Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References

Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros¹

E. MASSA^a,

(joint work with L. ITURRIAGA^b)

^a ICMC-USP.

^b Universidad Técnica Federico Santa María/Chile,

Brasília, September 2017

¹Research partially supported by FAPESP/Brazil and Fondecyt/Chile \rightarrow (\equiv) \equiv \sim) \sim

Introduction ●○○○○○	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References
Purpose					

We consider the problem

$$\begin{cases} (-\Delta)^k u = \lambda f(x, u) + \mu g(x, u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ (-\Delta)^i u = 0 & \text{on } \partial\Omega, \quad i = 0, ..., k - 1, \end{cases}$$

where

- $\Omega \subset \mathbb{R}^N$ bounded smooth domain,
- $\lambda, \mu \geq 0$ are two parameters,
- f, g are nonnegative functions,
- $k \in \mathbb{N}$.

Purpose: to obtain multiplicity of positive solutions, in particular when the nonlinearity has zeros.

Introduction ●○○○○○	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References
Purpose					

We consider the problem

$$\begin{cases} (-\Delta)^k u = \lambda f(x, u) + \mu g(x, u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ (-\Delta)^i u = 0 & \text{on } \partial\Omega, \quad i = 0, .., k - 1, \end{cases}$$

where

- $\Omega \subset \mathbb{R}^N$ bounded smooth domain,
- $\lambda, \mu \geq 0$ are two parameters,
- f, g are nonnegative functions,
- $k \in \mathbb{N}$.

Purpose: to obtain multiplicity of positive solutions, in particular when the nonlinearity has zeros.

Introduction	The problem	Existence for every μ O	Nonexistence	Bibliography	References
Introduc	tion: non	linearities wit	h zeros		

Consider the Laplacian case:

$$\begin{cases} -\Delta u = \lambda h(x, u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$

A known necessary condition for existence is obtained by multiplying by ϕ_1 and integrating by parts:

$$\int_{\Omega} \phi_1 \left[\lambda_1 u - h(x, u) \right] = 0$$

Introduction	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References
Introdu	iction: nor	nlinearities wit	h zeros		

Consider the Laplacian case:

$$\begin{cases} -\Delta u = \lambda h(x, u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$

A known necessary condition for existence is obtained by multiplying by ϕ_1 and integrating by parts:

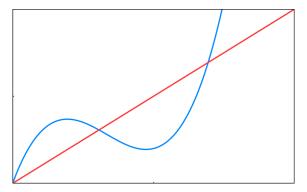
$$\int_{\Omega} \phi_1 \left[\lambda_1 u - h(x, u) \right] = 0$$

Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References

suppose
$$h(x,t) = h(t) > 0$$
 for $t > 0$ (1.1)

$$\lim_{x \to 0} \inf_{x \to 0} \frac{h(x,t)}{h(x,t)} > 0$$
(1.2)

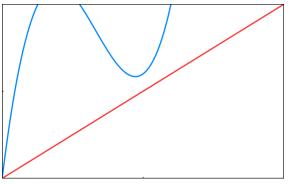
$$\liminf_{t \to 0^+} \frac{\eta(t, t)}{t} > 0, \qquad \liminf_{t \to \infty} \frac{\eta(t, t)}{t} > 0 \tag{1.2}$$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - の々ぐ

Introduction	The problem	Existence for every μ O	Nonexistence	Bibliography	References

suppose
$$h(x,t) = h(t) > 0$$
 for $t > 0$ (1.1)
$$\liminf_{t \to 0^+} \frac{h(x,t)}{t} > 0, \qquad \liminf_{t \to \infty} \frac{h(x,t)}{t} > 0$$
 (1.2)

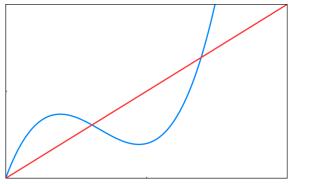


no positive solution for λ large!

