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Abstract. In this paper we study positive solutions for the Kirchhoff
type equation

−M(x, ‖u‖2)∆u = λf(u)

with Dirichlet boundary conditions in a bounded domain Ω, where ‖·‖
is the norm in H1

0 (Ω) and f,M are suitable functions.
The problem is nonvariational since the nonlocal coefficient M ,

possibly degenerate, depends on the point x ∈ Ω. We show that these
properties of M can produce interesting phenomena, even with simple
homogeneous right hand sides, providing existence, nonexistence, and
multiplicity results, due to the fact that the rate of growth with respect
to u on the left hand side may change in Ω.

Several model examples are given, including one where M takes
the form of the original Kirchhoff coefficient for the elastic string, but
with nonhomogeneous material.
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1. Introduction
Our aim in this paper is to study problems of the form

−M(x, ‖u‖2)∆u = λf(u) in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(1.1)

where Ω ⊆ RN is a bounded smooth domain, ‖·‖ is the norm in H1
0 (Ω), and

f,M are suitable functions.
The main results of the paper are the Theorems 2.6 and 2.7, where we

give conditions for the existence, nonexistence and multiplicity of solutions
for Problem (1.1), in terms of the behavior of the nonlinearity and of the
nonlocal term M . When the nonlinearity is a pure power a more precise
result is given in Theorem 2.9.

The distinguishing property of Problem (1.1) is the presence of the
Kirchhoff type coefficient M , which can also depend on the point x ∈ Ω.
Because of this term, Problem (1.1) is nonlocal and, due to the dependence
on x, it is also non variational, which means that we cannot rely directly on
many techniques used in previous works.
On the other hand, the dependence on x of the term M can produce new
phenomena, even with simple (homogeneous or ever linear) right hand sides,
due to the fact that the rate of growth with respect to u on the left hand side
may change in Ω.

It is also worth mentioning that the most interesting results will be ob-
tained when the nonlocal term M is allowed to be degenerate, that is, to
reach or tend to zero. This situation has been only recently considered in lit-
erature. We remand to Section 2.2 for a further discussion of the bibliography
related to our problem.

In order to put into perspective our results, we may consider the model
problem 

−M(x, ‖u‖2)∆u = λup−1 in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(1.2)

where 1 < p < 2∗ = 2N
N−2 (or any p > 1 if N = 1, 2).

Observe that, when M ≡ 1 (the local case) and p 6= 2, Problem (1.2)
admits a positive solution for every λ > 0. A first consequence of our results
is that this is still true if M is bounded and bounded away from zero (see
Theorem 2.9 case (a)).
Something similar happens when M only depends on s and is homogeneous:
if the differential equation in (1.2) is

− ‖u‖σ−2
∆u = λup−1 , (1.3)

then (see Example 3.1) a positive solution exists for every λ > 0 if either
σ > p or σ < p. In particular, as in the local case σ = 2, the solution is
expected to be small when λ is large and large when λ is small, if p > σ,
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while the opposite happens if p < σ. In this simple example, which is still
variational, this can be seen by applying minimization and Mountain Pass
Theorem, but it will also be a consequence of Theorem 2.9 case (a), see also
Proposition 2.1.

However, Theorem 2.9 also extends this result to more general functions
M , even depending on x, provided their behavior for small and for large
norms compares with the term up−1 in the same qualitative way. Moreover,
Theorem 2.7 considers more general nonlinearities f , in this case comparing
M with the growth of f at infinity or at zero. On the other hand, the cases
(b) and (c) in the Theorems 2.7 and 2.9 show that different situations can
arise, also providing nonexistence and multiplicity results, in particular when
the interaction of M with the nonlinearity is different in different parts of Ω:
see several model problems in Section 3.

A phenomenon similar to the one described above was studied recently
in [MR18]: its authors considered a Dirichlet problem for the quasilinear
equation

−∆p(x)u = λuq−1, (1.4)
where p(x) is a discontinuous function taking the values 2 and p in two com-
plementary subsets of Ω. They were able to prove, under suitable conditions,
that if 2 < q < p < 2∗, then at least two positive solutions exist for al-
most every λ in a set of the form (0,Λ), that is, for small values of λ > 0.
Such a multiplicity result is not usually expected with a homogeneous right
hand side, and is instead typical of the so called concave-convex problems:
for instance, for the equation

−∆u = λuq−1 + up−1 (1.5)

when 1 < q < 2 < p < 2∗. The interest and the novelty of the result in
[MR18] is indeed that it finds such concave-convex behavior, in a situation
where the nonlinearity is homogeneous, so that the multiplicity of solutions is
produced instead by the operator itself, which has a different homogeneity in
different regions. In fact, the condition 2 < q < p means that the nonlinearity
uq−1 in (1.4) has a superlinear behavior with respect to the Laplacian, but a
p-sublinear one with respect to the p-Laplacian.

One of the aims of this paper is to investigate the same kind of concave-
convex behavior, but produced instead by the nonlocal and nonautonomous
termM , that is, to obtain two solutions for small values of the parameter λ in
Problem (1.2), if M is such that the left hand side has a faster (resp. slower)
growth than the right hand side, in different regions of Ω, or at different
values of the norm of the solution: this is actually the behavior obtained in
Theorem 2.9 point(b). A simple model for this situation is the equation

− ‖u‖σ(x)−2
∆u = λup−1 , (1.6)

with σ(x) > p in some region and σ(x) < p in another (see Example 3.2).

The paper is structured as follows. In the next Section 2, we state our
main results for Problem (1.1), while in Section 2.1 we resume the particular
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case of Problem (1.2). These results are proved in Section 4. In Section 2.2 we
present the related bibliography, while in Section 3 we discuss several model
problems.

2. Main results
In this section we state our main results for Problem (1.1).

Throughout the paper we will denote by ‖·‖ the norm in H1
0 (Ω) and by

‖·‖q the norm in Lq(Ω); we will usually omit the indication of the set Ω in
the notation for the space. Also, solutions will always be intended as positive,
even when not explicitly stated. We denote by λ1 > 0 the first eigenvalue
and eigenfunction of the Laplacian in Ω and by ϕ1 > 0 the corresponding
eigenfunction, with the normalization ‖ϕ1‖ = 1.

