(b) Use your answer in part (a) to solve the Dirichlet problem

$$
\begin{cases}u_{x x}+u_{y y}+u_{z z}=0 \quad \text { in } \mathbb{O} \\ u(0, y, z)=0, u(x, 0, z)=0, \quad u(x, y, 0)=h(x, y) \\ & \text { for } x>0, y>0, z>0\end{cases}
$$

19. Consider the four-dimensional laplacian $\Delta u=u_{x x}+u_{y y}+u_{z z}+u_{w w}$. Show that its fundamental solution is r^{-2}, where $r^{2}=x^{2}+y^{2}+z^{2}+$ w^{2}.
20. Use Exercise 19 to find the Green's function for the half-hyperspace $\{(x, y, z, w): w>0\}$.
21. The Neumann function $N(x, y)$ for a domain D is defined exactly like the Green's function in Section 7.3 except that (ii) is replaced by the Neumann boundary condition

$$
\begin{equation*}
\frac{\partial N}{\partial n}=c \quad \text { for } x \in \operatorname{bdy} D \tag{ii}
\end{equation*}
$$

for a suitable constant c.
(a) Show that $c=1 / A$, where A is the area of bdy $D .(c=0$ if $A=\infty)$
(b) State and prove the analog of Theorem 7.3.1, expressing the solution of the Neumann problem in terms of the Neumann function.
22. Solve the Neumann problem in the half-plane: $\Delta u=0$ in $\{y>0\}$, $\partial u / \partial y=h(x)$ on $\{y=0\}$ with $u(x, y)$ bounded at infinity. (Hint: Consider the problem satisfied by $v=\partial u / \partial y$.)
23. Solve the Neumann problem in the quarter-plane $\{x>0, y>0\}$.
24. Solve the Neumann problem in the half-space $\{z>0\}$.
25. Let the nonconstant function $u(\mathbf{x})$ satisfy the inequality $\Delta u \geq 0$ in a domain D in three dimensions. Prove that it cannot assume its maximum inside D. This is the maximum principle for subharmonic functions. (Hint: Let $f=\Delta u$, and let h denote u restricted to the boundary bdy D. Let $B \subset D$ be any ball and let \mathbf{x}_{0} be its center. Use (11) and (16) together with (7.3.7) in the ball B. Show that $u\left(\mathbf{x}_{0}\right)$ is at most the average of h on bdy B. Continue the proof as in Section 6.3.)

