1 \mathbb{R}^n , propriedades, topologia

Lembrete:

• Dados dois conjuntos A, B é dito **produto cartesiano de** A **com** B o conjunto

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

Em particular,

- $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$: podemos representar no plano.
- $\mathbb{R} \times ... \times \mathbb{R} = \mathbb{R}^n = \{(x_1, x_2, ..., x_n) : x_i \in \mathbb{R} \text{ para } i = 1, ..n\}$: se n = 3 posso representar no espaço, se n > 3 não podemos desenhar.

Notação:

• $\hat{\mathbf{i}}_1 = (1,0,...0), \ \hat{\mathbf{i}}_2 = (0,1,0,...0), \ ..., \ \hat{\mathbf{i}}_n = (0...0,1) \in \mathbb{R}^n$ (versores canônicos) (no caso n=2,3 indicaremos também por $\hat{i}, \ \hat{j}, \hat{k}$)

Se n > 1, \mathbb{R}^n não é corpo, mas posso ver como **espaço vetorial com produto escalar** (**Espaço Euclidiano de dimensão** n):

- se $\mathbf{x} = (x_1, ..., x_n), \ \mathbf{y} = (y_1, ..., y_n) \in \mathbb{R}^n, \ \lambda \in \mathbb{R}$ definamos
 - $\mathbf{x} = \mathbf{y} \iff x_i = y_i \text{ para todo } i = 1, ..., n,$
 - $\mathbf{x} + \mathbf{y} = (x_1 + y_1, ..., x_n + y_n) \in \mathbb{R}^n$, (soma vetorial)
 - $\mathbf{x} \mathbf{y} = (x_1 y_1, ..., x_n y_n) \in \mathbb{R}^n,$
 - $\lambda \mathbf{x} = (\lambda x_1, ..., \lambda x_n) \in \mathbb{R}^n$, (múltiplo do vetor)
 - $\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \in \mathbb{R}$, (produto escalar)
 - $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ (norma)
 - $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||$ (distância)
 - $\theta(\mathbf{x}, \mathbf{y}) = acos\left(\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}\right) (\hat{\text{angulo}})$
 - $\mathbf{x} \perp \mathbf{y} \iff \mathbf{x} \cdot \mathbf{y} = 0 \text{ (perpendicularismo)}$

OBS: reveja as definições e propriedades de espaço vetorial, produto escalar, norma, distância: Guidorizzi ou livro de GA.

No caso n = 3 (e n = 2) podemos definir o **produto vetorial**:

$$\mathbf{x} \wedge \mathbf{y} = \begin{vmatrix} \widehat{i} & \widehat{j} & \widehat{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

Propriedades (veja ex 11 p 107 Guidorizzi):

$$\bullet \mathbf{z} \cdot (\mathbf{x} \wedge \mathbf{y}) = \begin{vmatrix} z_1 & z_2 & z_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

•
$$\mathbf{z} \cdot (\mathbf{x} \wedge \mathbf{y}) = \mathbf{y} \cdot (\mathbf{z} \wedge \mathbf{x}) = \mathbf{x} \cdot (\mathbf{y} \wedge \mathbf{z})$$

- $\mathbf{x} \wedge \mathbf{y} = -\mathbf{y} \wedge \mathbf{x}$ (antisimetria) - logo também $\mathbf{x} \wedge \mathbf{x} = 0$
- $\bullet \ (\mathbf{x} + \mathbf{y}) \wedge \mathbf{z} = \mathbf{x} \wedge \mathbf{z} + \mathbf{y} \wedge \mathbf{z}$
- $(\lambda \mathbf{x}) \wedge \mathbf{y} = \lambda(\mathbf{x} \wedge \mathbf{y})$
- $\mathbf{x} \cdot (\mathbf{x} \wedge \mathbf{y}) = 0 = \mathbf{y} \cdot (\mathbf{x} \wedge \mathbf{y}).$ i.é, $(\mathbf{x} \wedge \mathbf{y}) \perp \mathbf{x}, \mathbf{y}$

Definições

Sejam $\mathbf{x}_0 \in \mathbb{R}^n$ e $\delta > 0$ (in \mathbb{R}):

- Bola aberta de centro \mathbf{x}_0 e raio δ : $B_{\delta}(\mathbf{x}_0) = {\mathbf{x} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{x}_0) < \delta};$
- Bola fechada de centro \mathbf{x}_0 e raio δ : $\overline{B_{\delta}(\mathbf{x}_0)} = \{\mathbf{x} \in \mathbb{R}^n : \ d(\mathbf{x}, \mathbf{x}_0) \leq \delta\};$
- Esfera de centro \mathbf{x}_0 e raio δ : $S_{\delta}(\mathbf{x}_0) = \{\mathbf{x} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{x}_0) = \delta\}.$