We will first state the following conditions on the nonlinearity f and its
primitive F (t) =

∫ t
0
f(τ)dτ :

(f1) f : R→ [0,∞) is continuous, f(t) = 0 for t ≤ 0 and there exists t0 > 0
such that f(t) > 0 for t ∈ (0, t0);

(f2) there exist a constant Cf and p < 2∗ such that f(t) ≤ Cf (1 + tp−1) for
t > 0.
For p as in hypothesis (f2), we define the two conjugate exponents{

r = 2∗

2∗−p = N
p+N(1−p/2) ∈

(
2N
N+2 ,∞

)
,

r′ = 2∗

p ∈ (1, 2∗) ,
(2.1)

where if N = 1 one can take r = 1, and if N = 2 one can take any r > 1.
We consider the following conditions on M (below the notation M−1

means the reciprocal 1/M of the real number M). Let A,B ∈ [0,∞] with
A < B:

(M1) M : Ω × (A,B) → [0,∞) and, for every s ∈ (A,B), M(x, s2) > 0 for
almost every x ∈ Ω;

(M2) there exists r̃ > r such that M−1(·, s2) ∈ Lr̃(Ω) for every fixed s ∈
(A,B);

(M3) the map (A,B)→ Lr(Ω) : s 7→M−1(·, s2) is continuous.
We state our first result which deals with existence of solutions for

Problem (1.1).

Proposition 2.1. Assume the conditions (f1), (f2), (M1) and (M2). Then
Problem (1.1) admits a positive solution u ∈ H1

0 (Ω) of norm ‖u‖ = s, for

λ = λs =
s2∫

Ω
M−1(·, s2)f(u)u

, s ∈ (A,B) , (2.2)

where u is a maximizer of the problem

Θs
m := sup

v∈Ss

∫
Ω

m(x)F (v) , Ss =
{
v ∈ H1

0 : ‖v‖ = s
}
, (2.3)
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with m = M−1(·, s2).
In particular, for every s ∈ (A,B), there exists a couple (us, λs) ∈

H1
0 × R with us > 0, λs > 0 and ‖us‖ = s, that satisfies Problem (1.1).

In the following Theorem we give nonexistence results.

Theorem 2.2. Assume the conditions of Proposition 2.1.
(i) Suppose 

f(t)

t
≤ Df for t > 0,

M(x, s2) ≥ δM ≥ 0 for (x, s) ∈ Ω× (A,B),

then then there exists no positive solution of Problem (1.1) for λ <
λ1

Df
δM .

Suppose 
f(t)

t
≥ δf > 0 for t > 0,

M(x, s2) ≤ DM for (x, s) ∈ Ω× (A,B),

then there exists no positive solution of Problem (1.1) for λ >
λ1

δf
DM .

(ii) Suppose that for suitable p0, p∞ ∈ [1, p] and D > 0 it holdsf(t) ≤ D(tp0−1 + tp∞−1) ,∥∥M−1(·, s2)
∥∥
r
≤ Ds2

sp0 + sp∞
,

(2.4)

then there exists Λ > 0 such that Problem (1.1) has no positive solution
for λ ∈ (0,Λ).

We define now, for s∗, p∗ to be specified later, the following two condi-
tions which will play an important role in the behavior of Problem (1.1):

(C+) lim
s→s∗

∫
Ω∗

sp∗−2M−1(x, s2) =∞ for some Ω∗ ⊂⊂ Ω;

(C−) lim
s→s∗

∥∥sp∗−2M−1(·, s2)
∥∥
r

= 0.

In the following two Theorems, by assuming some additional conditions
on f and M , we will be able to control the behavior of the parameter λs as
defined in (2.2), for s near the endpoints A,B. This study will be fundamental
in order to obtain the main results of this work.

Theorem 2.3. Assume the same hypotheses of Proposition 2.1.
Consider couples (λs, us)s∈(A,B) satisfying Problem (1.1) as obtained in Propo-
sition 2.1, and let s→ s∗ = A (or B). Then λs →∞ while ‖us‖ = s→ s∗ in
the following cases:
α) if 0 < s∗ <∞ and (C−) holds true (in this case p∗ is not relevant);
β) if s∗ = 0,
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(fπ0) there exists π0 ≤ p such that lim sup
t→0

f(t)

tπ0−1 <∞

and (C−) holds true with p∗ = π0;
γ) if s∗ =∞ and (C−) holds true with p∗ = p.

Theorem 2.4. Assume the same hypotheses of Proposition 2.1 and the ad-
ditional condition

(f3) There exists δ > 0 such that f(t)t > δF (t) for every t > 0.

Consider couples (λs, us)s∈(A,B) satisfying Problem (1.1) as obtained in Propo-
sition 2.1, and let s → s∗ = A (or B). Then λs → 0 while ‖us‖ = s → s∗ in
the following cases:

α) if 0 < s∗ <∞ and (C+) holds true (in this case p∗ is not relevant);
β) if s∗ = 0,

(fp0) there exists p0 such that lim inf
t→0

F (t)

tp0
> 0

and (C+) holds true with p∗ = p0;
γ) if s∗ =∞,

(fp∞) there exists p∞ such that lim inf
s→∞

F (t)

tp∞
> 0

and (C+) holds true with p∗ = p∞.

In order to obtain a more precise picture of the solvability of Problem
(1.1), a key ingredient is to prove that equation (2.2) defines a continuous
function λs. Unfortunately this continuity cannot be always guaranteed. We
have the following result.

Proposition 2.5. Assume the conditions of Proposition 2.1.

• If also condition (M3) holds true, then Θs
M−1(·,s2) defined in (2.3) is a

continuous function of s in (A,B).
• If moreover one of the following two conditions holds:
(Hpp) f(t) = tp−1 for t > 0,
(Hdc) (i) Condition (M2) holds with r̃ =∞,

(ii) Condition (f2) holds with p < 2,
(iii) f(t)/t is strictly decreasing for t > 0,

then λs defined in (2.2) is a continuous function of s in (A,B).

We can finally state the main results about Problem (1.1). In the general
case, where we do not have the continuity of λs, we can only deduce from
the Theorems 2.3 and 2.4 the existence of solutions with the parameter λ
arbitrarily small or arbitrarily large, but we cannot exclude that holes exist
in the set of such values.

Theorem 2.6. Assume the conditions of Proposition 2.1.

• If one of the three conditions in Theorem 2.3 holds at A (resp. at B),
then at least one positive solution of Problem (1.1) exists for an infinite
number of, arbitrarily large, values of λ.
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• If hypothesis (f3) holds true and one of the three conditions in Theorem
2.4 holds at A (resp. at B), then at least one positive solution of Problem
(1.1) exists for an infinite number of, arbitrarily small, values of λ.

The claimed solutions have norm arbitrarily near to A (resp. to B).

On the other hand, when λs is continuous, we are able to give a much
more clear picture of the solvability of Problem (1.1).