Introduction	The problem	Existence for every μ O	Nonexistence	Bibliography	References

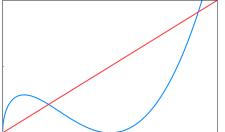
suppose
$$h(x, t) = h(t) > 0$$
 for $t > 0$ (1.1)
 $h(x, t) = h(x, t)$

$$\liminf_{t \to 0^+} \frac{n(x,t)}{t} > 0, \qquad \liminf_{t \to \infty} \frac{n(x,t)}{t} > 0 \tag{1.2}$$

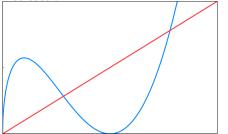


(probably) 2 solutions for λ small (for instance (Ambrosetti, Brezis, and Cerami, 1994))

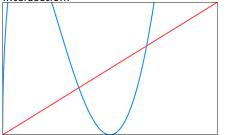
Introduction	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References



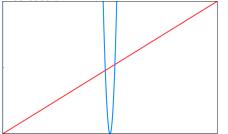
Introduction	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References



Introduction	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References

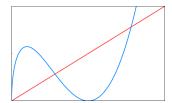


Introduction	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References



Introduction ○○○○●○	The problem	Existence for every μ O	Nonexistence	Bibliography	References

$$\begin{cases} -\Delta u = \lambda h(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \\ \text{model: } h(u) = u^q |a - u|^r, \\ 1 < r + q < 2^*, \ q \in (0, 1] \end{cases}$$

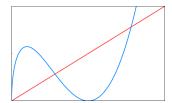


How to find two solutions?

subsolution $\underline{u} = \varepsilon \phi_1$. supersolution $\overline{u} = a$. First solution $\underline{u} \le u \le \overline{u}$ If $u < \overline{u}$, then it is a local minimum. Then there exists a Mountain Pass soluti

Introduction ○○○○●○	The problem	Existence for every μ O	Nonexistence	Bibliography	References

$$\begin{cases} -\Delta u = \lambda h(u) \quad \text{in} \quad \Omega, \\ u > 0 \qquad \text{in} \quad \Omega, \\ u = 0 \qquad \text{in} \quad \partial \Omega, \\ \text{model:} \quad h(u) = u^q |a - u|^r, \\ 1 < r + q < 2^*, \ q \in (0, 1] \end{cases}$$

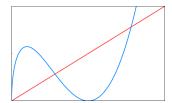


How to find two solutions? subsolution $\underline{u} = \varepsilon \phi_1$. supersolution $\overline{u} = a$.

First solution $\underline{u} \leq u \leq \overline{u}$ If $u < \overline{u}$, then it is a local minimum. Then there exists a Mountain Pass solution

Introduction ○○○○●○	The problem	Existence for every μ O	Nonexistence	Bibliography	References

$$\begin{cases} -\Delta u = \lambda h(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \\ \text{model: } h(u) = u^q |a - u|^r, \\ 1 < r + q < 2^*, \ q \in (0, 1] \end{cases}$$

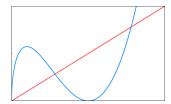


How to find two solutions? subsolution $\underline{u} = \varepsilon \phi_1$. supersolution $\overline{u} = a$. First solution $\underline{u} \le u \le \overline{u}$ If $u < \overline{u}$, then it is a local minimum.

Then there exists a Mountain Pass solution

Introduction ○○○○●○	The problem	Existence for every μ \odot	Nonexistence	Bibliography	References

$$\begin{cases} -\Delta u = \lambda h(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \\ \text{model: } h(u) = u^q |a - u|^r, \\ 1 < r + q < 2^*, \ q \in (0, 1] \end{cases}$$



How to find two solutions? subsolution $\underline{u} = \varepsilon \phi_1$. supersolution $\overline{u} = a$. First solution $\underline{u} \le u \le \overline{u}$ If $u < \overline{u}$, then it is a local minimum. Then there exists a Mountain Pass solution

Introduction ○○○○○●	The problem	Existence for every μ O	Nonexistence	Bibliography	References

If we consider the nonautonomous case h(x, u), then the zero may be a function a(x): model: $h(u) = u^q |a(x) - u|^r$, $1 < r + q < 2^*$, $q \in (0, 1]$ We considered this case in (Iturriaga, Massa, Sánchez, and Ubilla, 2010), assuming a(x) is superharmonic and $0 < a_0 \le a(x) \le A_0$. (Then a(x) is still a supersolution)

Also, some related works:

• in (Iturriaga, Lorca, and Massa, 2010) we considered supercritical problems,

•in (Iturriaga, Massa, Sanchez, and Ubilla, 2014) a similar problem on an annulus,

• in (Iturriaga, Lorca, and Massa, 2017) we considered multiple zeros and more possible behaviors near the origin.

