they satisfy the ODE

$$
0=\Delta_{3} u=u_{r r}+\frac{2}{r} u_{r}
$$

So $\left(r^{2} u_{r}\right)_{r}=0$. It has the solutions $r^{2} u_{r}=c_{1}$. That is, $u=-c_{1} r^{-1}+c_{2}$. This important harmonic function

$$
\frac{\mathbf{1}}{\mathbf{r}}=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}
$$

is the analog of the special two-dimensional function $\log \left(x^{2}+y^{2}\right)^{1 / 2}$ found before. Strictly speaking, neither function is finite at the origin. In electrostatics the function $u(\mathbf{x})=r^{-1}$ turns out to be the electrostatic potential when a unit charge is placed at the origin. For further discussion, see Section 12.2.

EXERCISES

1. Show that a function which is a power series in the complex variable $x+i y$ must satisfy the Cauchy-Riemann equations and therefore Laplace's equation.
2. Find the solutions that depend only on r of the equation $u_{x x}+u_{y y}+$ $u_{z z}=k^{2} u$, where k is a positive constant. (Hint: Substitute $u=v / r$.)
3. Find the solutions that depend only on r of the equation $u_{x x}+u_{y y}=$ $k^{2} u$, where k is a positive constant. (Hint: Look up Bessel's differential equation in [MF] or in Section 10.5.)
4. Solve $u_{x x}+u_{y y}+u_{z z}=0$ in the spherical shell $0<a<r<b$ with the boundary conditions $u=A$ on $r=a$ and $u=B$ on $r=b$, where A and B are constants. (Hint: Look for a solution depending only on r.)
5. Solve $u_{x x}+u_{y y}=1$ in $r<a$ with $u(x, y)$ vanishing on $r=a$.
6. Solve $u_{x x}+u_{y y}=1$ in the annulus $a<r<b$ with $u(x, y)$ vanishing on both parts of the boundary $r=a$ and $r=b$.
7. Solve $u_{x x}+u_{y y}+u_{z z}=1$ in the spherical shell $a<r<b$ with $u(x, y, z)$ vanishing on both the inner and outer boundaries.
8. Solve $u_{x x}+u_{y y}+u_{z z}=1$ in the spherical shell $a<r<b$ with $u=0$ on $r=a$ and $\partial u / \partial r=0$ on $r=b$. Then let $a \rightarrow 0$ in your answer and interpret the result.
9. A spherical shell with inner radius 1 and outer radius 2 has a steady-state temperature distribution. Its inner boundary is held at $100^{\circ} \mathrm{C}$. Its outer boundary satisfies $\partial u / \partial r=-\gamma<0$, where γ is a constant.
(a) Find the temperature. (Hint: The temperature depends only on the radius.)
(b) What are the hottest and coldest temperatures?
(c) Can you choose γ so that the temperature on its outer boundary is $20^{\circ} \mathrm{C}$?