Theorem 2.7. Assume the conditions of Proposition 2.1 plus (M3), and
moreover assume that either (Hpp) or (Hdc) holds true. Then the following
holds:
a) Problem (1.1) has at least one positive solution for every λ > 0 provided

(f3) holds, one of the three conditions in Theorem 2.4 holds at A and
one of the three conditions in Theorem 2.3 holds at B, or vice versa;

b) there exists Λ > 0 such that Problem (1.1) has at least two positive
solutions for every λ ∈ (0,Λ), provided (f3) holds true and, at both A
and B, one of the three conditions in Theorem 2.4 holds;

c) there exist Λ ≥ Λ > 0 such that Problem (1.1) has at least two posi-
tive solutions for every λ > Λ and no positive solution for λ ∈ (0,Λ),
provided, at both A and B, one of the three conditions in Theorem 2.3
holds.
When (Hdc) holds, then the cases (b) and (c) can be improved as follows:

(b*) Problem (1.1) has at least two positive solutions for every λ ∈ (0,Λ)
and no positive solution for λ > Λ;

(c*) Problem (1.1) has at least two positive solutions for every λ > Λ and
no positive solution for λ ∈ (0,Λ).

Remark 2.8. We collect here several remarks on the hypotheses and the
results just stated.
1. The hypotheses (f1) and (f2) simply state that f is nonnegative but non

trivial, continuous and has subcritical growth. Hypothesis (f3), which
is used in Theorem 2.4 in order to prove that λs → 0 under condition
(C+), is rather stronger, in particular it implies that f(t) > 0 for t > 0.
It is required in order to be able to estimate from above the value of λs
in terms of the value of the critical level of problem (2.3).

On the other hand, the conditions (fp0)-(fπ0)-(fp∞) state that f
can be estimated by powers, at zero or at infinity, from below or from
above. Such powers are then compared with the growth of M , via the
conditions (C+)-(C−).

2. Models of coefficientsM satisfying in different ways the conditions (C+)
or (C−) are given in Section 3. A remarkable example of a situation
where the three behaviors described in Theorem 2.7 may arise is de-
scribed in Proposition 3.5.

The Theorems 2.6 and 2.7 show the importance of the function
sp∗−2M−1(x, s2) in order to have a picture of the behavior of the solu-
tions of Problem (1.1) and of the corresponding values of the parameter
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λ, where p∗ is taken as π0, p, p0, p∞ from the hypotheses (fp0)-(f2)-
(fπ0)-(fp∞), or is simply p when f(t) = tp−1. In particular, if A = 0 or
B =∞, the behavior of M needs to be compared with that of f .

It is worth to remark that the two conditions (C+) and (C−) are
of different nature: the condition (C+) is local: it would be satisfied for
instance if s2−p∗M(x, s2) goes to zero only in some set of positive mea-
sure (see also Remark 4.4 for a possible weakening of this condition). On
the other hand, the condition (C−) imposes a much stronger condition,
actually it implies the global property that, almost everywhere in Ω,
s2−p∗M(x, s2) cannot remain bounded.

3. The continuity result in Proposition 2.5, which is fundamental for the
proof of the main Theorem 2.7, is obtained in tho steps: the continuity
of the critical level Θs

M−1(·,s2) defined in (2.3) arises naturally from its
variational characterization, once thatM is supposed to depend contin-
uously on s in a suitable sense (condition (M3)).

The continuity of λs is then an immediate consequence of the con-
tinuity of the critical level when f is a pure power, actually in this case
pF (t) = f(t)t = tp and then the integrals in (2.2) and (2.3) are directly
related.

When f is not a pure power, instead, the critical level (2.3) and
the value of λs in (2.2) are not easily connected anymore. In general,
λs could take different values for those s for which more maximizers of
problem (2.3) exist, and it may not be possible to define it as a continu-
ous function at such s. The fact that (2.2) actually defines a continuous
function is then obtained only under further conditions, which allow
to prove that the maximization problem (2.3) has a unique maximizer
(see Lemma 4.5). Such conditions are those stated in (Hdc), which are
known to be sufficient in order to have a unique solution of the Dirichlet
problem for the equation −∆u = m(x)f(u): see [BO86; DS87].

4. Nonexistence of positive solutions with the Kirchhoff term is usually
more difficult to obtain than in the local case. For this reason we were not
able to obtain, in general, the typical complete concave-convex behavior
where there is a precise value of the parameter λ that divides existence
from nonexistence. The results in Theorem 2.2 are obtained by the usual
technique of either testing the equation with the first eigenfunction of
the Laplacian or with the solution itself and then estimating with Hölder
and Sobolev inequalities, in order to find a necessary condition (see also
Remark 4.3 for a possible improvements of the conditions obtained).

Further nonexistence results are obtained indirectly when it is pos-
sible to assert that solutions of certain problems are unique: see Theorem
2.7 points (b*,c*) and their proof.

It is worth to observe that a special case of point (i) in Theorem
2.2 is when f(u) = u, that is, Problem (1.2) with p = 2, for which one
gets the necessary condition λ1δM ≤ λ ≤ λ1DM .

/
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2.1. The case of the pure power nonlinearity
In the case of Problem (1.2), where f is simply a pure power, the results de-
scribed above take an easier form. Actually the function λs is always contin-
uous under the hypotheses of Proposition 2.1 plus (M3) (see Proposition 2.5
and also Remark 2.8 at point 3). Moreover, the conditions (f1)-(f2)-(f3) hold
true, and also the conditions (fπ0)-(fp0)-(fp∞) hold with π0 = p0 = p∞ = p.

We then have the following version of Theorem (2.7).

Theorem 2.9. Assume conditions (M1), (M2) and (M3) and set p∗ = p for
the conditions (C+) and (C−). Then the following holds:
a) Problem (1.2) has at least one positive solution for every λ > 0 provided{

(C+) holds with s∗ = A,

(C−) holds with s∗ = B,
(2.5)

or vice versa;
b) there exists Λ > 0 such that Problem (1.2) has at least two positive

solutions for every λ ∈ (0,Λ) provided

(C+) holds with s∗ = A and with s∗ = B; (2.6)

c) there exists Λ ≥ Λ > 0 such that Problem (1.2) has at least two posi-
tive solutions for every λ > Λ and no positive solution for λ ∈ (0,Λ),
provided

(C−) holds with s∗ = A and with s∗ = B. (2.7)

Moreover, if p < 2, then also (Hdc) holds true and then the more precise
results in (b*, c*) of Theorem 2.7 hold.

2.2. Further remarks and related bibliography
As remarked in the Introduction, the main feature of the Problems (1.1) and
(1.2) is the presence of the term M

(
x, ‖u‖2

)
, which is said to be nonlocal,

since it depends not only on the solution at the point in Ω where the equation
is evaluated, but on the Sobolev norm of the whole solution. Such problems
are usually called of Kirchhoff type, as they are generalizations of the (sta-
tionary) Kirchhoff equation, originally proposed in [Kir83] as an improvement
of the vibrating string equation, which takes into account the variation in the
tension of the string due to the variation of its length with respect to the un-
strained position. In the Kirchhoff case, the proposed function M takes the
form M(x, s2) = M(s2) = a+ bs2 with a, b > 0.