Introduction ○○○○○●	The problem	Existence for every μ O	Nonexistence	Bibliography	References

If we consider the nonautonomous case h(x, u), then the zero may be a function a(x): model: $h(u) = u^q |a(x) - u|^r$, $1 < r + q < 2^*$, $q \in (0, 1]$ We considered this case in (Iturriaga, Massa, Sánchez, and Ubilla, 2010), assuming a(x) is superharmonic and $0 < a_0 \le a(x) \le A_0$. (Then a(x) is still a supersolution)

Also, some related works:

• in (Iturriaga, Lorca, and Massa, 2010) we considered supercritical problems,

•in (Iturriaga, Massa, Sanchez, and Ubilla, 2014) a similar problem on an annulus,

• in (Iturriaga, Lorca, and Massa, 2017) we considered multiple zeros and more possible behaviors near the origin.

Introduction	The problem ●○○○○○	Existence for every μ O	Nonexistence	Bibliography	References
The pr	oblem				

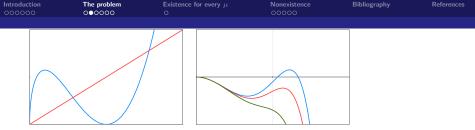
We start by considering the following problem:

$$\begin{cases} (-\Delta)^k \ u = \lambda h(x, u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ (-\Delta)^i u = 0 & \text{on } \partial\Omega, \ i = 0, .., k - 1, \end{cases}$$
(2.1)

- Here we have no sub and supersolution method.
- We try a purely variational approach: consider

$$J_{\lambda}: \mathbb{H} \to \mathbb{R}: u \mapsto J_{\lambda,\mu}(u) = rac{1}{2} \|u\|_{\mathbb{H}}^2 - \lambda \int_{\Omega} H(x, u^+).$$

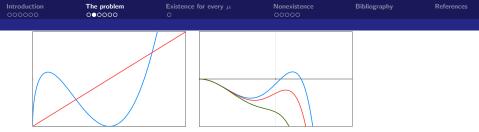
 $\mathbb{H} = \{ u \in H^k(\Omega) \text{ such that } (-\Delta)^i u = 0 \text{ on } \partial\Omega, \ i = 0, .., [(k-1)/2], \},$



• there exists $u_0 \in \mathbb{H}$ such that, for every $\lambda > 0$ there exists $t_0(\lambda) > 0$ such that one has $J_{\lambda}(tu_0) < 0$ for $0 < t < t_0(\lambda)$ • there exists $e \in \mathbb{H}$ such that, for any $\lambda \ge 0$ $J_{\lambda}(te) \to -\infty$ when $t \to +\infty$. • We need something like: — given $\lambda > 0$ and $H \in \mathbb{R}$, there exist $\rho_H(\lambda) > 0$ such that

 $J_{\lambda}(u) > H \qquad \text{for } \|u\|_{\mathbb{H}} = \rho_{H}(\lambda). \tag{2.2}$

The presence of the zero is not enough to guarantee this!



• there exists $u_0 \in \mathbb{H}$ such that, for every $\lambda > 0$ there exists $t_0(\lambda) > 0$ such that one has $J_{\lambda}(tu_0) < 0$ for $0 < t < t_0(\lambda)$

ullet there exists $e\in\mathbb{H}$ such that, for any $\lambda\geq0$

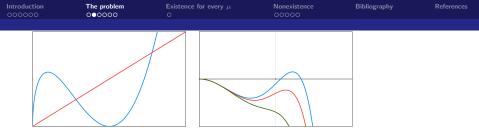
 $J_{\lambda}(te) \rightarrow -\infty$ when $t \rightarrow +\infty$.

