof is again by induction, where now the starting point is
given by Lemma 4.2.

In fact, by Lemma 4.2 there exist two distinct solutions of Problem (Q1,λ,0): u1,λ,0,
v1,λ,0, for λ > Λ1, where z1 < ‖v1,λ,0‖∞ < R1; then they are also solutions of the Problems
(Q2,λ,0) and (Pλ).

Thus, as in the proof of Theorem 1.1, we apply the Lemma 2.7 k − 1 times, starting
with j = 2, and we obtain a total of 2k positive solutions of Problem (Pλ), for λ > Λk,
and the convergence result.
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