In addition, in this paper the function M can also vary with x ∈ Ω,
which is a situation scarcely considered in literature, and has the consequence
that the problem is not variational any more, that is, there exists no func-
tional whose critical points are the solutions of (1.1) or (1.2). This fact was
pointed out in [Fig+14], where in particular it was considered the case with
M(x, s2) = a(x) + b(x)s2, which was motivated as representing, in dimension
1, the Kirchhoff vibrating string with nonhomogeneous physical properties.
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We will further discuss this problem in Section 3.1, where we also obtain new
results: see Proposition 3.5.

Many other physical phenomena can be modeled through nonlocal equa-
tions similar to (1.1) (see examples in [Vil97; DH09]), and interesting mathe-
matical questions also arise. For more recent literature about such Kirchhoff
type problems we cite the works [AC01; ACM05; Ma05; CF06; ZP06; CP11;
Ane11; CWL12; AC15; TC16; SCT16; AA17; AA16; SJS18; FS18; IM18;
IM20; ASJS].

In the vast majority of the works about Kirchhoff type problems, the
nondegeneracy condition M ≥ δ > 0 is assumed. However, most recently,
the interest has grown in investigating the case in which M is a degenerate
function, that is, when M is not required to be bounded from below by a
positive constant: see [CP11; SCT16; AA16; SJS18; IM20; FMS21; ASJS].
Actually, this situation is both challenging from a mathematical point of
view, and can lead to behaviors that do not arise in the nondegenerate case.
Indeed, the conditions in Theorem 2.9 point (b), under which we obtain the
result of two solutions for Problem (1.2) with small λ > 0, could never be
satisfied under the nondegeneracy condition M ≥ δ > 0.

Degeneracy ofM may happen in different forms: in [SCT16] the original
Kirchhoff model was considered with the parameter a = 0, that is, M(s2) =
bs2 with b > 0. More general terms with M(0) = 0 were considered for
instance in [CP11; AA16; IM20], while [AA17; FMS21] also considered the
case where M(s2) → ∞ as s → ∞. Finally, in [SJS18; ASJS] are considered
cases where M has zeros at positive values of ‖u‖. Our results apply to
each one of these kinds of degeneration, with the additional feature that the
degeneracy may be limited to some subset of Ω (see the model problems in
Section 3).

We conclude this bibliographic introduction by citing some of the most
important works related with the classical concave-convex problems like (1.5)
or its generalizations, which have been intensively studied since the works
[Lio82; GAPA91; BEP95; ABC94]. In particular, it seems worth to mention
the papers [dGU03; dGU06; dGU09], where it was shown, in different con-
texts, that the concave and convex behavior of the nonlinearity in equation
(1.5) could be assumed to hold only on some small set, in order to achieve the
result of existence of at least two solutions for small values of the parameter
that measure the magnitude of the nonlinearity. This phenomenon closely
relates with point (b) in Theorem 2.7, where we see that it is enough that
s2−p∗M(x, s2) goes to zero in two small sets, one as s → A and another as
s→ B, in order to obtain this kind of behavior (see also Example 3.2).

3. Model problems
In this section we present some model problems with f(t) = tp−1, that fit in
the different situations described in Theorem 2.9.

Let us first consider cases where M(x, s2) > 0 in Ω× (0,∞).
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Example 3.1. Autonomous coefficient M = M(s2).
If M does not depend on x ∈ Ω, then we see form Theorem 2.9 that the
behavior of Problem (1.2) depends on the limits at zero and at ∞ of the
single variable function s2−pM(s2).
• A solution exists for every λ > 0 provided

lim
s→0

s2−pM(s2) = 0 and lim
s→∞

s2−pM(s2) =∞

or vice-versa: for instance, if M(s2) = sσ−2 with σ 6= p, as in equation
(1.3). Another example is the original Kirchhoff term M(s2) = a+ bs2,
a, b > 0 with p ∈ (1, 2) or, for dimensions N = 1, 2 or 3, with p ∈ (4, 2∗).
This last case was already contained in [ZP06].
• Two solutions exist for λ > 0 small enough provided

lim
s→0

s2−pM(s2) = lim
s→∞

s2−pM(s2) = 0 .

A model is

M(s2) =
1

s2−σ + s2−q with σ > p > q. (3.1)

Observe that in the linear case p = 2, this M is degenerate at both 0
and ∞.
• By point (c) in Theorem 2.9, two solutions exist for λ > 0 large enough

and no solution for λ small enough, provided

lim
s→0

s2−pM(s2) = lim
s→∞

s2−pM(s2) =∞ :

for instance taking

M(s2) = sσ−2 + sq−2 with σ < p < q .

This model includes the case M(s2) = 1 + s2 with p ∈ (2, 4), where M
takes again the form of the original Kirchhoff term.

/

Example 3.2. Two-regions M .
A simple but significant choice of the coefficient M , depending on x, is to
choose two or more independent behaviors in complementary subsets of Ω:
let Ω = ΩK

∐
ΩH , with both subsets of positive measure and set

M(x, s2) =

{
K(s2) , for x ∈ ΩK ,

H(s2) , for x ∈ ΩH .
(3.2)

Equation (1.6) fits in this model, if K,H are the homogeneous functions
K(s2) = sσK−2, H(s2) = sσH−2. We then have the following situation.
• If p < min {σK , σH} or p > max {σK , σH} then case (a) in Theorem 2.9

applies and there exists at least one solution for every λ > 0.
• if σK < p < σH then condition (C+) is satisfied at zero and at infinity

and then case (b) of Theorem 2.9 applies, We then have the concave-
convex behavior where there exist at least two solutions for λ > 0 below
a certain value Λ. If moreover p < 2 then also no solution exists for
λ > Λ.
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Observe that the latter result of two solutions for λ > 0 small would be
achieved even if the power-like behavior of M takes place only in two small
sets, for instance if

M(x, s2) =


sσK−2 , x ∈ Ω̂K ,

sσH−2 , x ∈ Ω̂H ,

1 , x ∈ Ω \
(

Ω̂H ∪ Ω̂K

)
,

(3.3)

with Ω̂K
∐

Ω̂H ⊂ Ω. Case (b) applies also if we take in (3.2) K ≡ 1 and H
as the M in (3.1).

Again we remark that in order to have two solutions for λ > 0 small,
the function M needs to have some degeneracy, in particular when p = 2 it
cannot be bounded away from zero neither as s→ 0 nor as s→∞. However,
the last model (3.3) shows that the degeneracy in M can occur only locally,
in a way similar to the local concavity and convexity conditions assumed in
[dGU06]. /

Example 3.3. Other kinds of dependence on x.
We discuss now two models with the aim to compare the conditions (C+)
and (C−). In these modelsM is degenerate, but the conditions (C+) or (C−)
hold depending on how strong the degeneration is. In this example we will
only consider s→ 0, that is, we are interested in solutions of small norm, but
similar situations can be constructed when s→∞.

