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Braśılia, September 2017

1Research partially supported by FAPESP/Brazil and Fondecyt/Chile
E. Massa, L. Iturriaga Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros



Introduction The problem Existence for every µ Nonexistence Bibliography References

Purpose

We consider the problem
(−∆)k u = λf (x , u) + µg(x , u) in Ω,

u > 0 in Ω,

(−∆)iu = 0 on ∂Ω, i = 0, .., k − 1,

(Pk
λ,µ)

where

Ω ⊂ RN bounded smooth domain,

λ, µ ≥ 0 are two parameters,

f , g are nonnegative functions,

k ∈ N.

Purpose: to obtain multiplicity of positive solutions, in particular when
the nonlinearity has zeros.
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Introduction: nonlinearities with zeros

Consider the Laplacian case:
−∆ u = λh(x , u) in Ω,

u > 0 in Ω,

u = 0 in ∂Ω,

A known necessary condition for existence is obtained by multiplying by
φ1 and integrating by parts:∫

Ω

φ1 [λ1u − h(x , u)] = 0
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suppose h(x , t) = h(t) > 0 for t > 0 (1.1)

lim inf
t→0+

h(x , t)

t
> 0, lim inf

t→∞

h(x , t)

t
> 0 (1.2)
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suppose h(x , t) = h(t) > 0 for t > 0 (1.1)

lim inf
t→0+

h(x , t)

t
> 0, lim inf

t→∞

h(x , t)

t
> 0 (1.2)

no positive solution for λ large!
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suppose h(x , t) = h(t) > 0 for t > 0 (1.1)

lim inf
t→0+

h(x , t)

t
> 0, lim inf

t→∞

h(x , t)

t
> 0 (1.2)

(probably) 2 solutions for λ small (for instance (Ambrosetti, Brezis, and

Cerami, 1994))
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A positive zero in the nonlinearity implies there always exists an
intersection:

(Lions, 1982) finds two solutions in this kind of situation.
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a simple case:
−∆ u = λh(u) in Ω,

u > 0 in Ω,

u = 0 in ∂Ω,

model: h(u) = uq|a − u|r ,
1 < r + q < 2∗, q ∈ (0, 1]

How to find two solutions?
subsolution u = εφ1.
supersolution u = a.
First solution u ≤ u ≤ u
If u < u, then it is a local minimum.
Then there exists a Mountain Pass solution
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If we consider the nonautonomous case h(x , u), then the zero may be a
function a(x):
model: h(u) = uq|a(x)− u|r , 1 < r + q < 2∗, q ∈ (0, 1]
We considered this case in (Iturriaga, Massa, Sánchez, and Ubilla, 2010),
assuming a(x) is superharmonic and 0 < a0 ≤ a(x) ≤ A0 .
(Then a(x) is still a supersolution)

Also, some related works:
• in (Iturriaga, Lorca, and Massa, 2010) we considered supercritical
problems,
•in (Iturriaga, Massa, Sanchez, and Ubilla, 2014) a similar problem on an
annulus,
• in (Iturriaga, Lorca, and Massa, 2017) we considered multiple zeros and
more possible behaviors near the origin.
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The problem

We start by considering the following problem:
(−∆)k u = λh(x , u) in Ω,

u > 0 in Ω,

(−∆)iu = 0 on ∂Ω, i = 0, .., k − 1,

(2.1)

• Here we have no sub and supersolution method.
• We try a purely variational approach: consider

Jλ : H→ R : u 7→ Jλ,µ(u) =
1

2
‖u‖2

H − λ
∫

Ω

H(x , u+) .