• We need something like:

— given $\lambda > 0$ and $H \in \mathbb{R}$, there exist $\rho_H(\lambda) > 0$ such that

$$J_{\lambda}(u) > H \qquad \text{for } \|u\|_{\mathbb{H}} = \rho_{H}(\lambda). \tag{2.2}$$

The presence of the zero is not enough to guarantee this!



• there exists $u_0 \in \mathbb{H}$ such that, for every $\lambda > 0$ there exists $t_0(\lambda) > 0$ such that one has $J_{\lambda}(tu_0) < 0$ for $0 < t < t_0(\lambda)$

ullet there exists $e\in\mathbb{H}$ such that, for any $\lambda\geq0$

 $J_{\lambda}(te) \rightarrow -\infty$ when $t \rightarrow +\infty$.

• We need something like:

— given $\lambda > 0$ and $H \in \mathbb{R}$, there exist $\rho_H(\lambda) > 0$ such that

$$J_{\lambda}(u) > H \qquad \text{for } \|u\|_{\mathbb{H}} = \rho_{H}(\lambda). \tag{2.2}$$

The presence of the zero is not enough to guarantee this!

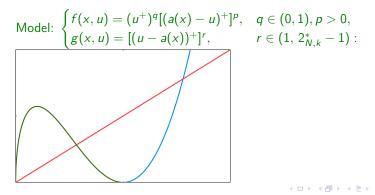
Introduction	The problem ○○●○○○	Existence for every μ O	Nonexistence	Bibliography	References

Split the nonlinearity:

 $\lambda f(x,u) + \mu g(x,u),$

where $f, g \ge 0$ and

$$\begin{cases} f(x,t) = 0 & \text{if } t \ge a(x), \\ g(x,t) = 0 & \text{if } 0 \le t \le a(x). \end{cases}$$
(Z)



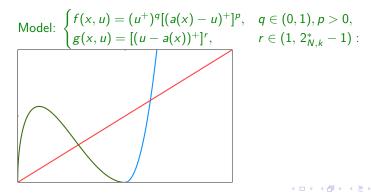
Introduction	The problem ○○●○○○	Existence for every μ O	Nonexistence	Bibliography	References

Split the nonlinearity:

 $\lambda f(x,u) + \mu g(x,u),$

where $f, g \ge 0$ and

$$\begin{cases} f(x,t) = 0 & \text{if } t \ge a(x), \\ g(x,t) = 0 & \text{if } 0 \le t \le a(x). \end{cases}$$
(Z)



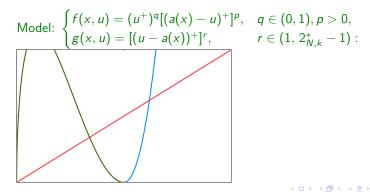
Introduction	The problem ○○●○○○	Existence for every μ O	Nonexistence	Bibliography	References

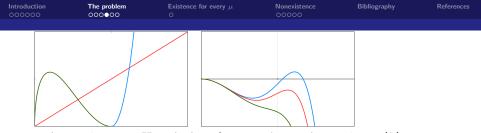
Split the nonlinearity:

 $\lambda f(x,u) + \mu g(x,u),$

where $f, g \ge 0$ and

$$\begin{cases} f(x,t) = 0 & \text{if } t \ge a(x), \\ g(x,t) = 0 & \text{if } 0 \le t \le a(x). \end{cases}$$
(Z)



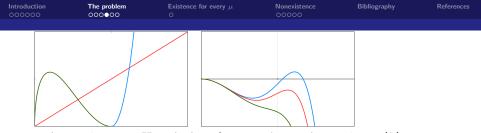


• there exists $u_0 \in \mathbb{H}$ such that, for every $\lambda > 0$ there exists $t_0(\lambda) > 0$ such that one has $J_{\lambda,\mu}(tu_0) < 0$ for $0 < t < t_0(\lambda)$, for every $\mu \ge 0$ • there exists $e \in \mathbb{H}$ such that, for any $\lambda \ge 0$ $J_{\lambda,\mu}(te) \to -\infty$ when $t \to +\infty$, for every $\mu > 0$ • We also obtain: — given $\lambda > 0$ and $H \in \mathbb{R}$, there exist $\rho_H(\lambda) > 0$ and $M_H(\lambda)$ such that,

for $0 < \mu < M_H(\lambda)$,

$$J_{\lambda,\mu}(u) > H \qquad \text{for } \|u\|_{\mathbb{H}} = \rho_H(\lambda). \tag{2.3}$$

Then we obtain a local minimum at a negative level and a Mountain pass solution!