Let us suppose 0 ∈ Ω and, for the first model,

M(x, s2) = |x|α + sq , with α > 0, q > 0. (3.4)

In this case
M−1(x, s2) =

1

|x|α + sq
→ x−α

monotonically, then by Fatou’s Lemma,∥∥M−1(x, s2)
∥∥
ρ
→

{
‖x−α‖ρ if x−α ∈ Lρ ,
+∞ otherwise,

in particular, by straightforward computations, one can estimate the norm∥∥M−1(x, s2)
∥∥
ρ

=
[∫

Ω

(
1

xα+sq

)ρ]1/ρ
as

Csq(
N
αρ−1) if ρα > N ,

C| ln s| if ρα = N ,
C if ρα < N ,

as s→ 0.

We take for this model p = q > 2: then sp−2M−1(x, s2) → 0 except
at the origin, but the situation changes depending on the strength of the
singularity:
• if α ≤ N

r then sp−2
∥∥M−1(x, s2)

∥∥
r
→ 0, so by Theorem 2.3 λs →∞ as

s→ 0;
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• if α > pN
2 then

sp−2

∫
Ω∗

M−1(x, s2) ' Csp−2+pN/α−p = CspN/α−2 →∞

provided Ω∗ is a small ball centered at 0, and so now by Theorem 2.4
λs → 0 as s→ 0;
• for the intermediate cases N

r < α ≤ pN
2 neither (C+) nor (C−) is

satisfied at zero, so that the behavior of λs as s→ 0 should be assessed
by a deeper analysis of (2.2).
In the second model we show that the situation changes completely if

|x| in (3.4) is replaced by the distance from x to a small ball B0 centered in
0:

M(x, s2) = d(x,B0)α + sq . (3.5)
In this case

∫
B0
sp−2M−1(x, s2) = |B0|sp−2s−q and

∥∥sp−2M−1(x, s2)
∥∥
r
≤

|Ω|1/rsp−2s−q, so that the Theorems 2.3-2.4 now imply that λs → ∞ if
q < p − 2 while λs → 0 if q > p − 2. In particular, when p = q > 2, as we
assumed for (3.4), λs → 0 for any α > 0. /

Another kind of problems that can be considered are those whereM has
multiple zeros. Zeros in the nonlinearity are known to produce multiplicity of
solutions, see for instance [Hes81; ILM17]. In a similar way, also zeros in the
nonlocal term M have been shown to have a similar effect. In particular we
cite [SJS18] and [ASJS], where two solutions are found for every bump of M ,
with a nonlinearity which also has a zero. A similar effect was also seen in
[GSJ19], with a different kind of nonlocal term, depending on the Lebesgue
norm of the solution.

Example 3.4. M with zeros.
From point (b) in Theorem 2.9 we can see that if M = M(s2) is continuous
and satisfies M(A) = M(B) = 0 with 0 < A < B, then two solutions exist
for Problem (1.2) for λ > 0 small enough, having norm between A and B.
From this, it follows that if M has multiple zeros then a couple of solutions
is obtained for each bump of M .

This can be generalized to the case whereM depends also on x ∈ Ω. For
instance, if in the model (3.2) we takeK ≡ 1 and H(s2) = sin(πs), then (C+)
holds at every zero of H, so an arbitrarily large number of solutions exists
for λ > 0 small enough, in fact, there exist Λk > 0, k ∈ N such that at least
2k solutions exist for λ ∈ (0,Λk), with the additional information that there
is a couple of solutions having norm in each interval (j − 1, j) : j = 1, ..., k.

However, the multiple zeros do not have to be in a fixed set as in the last
example: for instance, consider a sequence of disjoint sets {Ωk ⊂ Ω}k=0,1,...,
each of positive measure, and let

M(x, s2) = (s− k)2 for x ∈ Ωk, k = 0, 1, ... ;

then as above (C+) holds at every s∗ = k and an arbitrarily large number of
solutions exists for λ > 0 small enough.
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Finally, it can be deduced from Proposition 2.1 and Theorem 2.4, that
the two solutions obtained whose norm lies between two consecutive zeros A
and B, have norms which converge to these two points as the parameter λ
tends to zero: a phenomenon which was already observed in [ASJS]. /

3.1. Application to nonlinear Kirchhoff equation with nonhomoge-
neous material

As remarked in the introduction, the Problem (1.2) was studied in [Fig+14]
in the linear and sublinear cases p ≤ 2, but only considering M in the form
M(x, s2) = a(x) + b(x)s2 with continuous a, b ≥ 0 and with a ≥ a0 > 0.
The problem was motivated as a model for small transversal vibrations of
an elastic string with fixed ends, which is composed by a nonhomogeneous
material. Actually, the term M considered is analogous to the original one
proposed by Kirchhoff [Kir83], but with the added dependence on the point
x.

For p = 2 a unique positive solution was obtained if and only if, roughly
speaking, λ lies between the eigenvalues of two asymptotic problems. In par-
ticular, the lower bound corresponds to the asymptotic problem in zero and
the upper bound to that at infinity: this upper bound turns out to be infinity
if also b ≥ b0 > 0, finite if b ≡ 0 in a suitable set. In the sublinear case
p ∈ (1, 2) instead, they obtained a unique positive solution for every λ > 0,
in fact, a continuum of positive solutions emanates from (λ, u) = (0, 0) and
has unbounded projection on the positive λ axis.

Both existence results can also be deduced from Theorem 2.9 and Propo-
sition 2.1. Uniqueness is a consequence of the uniqueness for the Dirichlet
problem for −∆u = m(x)up−1 when p < 2 (see [DS87]), the simplicity of the
first eigenvalue of the Laplacian and the monotonicity of M with respect to
s. However, our results allow to consider also more general nonlinearities f ,
the superlinear subcritic pure power case p ∈ (2, 2∗), and also to avoid the
nondegeneracy condition a ≥ a0 > 0: we will only need to assume that M
does not degenerate completely in some region, that is, we assume

(Mab) there exists c0 > 0 such that a(x) + b(x) ≥ c0 in Ω.

We summarize in the following proposition what can be said, using our
results, about the problem from [Fig+14].

Proposition 3.5. Consider Problem (1.2) with M(x, s2) = a(x) + b(x)s2,
a, b ∈ C

(
Ω
)
(then bounded) and a, b ≥ 0. Moreover assume condition (Mab).