H = {u ∈ Hk(Ω) such that (−∆)iu = 0 on ∂Ω, i = 0, .., [(k − 1)/2], } ,
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• there exists u0 ∈ H such that, for every λ > 0 there exists t0(λ) > 0
such that one has Jλ(tu0) < 0 for 0 < t < t0(λ)
• there exists e ∈ H such that, for any λ ≥ 0
Jλ(te)→ −∞ when t → +∞ .
• We need something like:
— given λ > 0 and H ∈ R, there exist ρH(λ) > 0 such that

Jλ(u) > H for ‖u‖H = ρH(λ). (2.2)

The presence of the zero is not enough to guarantee this!
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Split the nonlinearity:
λf (x , u) + µg(x , u) ,

where f , g ≥ 0 and{
f (x , t) = 0 if t ≥ a(x),

g(x , t) = 0 if 0 ≤ t ≤ a(x).
(Z )

Model:

{
f (x , u) = (u+)q[(a(x)− u)+]p, q ∈ (0, 1), p > 0,

g(x , u) = [(u − a(x))+]r , r ∈ (1, 2∗N,k − 1) :
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• there exists u0 ∈ H such that, for every λ > 0 there exists t0(λ) > 0
such that one has Jλ,µ(tu0) < 0 for 0 < t < t0(λ), for every µ ≥ 0
• there exists e ∈ H such that, for any λ ≥ 0
Jλ,µ(te)→ −∞ when t → +∞ , for every µ > 0
• We also obtain:
— given λ > 0 and H ∈ R, there exist ρH(λ) > 0 and MH(λ) such that,
for 0 < µ < MH(λ),

Jλ,µ(u) > H for ‖u‖H = ρH(λ). (2.3)

Then we obtain a local minimum at a negative level and a
Mountain pass solution!
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The existence of two solutions result

• f , g : Ω× [0,+∞) −→ [0,+∞) are Carathéodory functions and satisfy

f (x , 0) = g(x , 0) = 0 ,

conditions at ∞ for PS condition,

local (sublinearity) condition at the origin:

lim
t−→0+

f (x , t)

t
= +∞ uniformly in x ∈ ω ⊂⊂ Ω,

local (superlinearity) condition at infinity :

lim
t→+∞

g(x , t)

t
= +∞ uniformly in x ∈ ω2 ⊂⊂ Ω.

Then: there exists a function M : (0,∞)→ (0,∞] such that the
problem (Pk

λ,µ), k ∈ N, has at least two positive solutions for λ > 0
and 0 < µ < M(λ).

A similar result for k = 1 is obtained in (de Figueiredo, Gossez, and

Ubilla, 2003)“Local superlinearity and sublinearity for indefinite semilinear

elliptic problems”
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“There exists a function M : (0,∞)→ (0,∞] such that the problem
(Pk
λ,µ), k ∈ N, has at least two positive solutions for λ > 0 and

0 < µ < M(λ).”

Question

Is this bound on µ really necessary?

Actually
• in (Iturriaga, Massa, Sánchez, and Ubilla, 2010) there is no bound:
M(λ) ≡ ∞,
• because of the zero, the necessary condition for existence is always
satisfied (two intersections!)

Then we investigate when M(λ) =∞ or M(λ) <∞.

E. Massa, L. Iturriaga Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros



Introduction The problem Existence for every µ Nonexistence Bibliography References

“There exists a function M : (0,∞)→ (0,∞] such that the problem
(Pk
λ,µ), k ∈ N, has at least two positive solutions for λ > 0 and

0 < µ < M(λ).”

Question

Is this bound on µ really necessary?

Actually
• in (Iturriaga, Massa, Sánchez, and Ubilla, 2010) there is no bound:
M(λ) ≡ ∞,
• because of the zero, the necessary condition for existence is always
satisfied (two intersections!)

Then we investigate when M(λ) =∞ or M(λ) <∞.

E. Massa, L. Iturriaga Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros



Introduction The problem Existence for every µ Nonexistence Bibliography References

“There exists a function M : (0,∞)→ (0,∞] such that the problem
(Pk
λ,µ), k ∈ N, has at least two positive solutions for λ > 0 and

0 < µ < M(λ).”

Question

Is this bound on µ really necessary?

Actually
• in (Iturriaga, Massa, Sánchez, and Ubilla, 2010) there is no bound:
M(λ) ≡ ∞,
• because of the zero, the necessary condition for existence is always
satisfied (two intersections!)

