## 160 CHAPTER 6 HARMONIC FUNCTIONS

they satisfy the ODE

 $0 = \Delta_3 u = u_{rr} + \frac{2}{r}u_r.$ 

So  $(r^2u_r)_r = 0$ . It has the solutions  $r^2u_r = c_1$ . That is,  $u = -c_1r^{-1} + c_2$ . This important harmonic function

$$\frac{1}{\mathbf{r}} = (x^2 + y^2 + z^2)^{-1/2}$$

is the analog of the special two-dimensional function  $\log(x^2 + y^2)^{1/2}$  found before. Strictly speaking, neither function is finite at the origin. In electrostatics the function  $u(\mathbf{x}) = r^{-1}$  turns out to be the electrostatic potential when a unit charge is placed at the origin. For further discussion, see Section 12.2.

## **EXERCISES**

- 1. Show that a function which is a power series in the complex variable x + iy must satisfy the Cauchy–Riemann equations and therefore Laplace's equation.
- 2. Find the solutions that depend only on *r* of the equation  $u_{xx} + u_{yy} + u_{zz} = k^2 u$ , where *k* is a positive constant. (*Hint:* Substitute u = v/r.)
- 3. Find the solutions that depend only on *r* of the equation  $u_{xx} + u_{yy} = k^2 u$ , where *k* is a positive constant. (*Hint:* Look up Bessel's differential equation in [MF] or in Section 10.5.)
- 4. Solve  $u_{xx} + u_{yy} + u_{zz} = 0$  in the spherical shell 0 < a < r < b with the boundary conditions u = A on r = a and u = B on r = b, where A and B are constants. (*Hint:* Look for a solution depending only on *r*.)
- 5. Solve  $u_{xx} + u_{yy} = 1$  in r < a with u(x, y) vanishing on r = a.
- 6. Solve  $u_{xx} + u_{yy} = 1$  in the annulus a < r < b with u(x, y) vanishing on both parts of the boundary r = a and r = b.
- 7. Solve  $u_{xx} + u_{yy} + u_{zz} = 1$  in the spherical shell a < r < b with u(x, y, z) vanishing on both the inner and outer boundaries.
- 8. Solve  $u_{xx} + u_{yy} + u_{zz} = 1$  in the spherical shell a < r < b with u = 0 on r = a and  $\frac{\partial u}{\partial r} = 0$  on r = b. Then let  $a \to 0$  in your answer and interpret the result.
- 9. A spherical shell with inner radius 1 and outer radius 2 has a steady-state temperature distribution. Its inner boundary is held at 100°C. Its outer boundary satisfies  $\partial u/\partial r = -\gamma < 0$ , where  $\gamma$  is a constant.
  - (a) Find the temperature. (*Hint:* The temperature depends only on the radius.)
  - (b) What are the hottest and coldest temperatures?
  - (c) Can you choose  $\gamma$  so that the temperature on its outer boundary is  $20^{\circ}$ C?