• If p ∈ (1, 2) then at least one positive solution exists for every λ > 0, in
fact, the function λs defined in (2.2) goes from 0 to +∞ as s increases
in (0,∞).
• If p ∈ (4, 2∗) then at least one positive solution exists for every λ > 0,
in fact, the function λs goes from +∞ to 0 as s increases in (0,∞).
• If p ∈ (2, 4) then

– there exist at least two positive solutions for λ > 0 small enough if
both a ≡ 0 and b ≡ 0 in (distinct) sets of positive measure;
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– there exist at least two positive solutions for λ > 0 large enough
and no solution for λ > 0 small, if both a(x) ≥ a0 > 0 and b(x) ≥
b0 > 0 in Ω;

– there exists at least one positive solution for every λ > 0 if a ≡ 0
in a sets of positive measure and b(x) ≥ b0 > 0 in Ω, or if b ≡ 0
in a sets of positive measure and a(x) ≥ a0 > 0 in Ω.

Remark 3.6. Of course, the cases p ≥ 4 are only possible in dimension
N = 1, 2, 3. /

Proof. In view of Proposition 2.1 and Theorem 2.9, all we need to do is to
compute the limits of λs, by studying the behavior at zero and at infinity of

sp−2M−1(x, s2) =
sp−2

a(x) + b(x)s2
,

in order to check the conditions (C+), (C−).
Let a+ b ≤ C. We have the following estimates:

for s ≤ 1{
sp−2/C ≤ sp−2M−1(x, s2) ≤ sp−2/a0 where a(x) > a0 > 0,
sp−4/C ≤ sp−2M−1(x, s2) ≤ sp−4/c0 where a(x) = 0;

for s ≥ 1{
sp−4/C ≤ sp−2M−1(x, s2) ≤ sp−4/b0 where b(x) > b0 > 0,
sp−2/C ≤ sp−2M−1(x, s2) ≤ sp−2/c0 where b(x) = 0.

As a consequence, by the Theorems 2.3 and 2.4,

lim
s→0

λs =


∞

{
if a(x) ≥ a0 > 0 in Ω and p > 2,
if p > 4 ,

0

{
if p < 2,
if a ≡ 0 in a set of positive measure and p < 4 ,

lim
s→∞

λs =


∞

{
if b(x) ≥ b0 > 0 in Ω and p < 4,
if p < 2 ,

0

{
if p > 4,
if b ≡ 0 in a set of positive measure and p > 2 .

�

4. Proofs of the results
In this section we prove the results stated in Section 2. Our method is related
to the one used in [Fig+14] for the linear right hand side, whose argument
is based on eigenvalue problems and their characterization as constrained
minimizations or maximizations: in fact, we will exploit rescaling and maxi-
mization on spheres in order to obtain positive solutions with a given norm.
Maximization on spheres was exploited also in [SJS18; ASJS], dealing with
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the Kirchhoff degenerate problem, in order to obtain suitable estimates that
were then used in the construction of a minimum and a Mountain Pass ge-
ometry.

In the following, we will use the letters C, c to denote generic positive
constants which may vary from line to line. In order to simplify the notation
we will often substitute ms(x) := M−1(x, s2) throughout the proofs.

We first need the following technical Lemma.

Lemma 4.1. Let
– G be a continuous function satisfying |G(t)| ≤ C(1 + |t|p) with p < 2∗,
– un ⇀ w in H1

0 (Ω),
– mn → m in Lr(Ω) with m ∈ Lr̃(Ω).

Then, up to a subsequence, mnG(un)→ mG(w) in L1(Ω).

Proof. We have that un is bounded in H1
0 and L2∗ and, up to a subsequence,

un → w in Lq for q < 2∗. Moreover, by the theory of Nemytskii operators,
G(un)→ G(w) in Lq/p.

Then we estimate

|mnG(un)−mG(w)| ≤ |G(un)−G(w)| |m|+ |G(un)| |mn −m| .

If r̃ ′ is the dual of r̃, then r̃ ′ < r′ = 2∗/p and so G(un)→ G(w) in Lr̃
′
and

since m ∈ Lr̃ we have that the first term of the estimate goes to zero in L1.
The same is true for the second term, since G(un) is bounded in Lr

′
while

|mn −m| → 0 in Lr. �

The next step will be to prove Proposition 2.1, where the couples (λ, u)
satisfying Problem (1.1) are obtained.

Proof of Proposition 2.1. For a fixed s ∈ (A,B), set ms(x) := M−1(x, s2)
and consider the maximization Problem (2.3), on the sphere Ss. By (f2) and
(M2), the functional

∫
Ω
ms(x)F (u) is of class C1 in H1

0 and∫
Ω

ms(x)F (u) ≤ ‖ms‖r̃ C(1 + ‖u‖pp r̃ ′) ,

where as before p r̃ ′ < 2∗. Then by standard arguments (see below) one
obtains that Θs

ms > 0, is finite and attained by a positive function w ∈ Ss,
which satisfies, in weak sense,{

−∆w = `ms(x)f(w) in Ω ,

w = 0 on ∂Ω ,
(4.1)

with ` = s2/
∫

Ω
msf(w)w. As a consequence, ‖w‖ = s and w also satisfies

−M(x, ‖w‖2)∆w = ` f(w) ,

and then it is a solution of (1.1) with norm s and λs := s2/
∫

Ω
M−1(·, s2)f(w)w,

as claimed.
For sake of completeness, we resume here the steps used in the above

argument. Let un be a maximizing sequence for (2.3), which we may assume
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to be of nonnegative functions since it may be substituted by |un| in view of
(f1); then up to a subsequence un ⇀ w in H1

0 , where ‖w‖ ≤ s and, in view
of Lemma 4.1,

Θs
ms = lim

n→∞

∫
Ω

msF (un) =

∫
Ω

msF (w) > 0 .

This implies that w 6≡ 0, moreover if ‖w‖ < s then w′ := sw/ ‖w‖ ∈ Ss and∫
Ω
msF (w′) >

∫
Ω
msF (w) = Θs

ms because F is nondecreasing and strictly
increasing at least near zero by (f1), giving a contradiction. As a consequence
w ∈ Ss attains the maximum in (2.3) and then by Lagrange’s multipliers rule
there exists µ ∈ R such that

µ

∫
Ω

∇w∇ϕ =

∫
Ω

msf(w)ϕ ∀ϕ ∈ H1
0 ,

where inserting ϕ = w one gets µs2 =
∫

Ω
msf(w)w > 0, proving (4.1). Finally

w > 0 by the strong maximum principle in view of (f1). �

Remark 4.2. The condition (f1) guarantees that the integral in (2.3) is
positive for every nontrivial v ≥ 0. If one admits that f can be zero up to
some positive value then, for N ≥ 2, there still always exists some v ∈ Ss for
which the integral is positive and Proposition 2.1 still holds true. If N = 1
then for small s the integral in (2.3) is zero on the whole sphere Ss, but
Proposition 2.1 still holds true for larger values of s. /

We give now the proof of the nonexistence results.