Then we investigate when M(λ) =∞ or M(λ) <∞.

E. Massa, L. Iturriaga Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros



Introduction The problem Existence for every µ Nonexistence Bibliography References

Existence for every µ

We can prove that M(λ) =∞ if “the first solution has a suitable
neighborhood below a(x)”.
This is true for example:

1. in the (Iturriaga, Massa, Sánchez, and Ubilla, 2010) situation:
k = 1, a(x) supersolution.

2. for k = 1, small λ, a(x) ≥ a0 > 0.

3. for k > 1, small λ, a(x) ≥ a0 > 0 and N < 2k .

1. the solution is below the supersolution,

2. by regularity theory, the solution is below a0,

3. by the regularity of functions in H, the solution is below a0.
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Nonexistence

On the other hand, in some cases M(λ) <∞, in particular, no positive
solution exists for large µ.
—–
We assume N = 1, with Ω = (−1, 1), and
• The functions f , g : Ω× [0,+∞) −→ [0,+∞) are continuous functions
and satisfy

f (x , 0) = g(x , 0) = 0,

condition (Z), with a(x) ∈ C(Ω).

g(x , t) > 0 for t > a(x).

f (x , τ t) > τ f (x , t) > 0 for every x ∈ Ω, τ ∈ (0, 1), t ∈ (0, a(x)).

There exists b0, c0 > 0 such that, uniformly in x ∈ Ω,

lim inf
t→0+

f (x , t)

t
≥ b0 , lim inf

t→+∞

g(x .t)

t
≥ c0
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We obtain

Theorem

If
• k ≥ 2 and a(x) satisfies limx→±1 a(x) = a± > 0 and a′ exists and is
bounded near ±1,

or
• k ∈ N and a(x) is not a concave function,

then there exists Λ1 > 0 and N : (Λ1,∞)→ (0,∞) such that problem
(Pk
λ,µ) has no positive solution for λ > Λ1 and µ > N(λ).
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Idea of the proof: one first proves (using Green function and the
concavity of the solutions uλ,µ)

Lemma

(1) for every p ∈ Ω, lim infλ→∞ uλ,µ(p) ≥ a(p), uniformly in µ ≥ 0.

(2) for every p ∈ Ω, lim supµ→∞ uλ,µ(p) ≤ a(p), uniformly in λ ≥ 0.

Then one obtains a contradiction:

since uλ,µ is concave, in can not approximate a non-concave function

if k ≥ 2, uλ,µ cannot satisfy the boundary condition and
approximate a since limx→±1 a(x) = a± > 0.
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Consider the model

{
f (x , u) = (u+)q[(a(x)− u)+]p, q ∈ (0, 1), p > 1,

g(x , u) = [(u − a(x))+]r , r > 1 :

case k = 1, a(x) constant:

u stays below a, then it is not affected by µ.
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{
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eventually u exceeds a(x) for λ large
then for µ large there is no solution
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Comparison in the model case

In particular, for the model autonomous problem in dimension N = 1{
f (x , u) = (u+)q[(a− u)+]p, q ∈ (0, 1), p > 1,

g(x , u) = [(u − a)+]r , r > 1 :

if k = 1 then M(λ) ≡ ∞ (2): two solutions for every λ, µ > 0

if k ≥ 2 then

M(λ) ≡ ∞ for small λ
M(λ) <∞ for large λ

for the model problem in dimension N = 1 with non-concave
a(x) ≥ a0 > 0,{

f (x , u) = (u+)q[(a(x)− u)+]p, q ∈ (0, 1), p > 1,

g(x , u) = [(u − a(x))+]r , r > 1 :

for any k ∈ N,

M(λ) ≡ ∞ for small λ
M(λ) <∞ for large λ
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Still working..

Obtain the same behavior (loss of existence) in dimension N > 1

Obtain M(λ) =∞ for small λ, in more cases: k > 1, N ≥ 2k.
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