Seja $A \subseteq \mathbb{R}^n$ e $\mathbf{p} \in \mathbb{R}^n$

• p é dito ponto interior de A se

$$\exists \ \delta > 0 : B_{\delta}(\mathbf{p}) \subseteq A;$$

• p é dito ponto exterior de A se

$$\exists \ \delta > 0 : B_{\delta}(\mathbf{p}) \cap A = \emptyset;$$

• p é dito ponto de fronteira de A se

$$\forall \delta > 0 \quad \exists \mathbf{q} \in B_{\delta}(\mathbf{p}) \setminus A \quad e \quad \exists \mathbf{r} \in B_{\delta}(\mathbf{p}) \cap A;$$

• p é dito ponto de acumulação de A se

$$\forall \delta > 0 \ \exists \mathbf{x} \in B_{\delta}(\mathbf{p}) \cap A \setminus \{\mathbf{p}\}\ .$$

Definimos

- ullet A é dito um **conjunto aberto** se todo seu ponto é ponto interior;
- A é dito um conjunto fechado se seu complementar é aberto;
- A é dito um **conjunto limitado** se existe $\delta > 0$ tal que $A \subseteq B_{\delta}(\mathbf{0})$.
- Vizinhança de \mathbf{x}_0 : um qualquer aberto que contenha \mathbf{x}_0

Teorema. A é fechado \iff A contém todo seu ponto de acum. \iff A contém todo seu ponto de fronteira.

Algumas notações

- ∂A : fronteira de A (conj. dos pontos de fronteira)
- int(A): interior de A (conj. dos pontos interiores)
- \overline{A} : fecho de A (i.é, $A \cup \partial A$)
- A^c : complementar de A

Teorema (Bolzano-Weiestrass). Se $A \subseteq \mathbb{R}^n$ é limitado e possui infinitos elementos então ele possui pelo menos um ponto de acumulação.

2 Funções a valores vetoriais - curvas

Consideremos $D \subseteq \mathbb{R}$ e

$$f: D \to \mathbb{R}^n: t \mapsto \mathbf{f}(t) = (f_1(t), f_2(t), ..., f_n(t))$$

2.1 Limites e continuidade

Seja p um ponto de acumulação de D, e $\mathbf{L} \in \mathbb{R}^n$,

• $\lim_{t \to p} \mathbf{f}(t) = \mathbf{L}$ significa

$$\forall \, \varepsilon > 0 \,\, \exists \, \delta > 0 \,\, \text{tal que} \,\, t \in D \,\, e \,\, 0 < |t-p| < \delta \,\, \text{implica} \,\, \|\mathbf{f}(t) - \mathbf{L}\| < \varepsilon$$

• se a afirmação acima é falsa para todo $\mathbf{L} \in \mathbb{R}^n$ dizemos que $\lim_{t \to p} \mathbf{f}(t)$ não existe

Teorema.

$$\lim_{t \to p} \mathbf{f}(t) = \mathbf{L} \iff \lim_{t \to p} f_i(t) = L_i \text{ para } i = 1, ..., n$$

Também podemos definir $\lim_{t\to\pm\infty}\mathbf{f}(t)=\mathbf{L}$ como em cálculo 1.

Seja $p \in D$ e de acumulação para D

• dizemos que f é contínua em p, se

$$\lim_{t \to p} \mathbf{f}(t) = \mathbf{f}(p)$$

ullet caso contrário, dizemos que f ullet descontínua em p,

(lembre que se $p \notin D$, não se fala em continuidade ou descontinuidade)

- se $\mathbf f$ é contínua em p para todo $p \in A$ dizemos $\mathbf f$ é contínua em A
- se \mathbf{f} é contínua em p para todo $p \in D$ dizemos \mathbf{f} é contínua

2.2 Definição de derivada

Seja $p \in D$ um ponto de acumulação de D.

• Se existir

$$\lim_{t \to p} \frac{\mathbf{f}(t) - \mathbf{f}(p)}{t - p} = \mathbf{L} \in \mathbb{R}^n,$$

então dizemos que

- f é derivável em p,
- L é a derivada de f em p; notação: f'(p) := L.
- caso contrário, dizemos que f não é derivável em p.
- se **f** é derivável em p para todo $p \in A$ dizemos **f** é derivável em A,
- se **f** é derivável em p para todo $p \in D$ dizemos **f** é derivável.