Proof of Theorem 2.2. If u is a positive solution of Problem (1.1), then for
any ϕ ∈ H1

0 , ∫
Ω

∇u∇ϕ =

∫
Ω

M−1(x, ‖u‖2)λf(u)ϕ . (4.2)

If in (4.2) we take ϕ = ϕ1 we get∫
Ω

∇u∇ϕ1 = λ1

∫
Ω

uϕ1 =

∫
Ω

M−1(x, ‖u‖2)λf(u)ϕ1 ,

from which we get∫
Ω

[
M−1(x, ‖u‖2)λ

f(u)

u
− λ1

]
uϕ1 = 0 .

From this we can see that no positive solution can exist ifM−1(x, s2)λ f(t)
t −λ1

is everywhere positive (resp. negative), so we get the necessary conditions
λ1

δM
Df
≤ λ ≤ λ1

DM
δf

that give claim (i).
If in (4.2) we take ϕ = u and then we use condition (2.4), Hölder and

Sobolev inequalities, we get

‖u‖2 =

∫
Ω

M−1(x, ‖u‖2)λf(u)u ≤

≤ CDλ
∥∥∥M−1(x, ‖u‖2)

∥∥∥
r

(‖u‖p0 + ‖u‖p∞) ≤ CD2λ ‖u‖2 ,
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which gives the necessary condition λ ≥ 1
CD2 for the existence of a solution.

�

Remark 4.3. The claims in (i) of Theorem 2.2 can be improved if instead of
λ1, ϕ1 one uses the eigencouple λ1,m, ϕ1,m of the weighted problem −∆u =
λmu with a suitable weight m. In this case the necessary condition becomes
λ1,m

inf(Mm)
Df

≤ λ ≤ λ1,m
sup(Mm)

δf
. /

We prove now the two theorems that study the behavior of λs at the
endpoints A,B.

Proof of Theorem 2.3. For any u ∈ H1
0 with u > 0 and ‖u‖ = s ∈ (A,B),

using (f2)-(M2) one can estimate∫
Ω

msf(u)u ≤
∫

Ω

msC(u+up) ≤ ‖ms‖r C (‖u‖2∗ + ‖u‖p2∗) ≤ C ‖ms‖r (s+sp).

(4.3)
As a consequence, from (2.2), λs can be estimated as

λs ≥
c s2

(s+ sp) ‖M−1(·, s2)‖r
;

from this inequality the claims α) and γ) follow.
For case β) observe that by joining (f2) with (fπ0) it is possible to

obtain that f(u)u ≤ C(uπ0 + up), then instead of (4.3) we get∫
Ω

msf(u)u ≤ C ‖ms‖r (sπ0 + sp) ;

since π0 ≤ p, for s small

λs ≥
c s2

sπ0 ‖M−1(·, s2)‖r

and then we obtain point β). �

Proof of Theorem 2.4. If us is a maximizer of problem (2.3) with weight ms,
we can estimate, by (f3),

∫
Ω

msf(us)us ≥ δ
∫

Ω

msF (us) ≥ δ
∫

Ω

msF (sϕ1) ≥ δ
(

inf
Ω∗
F (sϕ1)

)∫
Ω∗

ms .

Since F is positive and nondecreasing, if s→ s∗ ∈ (0,∞), then infΩ∗ F (sϕ1)
stays bounded away from zero.
As a consequence in case α) we have

∫
Ω
M−1(·, s2)f(us)us →∞ and then by

(2.2), λs → 0.



Concave-convex behavior for a nonautonomous Kirchhoff equation 19

If s→ 0, since ϕ1 ∈ L∞, we can estimate, by (fp0), F (sϕ1) ≥ Csp0ϕp01

for s small; with this, proceeding as above, we have

λ−1
s = s−2

∫
Ω

msf(us)us ≥ s−2δ

∫
Ω

msF (sϕ1) ≥ Cδsp0−2

∫
Ω

msϕ
p0
1 ≥

≥ Cδ
(

inf
Ω∗
ϕp01

)[
sp0−2

∫
Ω∗

ms

]
→∞ ,

proving case β).
Finally, by (fp∞), we can find C, t0 > 0 such that F (t) ≥ Ctp∞ for

every t ≥ t0. For s large enough sϕ1 > t0 in Ω∗, then we may estimate as
above

λ−1
s ≥ s−2δ

∫
Ω∗

msF (sϕ1) ≥ Cδsp∞−2

∫
Ω∗

msϕ
p∞
1 ≥

≥ Cδ
(

inf
Ω∗
ϕp∞1

)[
sp∞−2

∫
Ω∗

ms

]
→∞

and point γ) then follows. �

Remark 4.4. When f(t) = tp−1, the condition (C+) could also be weakened,
in fact, one can see from the proof above that it would be enough to assume
that, for some ϕ ∈ H1

0 , sp−2
∫

Ω
M−1(x, s2)ϕp →∞. For instance, this weaker

condition would be satisfied if there exist sets Ωs, may be converging to the
boundary, then not contained in any Ω∗ ⊂⊂ Ω, but such that one still has∫

Ωs
M−1(x, s2)sp−2ϕp →∞.
On the other hand, a simple sufficient condition for (C+) is that, in

some set Ω̃ of positive measure, sp∗−2M−1(x, s2) → ∞ uniformly (we may
suppose Ω̃ ⊂⊂ Ω). Actually in this case∫

Ω̃

sp∗−2M−1(x, s2) ≥ sp∗−2

[
inf
x∈Ω̃

M−1(x, s2)

]
|Ω̃| → ∞ .

/

In order to prove the continuity results in Proposition 2.5, we first need
the following Lemma, which is based on unicity results from [BO86; DS87].

Lemma 4.5. Assume the conditions of Proposition 2.1 plus condition (Hdc).
Then for a given s ∈ (A,B), the maximization problem (2.3) admits exactly
one maximizer, which is the unique positive solution of{

−∆u = λmsf(u) in Ω ,

u = 0 on ∂Ω ,
(4.4)

with λ = λs from (2.2). Moreover no positive solution of norm s exists for
(4.4) with λ 6= λs.

Proof. Observe that if f(t)/t is strictly decreasing then

2F (t) > f(t)t for t > 0 . (4.5)
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Actually for 0 < τ < t we have f(t)
t < f(τ)

τ , then

F (t) =

∫ t

0

f(τ)dτ >

∫ t

0

f(t)

t
τdτ =

f(t)

t

t2

2
.

By (Hdc) and the results in [BO86; DS87], the problem (4.4) admits a
unique positive solution for a given λ > 0.