• there exists $u_0 \in \mathbb{H}$ such that, for every $\lambda > 0$ there exists $t_0(\lambda) > 0$ such that one has $J_{\lambda,\mu}(tu_0) < 0$ for $0 < t < t_0(\lambda)$, for every $\mu \ge 0$ • there exists $e \in \mathbb{H}$ such that, for any $\lambda \ge 0$ $J_{\lambda,\mu}(te) \to -\infty$ when $t \to +\infty$, for every $\mu > 0$ • We also obtain: — given $\lambda > 0$ and $H \in \mathbb{R}$, there exist $\rho_H(\lambda) > 0$ and $M_H(\lambda)$ such that, for $0 < \mu < M_H(\lambda)$.

 $J_{\lambda \mu}(u) > H$ for $||u||_{\mathbb{H}} = \rho_H(\lambda)$.

Then we obtain a local minimum at a negative level and a Mountain pass solution!

(2.3)

Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References
	000000				

The existence of two solutions result

- $f,g:\overline{\Omega}\times [0,+\infty)\longrightarrow [0,+\infty)$ are Carathéodory functions and satisfy
 - f(x,0) = g(x,0) = 0,
 - $\bullet\,$ conditions at ∞ for PS condition,
 - local (sublinearity) condition at the origin:

 $\lim_{t\longrightarrow 0^+} \frac{f(x,t)}{t} = +\infty \quad \text{uniformly in } x \in \omega \subset \subset \Omega,$

• local (superlinearity) condition at infinity : $\lim_{t \to +\infty} \frac{g(x,t)}{t} = +\infty \quad \text{uniformly in } x \in \omega_2 \subset \subset \Omega.$

Then: there exists a function $M : (0, \infty) \to (0, \infty]$ such that the problem $(P_{\lambda,\mu}^k)$, $k \in \mathbb{N}$, has at least two positive solutions for $\lambda > 0$ and $0 < \mu < M(\lambda)$.

A similar result for k = 1 is obtained in (de Figueiredo, Gossez, and Ubilla, 2003) "Local superlinearity and sublinearity for indefinite semilinear elliptic problems"

Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References
	000000				

The existence of two solutions result

- $f,g:\overline{\Omega}\times [0,+\infty)\longrightarrow [0,+\infty)$ are Carathéodory functions and satisfy
 - f(x,0) = g(x,0) = 0,
 - $\bullet\,$ conditions at ∞ for PS condition,
 - local (sublinearity) condition at the origin:

 $\lim_{t\longrightarrow 0^+} \frac{f(x,t)}{t} = +\infty \quad \text{uniformly in } x \in \omega \subset \subset \Omega,$

• local (superlinearity) condition at infinity : $\lim_{t \to +\infty} \frac{g(x,t)}{t} = +\infty \quad \text{uniformly in } x \in \omega_2 \subset \subset \Omega.$

Then: there exists a function $M : (0, \infty) \to (0, \infty]$ such that the problem $(P_{\lambda,\mu}^k)$, $k \in \mathbb{N}$, has at least two positive solutions for $\lambda > 0$ and $0 < \mu < M(\lambda)$.

A similar result for k = 1 is obtained in (de Figueiredo, Gossez, and Ubilla, 2003) "Local superlinearity and sublinearity for indefinite semilinear elliptic problems"

Introduction	The problem ○○○○○●	Existence for every μ O	Nonexistence	Bibliography	References

"There exists a function $M : (0, \infty) \to (0, \infty]$ such that the problem $(P_{\lambda,\mu}^k)$, $k \in \mathbb{N}$, has at least two positive solutions for $\lambda > 0$ and $0 < \mu < M(\lambda)$."

