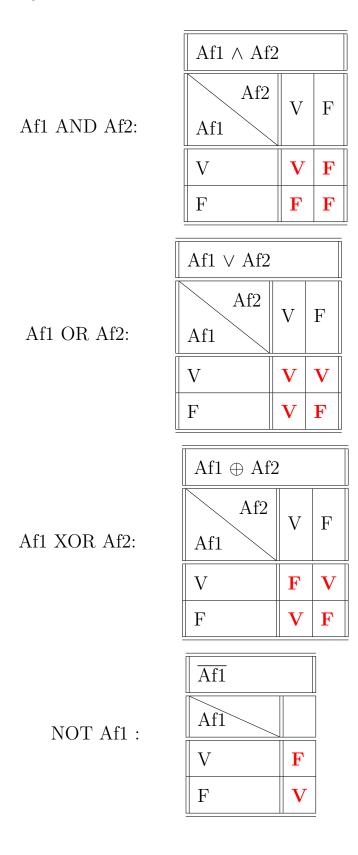
1 Lógica

1.1 Conectivos lógicos (AND OR XOR NOT)

Nome:	AND	OR	XOR	NOT
em port:	e	ou	ou exclus.	não
Símbolo	^	V	\oplus	-"" (ou "")
em C	&&			!
	binário			unário



Propriedades

(aqui "="significa "é equivalente a")

Leis distributivas AND/OR:

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$
$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$$

Leis de De Morgan

$$\frac{\overline{(a \vee b)}}{\overline{(a \wedge b)}} = \overline{a} \wedge \overline{b}$$

$$\overline{a} \vee \overline{b}$$

Expressão para XOR:

$$a \oplus b = (a \lor b) \land \overline{a \land b} = (a \land \overline{b}) \lor (\overline{a} \land b)$$

Dupla negação:

$$\overline{\overline{a}} = a$$

1.2 Implicações (\Longrightarrow, \iff)

Af1 implica Af2:

$Af1 \Longrightarrow Af2$					
Af1 Af2	V	F			
V	V	\mathbf{V}			
F	F	V			

Af1 se e só se Af2:

$Af1 \iff Af2$				
Af1 Af2	V	F		
V	V	\mathbf{F}		
F	\mathbf{F}	V		

Propriedades

$$(a \Longrightarrow b) = \overline{a} \vee b$$

$$(a\Longrightarrow b)=(\overline{b}\Longrightarrow \overline{a})\;(\textbf{Af. contranominal/contrapositiva})$$

$$(a \Longleftrightarrow b) = (\overline{b} \Longleftrightarrow \overline{a})$$

CUIDADO: $(a \Longrightarrow b)$ não é o mesmo que $(b \Longrightarrow a)$ (Af. reciproca)

Observação: Podemos usar "\iffirm\" no lugar do "=": ex: $(\overline{a \wedge b}) \iff (\overline{a} \vee \overline{b})$

Quantificadores: $(\forall,$ 1.3 ∃)

• quantificador universal: \forall (para todo) a afirmação " $\forall x$ vale Af(x)" é:

VERDADEIRA se Af(x) vale para todo x

FALSA se Af(x) é falsa para pelo menos um x (existe um x tal que Af(x) é falsa)

• quantificador existencial: ∃ (existe) a afirmação " $\exists x$ tal que vale Af(x)" é : VERDADEIRA se Af(x) vale para pelo menos um xFALSA se Af(x) é falsa para todo x

Negação de afirmações com quantificadores

$$\overline{\exists x \in X \text{ vale } p(x)} \Longleftrightarrow \exists x \in X : \overline{p(x)}$$

$$\overline{\exists x \in X : p(x)} \Longleftrightarrow \forall x \in X \text{ vale } \overline{p(x)}$$

Negando afirmações com mais quantificadores:

$$\frac{\exists x \exists y : p(x,y)}{\exists x : \forall y \text{ vale } p(x,y)} \iff \left(\exists x : \forall y \text{ vale } \overline{p(x,y)}\right)$$

$$\frac{\exists x : \forall y \text{ vale } p(x,y)}{\exists x : \forall y \text{ vale } p(x,y)} \iff \left(\forall x \exists y : \overline{p(x,y)}\right)$$