Podemos então definir uma nova função: a função derivada de f:

$$\mathbf{f}': D_{\mathbf{f}'} \to \mathbb{R}^n: p \mapsto \mathbf{f}'(p)$$

onde $D_{\mathbf{f}'} = \{ p \in D : p \text{ \'e de acumul. de } D \text{ e } \mathbf{f} \text{ \'e deriv\'avel em } p \}$

Vale:

- **f** é derivável em $p \iff f_i$ é derivável em p para todos i = 1, ..., n
- se f é derivável em p então o gráfico da reta
 r(t) = f(p) + f'(p)(t p)
 é a reta tangente em (p, f(p)) ao gráfico de f.
 i.é, a única reta tal que f(t)-r(t)/(t-p) → 0 quando t → p

Propriedades (regras de cálculo de derivadas):

Sejam,
$$\mathbf{f}, \mathbf{g} : D \to \mathbb{R}^n$$
 e $\lambda : D \to \mathbb{R}$ deriváveis (com $D \subseteq \mathbb{R}$)

- $(\mathbf{f} + \mathbf{g})' = \mathbf{f}' + \mathbf{g}'$

- $(\mathbf{f} \cdot \mathbf{g})' = \mathbf{f}' \cdot \mathbf{g} + \mathbf{f} \cdot \mathbf{g}'$

- $(\lambda \mathbf{f})' = \lambda' \mathbf{f} + \lambda \mathbf{f}'$

Sejam,
$$\mathbf{f}: D \to \mathbb{R}^n$$
 e $\lambda: C \to D$ deriváveis (com $C, D \subseteq \mathbb{R}$) - $[\mathbf{f} \circ \lambda)]'(t) = \mathbf{f}'(\lambda(t))\lambda'(t)$

2.3 Curvas

Definição

Chamamos Curva em \mathbb{R}^n : uma função contínua $\gamma:I\to\mathbb{R}^n$ onde I é intervalo.

Definimos:

- Traço da curva: a imagem
- equação paramêtrica/vetorial da curva: a lei
- Dizemos que a curva é simples se γ é injetora.
- Dizemos que a curva é **fechada** se I = [a, b] e $\gamma(a) = \gamma(b)$.
- Dizemos que a curva é **fechada simples** se fechada e $\gamma|_{[a,b)}$ injetora.
- Dizemos que a curva é derivável se γ é derivável

Seja $p \in I$: se γ é derivável em p e $\gamma'(p) \neq 0$ então

- $\gamma'(p)$ é um vetor tangente ao traço, no ponto $\gamma(p)$
- $\widehat{\mathbf{t}}(p) = \gamma'(p) / \|\gamma'(p)\|$ é um vetor unitário tangente ao traço, no ponto $\gamma(p)$.
- assim, o traço da curva(reta) $\mathbf{r}(t) = \gamma(p) + \hat{\mathbf{t}}(p)t$ é uma **reta tangente ao** traço de γ no ponto $\gamma(p)$.
- Dizemos que a curva é **regular** se γ é derivável e $\gamma' \neq 0$ em todo I: logo o traço possui reta tangente em todo ponto.
- Interpretação cinemática: $\gamma(t)$ pode representar o movimento de um corpo em \mathbb{R}^n : t representa o tempo e γ a posição. neste caso γ' é a velocidade vetorial, γ'' é a aceleração vetorial.
- Dizemos que a curva é parametrizada pelo comprimento de arco quando $\|\gamma'\| = 1$ em todo ponto (traço percorrido com velocide 1).

2.4 Coordenadas polares no plano

Representamos o ponto $(x, y) \in \mathbb{R}^2$ como

$$\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \end{cases}$$

Cálculo de ρ e θ :

$$\rho = \sqrt{x^2 + y^2},$$

$$\theta = 2k\pi + \begin{cases} arctg(y/x) & para \ x > 0 \\ arctg(y/x) + \pi & para \ x < 0 \\ \pi/2 & para \ x = 0, \ y > 0 \\ 3\pi/2 & para \ x = 0, \ y < 0 \\ q.q. & para \ x = 0, \ y = 0 \end{cases} \qquad (k \in \mathbb{Z}).$$

Podemos usar para descrever curvas em \mathbb{R}^2 :

a curva dada (em coordenadas polares) por $\rho(\theta)=f(\theta)\geq 0,\,\theta\in[a,b]$ é a curva de eq. paramétrica

$$\begin{cases} x = f(\theta)\cos(\theta) \\ y = f(\theta)\sin(\theta), \end{cases} \quad \theta \in [a, b].$$