Question

Is this bound on μ really necessary?

Actually

• in (Iturriaga, Massa, Sánchez, and Ubilla, 2010) there is no bound: $M(\lambda) \equiv \infty$,

• because of the zero, the necessary condition for existence is always satisfied (two intersections!)

Then we investigate when $M(\lambda) = \infty$ or $M(\lambda) < \infty$.

Introduction	The problem ○○○○○●	Existence for every μ O	Nonexistence	Bibliography	References

"There exists a function $M : (0, \infty) \to (0, \infty]$ such that the problem $(P_{\lambda,\mu}^k)$, $k \in \mathbb{N}$, has at least two positive solutions for $\lambda > 0$ and $0 < \mu < M(\lambda)$."

Question

Is this bound on μ really necessary?

Actually

• in (Iturriaga, Massa, Sánchez, and Ubilla, 2010) there is no bound: $M(\lambda)\equiv\infty$,

• because of the zero, the necessary condition for existence is always satisfied (two intersections!)

Then we investigate when $M(\lambda) = \infty$ or $M(\lambda) < \infty$.

Introduction	The problem ○○○○○●	Existence for every μ O	Nonexistence	Bibliography	References

"There exists a function $M : (0, \infty) \to (0, \infty]$ such that the problem $(P_{\lambda,\mu}^k)$, $k \in \mathbb{N}$, has at least two positive solutions for $\lambda > 0$ and $0 < \mu < M(\lambda)$."

Question

Is this bound on μ really necessary?

Actually

• in (Iturriaga, Massa, Sánchez, and Ubilla, 2010) there is no bound: $M(\lambda)\equiv\infty$,

• because of the zero, the necessary condition for existence is always satisfied (two intersections!)

Then we investigate when $M(\lambda) = \infty$ or $M(\lambda) < \infty$.

Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References
Existenc	e for ever	ry μ			

We can prove that $M(\lambda) = \infty$ if "the first solution has a suitable neighborhood below a(x)". This is true for example:

- 1. in the (Iturriaga, Massa, Sánchez, and Ubilla, 2010) situation: k = 1, a(x) supersolution.
- 2. for k = 1, small λ , $a(x) \ge a_0 > 0$.
- 3. for k > 1, small λ , $a(x) \ge a_0 > 0$ and N < 2k.

1. the solution is below the supersolution,

- 2. by regularity theory, the solution is below a_0 ,
- 3. by the regularity of functions in \mathbb{H} , the solution is below a_0 .

Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References
Existenc	e for ever	ry μ			

We can prove that $M(\lambda) = \infty$ if "the first solution has a suitable neighborhood below a(x)". This is true for example:

- 1. in the (Iturriaga, Massa, Sánchez, and Ubilla, 2010) situation: k = 1, a(x) supersolution.
- 2. for k = 1, small λ , $a(x) \ge a_0 > 0$.
- 3. for k > 1, small λ , $a(x) \ge a_0 > 0$ and N < 2k.
- 1. the solution is below the supersolution,
- 2. by regularity theory, the solution is below a_0 ,
- 3. by the regularity of functions in \mathbb{H} , the solution is below a_0 .

Introduction	The problem	Existence for every μ O	Nonexistence ●0000	Bibliography	References
Nonexis	stence				

On the other hand, in some cases $M(\lambda) < \infty$, in particular, no positive solution exists for large μ .

We assume N = 1, with $\Omega = (-1, 1)$, and

• The functions $f,g:\overline{\Omega}\times[0,+\infty)\longrightarrow[0,+\infty)$ are continuous functions and satisfy

•
$$f(x,0) = g(x,0) = 0$$
,

- condition (Z), with $a(x) \in C(\overline{\Omega})$.
- g(x, t) > 0 for t > a(x).

• $f(x, \tau t) > \tau f(x, t) > 0$ for every $x \in \Omega$, $\tau \in (0, 1)$, $t \in (0, a(x))$.