2 Regras de inferência

Regras para provas diretas

- 1) Dado um exemplo de $x \in U$: p(x) é falso, concluímos $\forall x \in U$ vale p(x).
- 2) Dado um exemplo de $x \in U$: p(x) é verdadeiro, concluímos $\exists x \in U$: p(x).
- 3) se $a \in b$, concluímos $a \wedge b$.
- 4) se a ou b, concluímos $a \vee b$.
- 5) se \overline{a} ou b, concluímos $a \Longrightarrow b$.
- 6) se $a \Longrightarrow b \in b \Longrightarrow a$, concluímos $a \Longleftrightarrow b$.
- 7) se $a \in a \Longrightarrow b$, concluímos b. (inferência direta)
- 8) se $a \Longrightarrow b \in b \Longrightarrow c$, concluímos $a \Longrightarrow c$. (transitividade)
- 9) se o fato que vale a permite mostrar que vale b, concluímos $a \Longrightarrow b$.

 (princípio da prova condicional)
- 10) se dado x, o fato que $x \in U$ permite mostrar que vale q(x), concluímos $\forall x \in U$ vale q(x). (princípio da generalização universal)

Regras para provas indiretas

provas contrapositivas:

11) se $\bar{b} \Longrightarrow \bar{a}$, concluímos $a \Longrightarrow b$.

provas por contradição:

12) se supondo $a \in \overline{b}$ podemos obter $c \in \overline{c}$, concluímos $a \Longrightarrow b$. (redução ao absurdo)

(mais em geral, se supondo a podemos obter c e \overline{c} , concluímos \overline{a}).

3 Indução

Princípio de Indução (fraca)

Seja $U \subseteq \mathbb{N}$ com as propriedades:

- $1 \in U$,
- $\forall k \in \mathbb{N}$ vale "se $k \in U$ então $k+1 \in U$ ".

Então $U = \mathbb{N}$.

Princípio de Indução (fraca) (para afirmações)

Seja p(n) uma afirmação sobre $n \in \mathbb{N}$ tal que

- p(1) é verdade,
- $\forall k \in \mathbb{N}$ vale "se p(k) é verdade então p(k+1) é verdade".

Então p(n) é verdade $\forall n \in \mathbb{N}$

Princípio de Indução (forte) (para afirmações)

Seja p(n) uma afirmação sobre $n \in \mathbb{N}$ tal que

- p(1) é verdade,
- $\forall k \in \mathbb{N}$ vale "se p(1)...p(k) são verdade então p(k+1) é verdade".

Então p(n) é verdade $\forall n \in \mathbb{N}$

Variantes (outro ponto inicial)

Seja p(n) uma afirmação sobre $n \in \mathbb{N}$ tal que

- $p(n_0)$ é verdade,
- $\forall k \geq n_0$ vale "se p(k) é verdade então p(k+1) é verdade". (ou "se $p(n_0)...p(k)$ são verdade então p(k+1) é verdade".).

Então p(n) é verdade $\forall n \geq n_0$.

Etapas de uma prova por indução (fraca):

- Provar o caso base p(1).
- Provar o passo de indução:
 - \blacksquare assumir a **Hipótese de indução** p(k);
 - lacktriangle provar p(k+1) usando apenas p(k) (e regras de inferência).
- Concluir pelo princípio de indução.

4 Indução estrutural

A indução estrutural é usada para mostrar afirmações sobre objetos definidos recursivamente.

A ideia da indução estrutural é **reformular a afirmação que queremos** mostrar, de forma que dependa de un $n \in \mathbb{N}$, e depois prová-la por indução.

Exemplos:

• Seja A um conjunto de listas de zero e uns definido assim:

R1) "010"
$$\in A$$
 e "1" $\in A$

R2) se
$$x \in A$$
 então " $00x$ ", " $11x$ " $\in A$

Queremos mostrar que "todo elemento de A possui zeros em número par e uns em número ímpar"

Indução estrutural consiste em mostrar por indução que a afirmação p(n)="todo elemento de A gerado aplicando n vezes a regra R2 possui zeros em número par e uns em número ímpar" vale para todo n=0,1,2,...