Consider now the functional (with parameter λ)

Jλ(u) =
1

2

∫
Ω

|∇u|2 − λ
∫

Ω

msF (u) ,

which is well defined by (M2)-(f1)-(f2), moreover using (Hdc)-(ii) we have
Jλ(u) ≥ 1

2 ‖u‖
2 − λ ‖ms‖r C(1 + ‖u‖p), where p < 2 and then Jλ is coercive,

for every λ > 0.
Let u be a maximizers of (2.3), then by Proposition 2.1 it is a positive

solution of (4.4) for λ = λu. Let also, for sake of contradiction, w ∈ Ss,
w 6= u, be a positive solution of (4.4) for some λ = λw, where λw 6= λu by
the unicity of solutions. Then we have

‖u‖ = ‖w‖ = s ,

∫
Ω

msF (u) ≥
∫

Ω

msF (w) , (4.6)

and testing (4.4) with u and w

λu =
s2∫

Ω
msf(u)u

, λw =
s2∫

Ω
msf(w)w

. (4.7)

Then by (4.5)

Jλu(u) =
1

2

∫
Ω

|∇u|2 − λu
∫

Ω

msF (u) = s2

(
1

2
−
∫

Ω
msF (u)∫

Ω
msf(u)u

)
< 0

and by the same computation also Jλw(w) < 0. This means that the global
minima of both functionals are nontrivial, then global minima are positive
solutions of (4.4) with λ = λu (resp. λ = λw). Since only one of each can
exist, the minimum of Jλu must be u and the minimum of Jλw is w. However,
by (4.6), Jλw(w) ≥ Jλw(u), which contradicts that w is the unique global
minimizer of Jλw .

We have thus proved that (4.4) has a unique solution of norm s, for a
unique value of λ. Then they correspond to the maximizer of (2.3) and the
corresponding λs from (2.2). This also means that the maximizer of (2.3) is
unique. �

We can now prove the result on the continuity of the critical level (2.3)
and of the function λs.

Proof of Proposition 2.5. The continuity of Θs
M−1(·,s2) as a function of s > 0

follows by its variational characterization and hypothesis (M3).
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Actually, if a maximizers of (2.3) with weight ms is denoted by us, then
for t, s ∈ [a, b] ⊂ (A,B) we have

Θs
ms =

∫
Ω

msF (us) and Θt
mt =

∫
Ω

mtF (ut) ≥
∫

Ω

mtF (tus/s)

and then

Θs
ms −Θt

mt ≤
∫

Ω

(ms −mt)F (us) +

∫
Ω

mt [F (us)− F (tus/s)] .

The first integral can now be estimated with ‖ms −mt‖r C(1 + bp) in view
of condition (f2), and then goes to zero as |t− s| → 0 in [a, b], by (M3). The
second integral also goes to zero since ‖mt‖r is bounded in [a, b] by (M3),
tus/s− us → 0 in L2∗ and then F (us)− F (tus/s)→ 0 in Lr

′
. By reasoning

symmetrically one gets the estimate from below and proves the continuity.

Now, if (Hpp) holds, then f(u)u = up = pF (u) and λs =
s2

pΘs
M−1(·,s2)

,

which is therefore also a continuous function.
If instead we assume condition (Hdc), then by Lemma 4.5 the maxi-

mization problem (2.3) admits exactly one maximizer.
Suppose now that sn → s0 > 0 and let un, u0 be the corresponding maxi-
mizers for (2.3).
Since ‖un‖ = sn it is bounded in H1

0 and up to a subsequence we may assume
un ⇀ w in H1

0 . By Lemma 4.1 and hypothesis (M3) we then have (up to a
further subsequence)∫

Ω

msnF (un)→
∫

Ω

ms0F (w) and

∫
Ω

msnf(un)un →
∫

Ω

ms0f(w)w .

(4.8)
Observe that

Θsn
M−1(·,sn2) =

∫
Ω

msnF (un)→ Θs0
M−1(·,s02) =

∫
Ω

ms0F (u0)

because of the already proved continuity of Θs
M−1(·,s2), and then

∫
Ω
ms0F (u0) =∫

Ω
ms0F (w). By the weak convergence we know that ‖w‖ ≤ s0 = ‖u0‖ but

in fact ‖w‖ = s0 or otherwise∫
Ω

ms0F (s0w/ ‖w‖) >
∫

Ω

ms0F (w) = Θs0
M−1(·,s02)

and then s0w/ ‖w‖ ∈ Ss0 would be above the maximizer level (the strict
inequality follows form the fact that F is nondecreasing and also strictly
increasing for small t by (f1)).

We conclude that w is actually a maximizer for Θs0
M−1(·,s02) and then

u0 = w by Lemma 4.5. Since the argument may be applied to any subse-
quence, (2.2) and (4.8) imply that λsn → λs0 . �

We can finally prove our main results.
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Proof of Theorem 2.6 and Theorem 2.7. Theorem 2.6 is an immediate con-
sequence of Proposition 2.1 and the Theorems 2.3 and 2.4, in fact, the values
of λs from (2.2), for which we know that a positive solution of Problem (1.1)
exists, accumulate at infinity or at zero, respectively, when the conclusion of
Theorem 2.3 or that of Theorem 2.4 holds.

In the hypotheses of Theorem 2.7 we also know, by Proposition 2.5, that
λs is a continuous function defined in the interval (A,B). Therefore we have
the following situations.
• Case a) by the Theorems 2.3 and 2.4 the assumptions on M imply that

lim
s→A

λs = 0, lim
s→B

λs =∞

or vice versa. Then the continuity of λs implies that Im(λs) = (0,∞).
• Case b) in this case one has

lim
s→A

λs = lim
s→B

λs = 0

and then Im(λs) is of the form (0,Λ], but every value below Λ corre-
sponds to at least two solutions, which have distinct norm.
• Case c) now

lim
s→A

λs = lim
s→B

λs =∞

and then Im(λs) is of the form [Λ,∞) and, as above, two distinct solu-
tions exist for λ > Λ. On the other hand, the non existence of solutions
for λ small follows from Theorem 2.2 point (ii), since in case c), (2.4)
is satisfied for suitable p0, p∞. Actually we can always take p∞ = p,
while we take p0 = π0 from (fπ0) if A = 0 or p0 = 1 otherwise: then the
estimate on f holds by (fπ0)-(f2) while the estimate on

∥∥M−1(·, s2)
∥∥
r

follows by its continuity and since condition (C−) holds at A and at B.
The result in the points b*) and c*) are a consequence of the last as-

sertion in Lemma 4.5. Actually it implies that the values of λ for which a
positive solution of (1.1) exists are exactly those in the range of the function
λs in (2.2). �
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