• There exists $b_0, c_0 > 0$ such that, uniformly in $x \in \Omega$,

$$\liminf_{t\to 0^+} \frac{f(x,t)}{t} \ge b_0, \qquad \liminf_{t\to +\infty} \frac{g(x,t)}{t} \ge c_0$$

Introduction	The problem	Existence for every μ	Nonexistence ○●○○○	Bibliography	References

We obtain

Theorem If • $k \ge 2$ and a(x) satisfies $\lim_{x\to\pm 1} a(x) = a^{\pm} > 0$ and a' exists and is bounded near ± 1 , or • $k \in \mathbb{N}$ and a(x) is not a concave function, then there exists $\Lambda_1 > 0$ and $N : (\Lambda_1, \infty) \to (0, \infty)$ such that problem

 $(P_{\lambda,\mu}^k)$ has no positive solution for $\lambda > \Lambda_1$ and $\mu > N(\lambda)$.

Introduction	The problem	Existence for every μ O	Nonexistence ○○●○○	Bibliography	References

Idea of the proof: one first proves (using Green function and the concavity of the solutions $u_{\lambda,\mu}$)

Lemma

(1) for every
$$p \in \Omega$$
, $\liminf_{\lambda \to \infty} u_{\lambda,\mu}(p) \ge a(p)$, uniformly in $\mu \ge 0$.

(2) for every
$$p \in \Omega$$
, $\limsup_{\mu \to \infty} u_{\lambda,\mu}(p) \le a(p)$, uniformly in $\lambda \ge 0$.

Then one obtains a contradiction:

- since $u_{\lambda,\mu}$ is concave, in can not approximate a non-concave function
- if k ≥ 2, u_{λ,μ} cannot satisfy the boundary condition and approximate a since lim_{x→±1} a(x) = a[±] > 0.

Introduction	The problem	Existence for every μ O	Nonexistence ○○●○○	Bibliography	References

Idea of the proof: one first proves (using Green function and the concavity of the solutions $u_{\lambda,\mu}$)

Lemma

(1) for every
$$p \in \Omega$$
, $\liminf_{\lambda \to \infty} u_{\lambda,\mu}(p) \ge a(p)$, uniformly in $\mu \ge 0$.

(2) for every
$$p \in \Omega$$
, $\limsup_{\mu \to \infty} u_{\lambda,\mu}(p) \le a(p)$, uniformly in $\lambda \ge 0$.

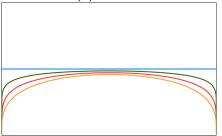
Then one obtains a contradiction:

- since $u_{\lambda,\mu}$ is concave, in can not approximate a non-concave function
- if k ≥ 2, u_{λ,μ} cannot satisfy the boundary condition and approximate a since lim_{x→±1} a(x) = a[±] > 0.

Introduction	The problem	Existence for every μ \odot	Nonexistence ○○○●○	Bibliography	References

Consider the model
$$\begin{cases} f(x, u) = (u^+)^q [(a(x) - u)^+]^p, & q \in (0, 1), p > 1, \\ g(x, u) = [(u - a(x))^+]^r, & r > 1: \end{cases}$$

case k = 1, a(x) constant:

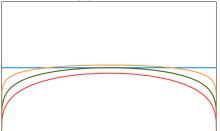


u stays below *a*, then it is not affected by μ .

Introduction	The problem	Existence for every μ \odot	Nonexistence ○○○●○	Bibliography	References

Consider the model
$$\begin{cases} f(x, u) = (u^+)^q [(a(x) - u)^+]^p, & q \in (0, 1), p > 1, \\ g(x, u) = [(u - a(x))^+]^r, & r > 1: \end{cases}$$

case $k \ge 2$, a(x) constant:

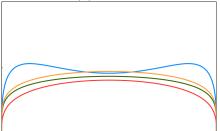


eventually u exceeds a(x) for λ large then for μ large there is no solution

Introduction	The problem	Existence for every μ \odot	Nonexistence ○○○●○	Bibliography	References

Consider the model
$$\begin{cases} f(x, u) = (u^+)^q [(a(x) - u)^+]^p, & q \in (0, 1), p > 1, \\ g(x, u) = [(u - a(x))^+]^r, & r > 1: \end{cases}$$

case any k, a(x) not concave:



eventually u exceeds a(x) for λ large then for μ large there is no solution

Introduction	The problem	Existence for every μ O	Nonexistence ○○○○●	Bibliography	References

Comparison in the model case

In particular, for the model autonomous problem in dimension N = 1 $\begin{cases}
f(x, u) = (u^+)^q [(a - u)^+]^p, & q \in (0, 1), p > 1, \\
g(x, u) = [(u - a)^+]^r, & r > 1:
\end{cases}$

- if k=1 then $M(\lambda)\equiv\infty$ (²): two solutions for every $\lambda,\mu>0$
- if $k \ge 2$ then
 - $M(\lambda) \equiv \infty$ for small λ
 - $M(\lambda) < \infty$ for large λ

for the model problem in dimension N = 1 with non-concave $a(x) \ge a_0 > 0,$ $\begin{cases}
f(x, u) = (u^+)^q [(a(x) - u)^+]^p, & q \in (0, 1), p > 1, \\
g(x, u) = [(u - a(x))^+]^r, & r > 1:
\end{cases}$ • for any $k \in \mathbb{N}$, • $M(\lambda) \equiv \infty$ for small λ • $M(\lambda) < \infty$ for large λ

²Iturriaga, Massa, Sánchez, and Ubilla (2010).

Introduction	The problem	Existence for every μ O	Nonexistence	Bibliography	References
ь ·					
Preprin	t				

E. Massa, L. Iturriaga, *Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros.* 2017.

Still working..

- Obtain the same behavior (loss of existence) in dimension N > 1
- Obtain $M(\lambda) = \infty$ for small λ , in more cases: k > 1, $N \ge 2k$.

Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References
Main re					

- Ambrosetti, A., H. Brezis, and G. Cerami (1994). "Combined effects of concave and convex nonlinearities in some elliptic problems". In: J. Funct. Anal. 122.2, pp. 519–543.
- de Figueiredo, D. G., J.-P. Gossez, and P. Ubilla (2003). "Local superlinearity and sublinearity for indefinite semilinear elliptic problems". In: J. Funct. Anal. 199.2, pp. 452–467.
- Du, Y. and Z. Guo (2002). "Liouville type results and eventual flatness of positive solutions for *p*-Laplacian equations". In: Adv. Differential Equations 7.12, pp. 1479–1512.
- Iturriaga, L., S. Lorca, and E. Massa (2010). "Positive solutions for the *p*-Laplacian involving critical and supercritical nonlinearities with zeros". In: Ann. Inst. H. Poincaré Anal. Non Linéaire 27.2, pp. 763–771.
 - Iturriaga, L., S. Lorca, and E. Massa (2017). "Multiple positive solutions for the *m*-Laplacian and a nonlinearity with many zeros". In: *Differential Integral Equations* 30.1-2, pp. 145–159.

Introduction	The problem	Existence for every μ	Nonexistence	Bibliography	References
Main re	eferences I	1			

- Iturriaga, L., E. Massa, J. Sánchez, and P. Ubilla (2010). "Positive solutions of the *p*-Laplacian involving a superlinear nonlinearity with zeros". In: *J. Differential Equations* 248.2, pp. 309–327.
- Iturriaga, L., E. Massa, J. Sanchez, and P. Ubilla (2014). "Positive Solutions for an Elliptic Equation in an Annulus with a Superlinear Nonlinearity with Zeros". In: *Math. Nach.* 287.10, pp. 1131–1141.
- Lions, P.-L. (1982). "On the existence of positive solutions of semilinear elliptic equations". In: SIAM Rev. 24.4, pp. 441–467.
- Takeuchi, S. (2007a). "Coincidence sets in semilinear elliptic problems of logistic type". In: Differential Integral Equations 20.9, pp. 1075–1080.
- Takeuchi, S. (2007b). "Partial flat core properties associated to the p-Laplace operator". In: Discrete Contin. Dyn. Syst. Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl. Pp. 965–973.