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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

� l

0
[u1(x, t) − u2(x, t)]2 dx ≤

� l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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(a) Show that u(x, t) > 0 at all interior points 0 < x < 1, 0 < t < ∞.
(b) For each t > 0, let μ(t) = the maximum of u(x, t) over 0 ≤ x ≤ 1.

Show that μ(t) is a decreasing (i.e., nonincreasing) function of t.
(Hint: Let the maximum occur at the point X(t), so that μ(t) =
u(X(t), t). Differentiate μ(t), assuming that X(t) is differentiable.)

(c) Draw a rough sketch of what you think the solution looks like (u
versus x) at a few times. (If you have appropriate software available,
compute it.)

4. Consider the diffusion equation ut = uxx in {0 < x < 1, 0 < t < ∞} with
u(0, t) = u(1, t) = 0 and u(x, 0) = 4x(1 − x).
(a) Show that 0 < u(x, t) < 1 for all t > 0 and 0 < x < 1.
(b) Show that u(x, t) = u(1 − x, t) for all t ≥ 0 and 0 ≤ x ≤ 1.
(c) Use the energy method to show that

� 1
0 u2 dx is a strictly decreasing

function of t.
5. The purpose of this exercise is to show that the maximum principle is not

true for the equation ut = xuxx, which has a variable coefficient.
(a) Verify that u = −2xt − x2 is a solution. Find the location of its

maximum in the closed rectangle {−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}.
(b) Where precisely does our proof of the maximum principle break

down for this equation?
6. Prove the comparison principle for the diffusion equation: If u and v are

two solutions, and if u ≤ v for t = 0, for x = 0, and for x = l, then u ≤ v
for 0 ≤ t < ∞, 0 ≤ x ≤ l.

7. (a) More generally, if ut − kuxx = f, vt − kvxx = g, f ≤ g, and u ≤ v
at x = 0, x = l and t = 0, prove that u ≤ v for 0 ≤ x ≤ l, 0 ≤ t < ∞.

(b) If vt − vxx ≥ sin x for 0 ≤ x ≤ π, 0 < t < ∞, and if v(0, t) ≥ 0,
v(π, t) ≥ 0 and v(x, 0) ≥ sin x , use part (a) to show that v(x, t) ≥
(1 − e−t ) sin x .

8. Consider the diffusion equation on (0, l) with the Robin boundary condi-
tions ux (0, t) − a0u(0, t) = 0 and ux (l, t) + alu(l, t) = 0. If a0 > 0 and
al > 0, use the energy method to show that the endpoints contribute to
the decrease of

� l
0 u2(x, t) dx . (This is interpreted to mean that part of

the “energy” is lost at the boundary, so we call the boundary conditions
“radiating” or “dissipative.”)

2.4 DIFFUSION ON THE WHOLE LINE

Our purpose in this section is to solve the problem

ut = kuxx (−∞ < x < ∞, 0 < t < ∞) (1)
u(x, 0) = φ(x). (2)
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By the same reasoning as we used above, we end up with an explicit formula
for w(x, t). It is

w(x, t) = 1√
4πkt

� ∞

0
[e−(x−y)2/4kt + e−(x+y)2/4kt ] φ(y) dy. (9)

This is carried out in Exercise 3. Notice that the only difference between (6)
and (9) is a single minus sign!

Example 2.

Solve (7) with φ(x) = 1. This is the same as Example 1 except for the
single sign. So we can copy from that example:

u(x, t) =
�

1

2
+ 1

2
erf

� x
4kt

��
+

�
1

2
− 1

2
erf

� x
4kt

��
= 1.

(That was stupid: We could have guessed it!) �

EXERCISES

1. Solve ut = kuxx; u(x, 0) = e−x ; u(0, t) = 0 on the half-line 0 < x < ∞.
2. Solve ut = kuxx; u(x, 0) = 0; u(0, t) = 1 on the half-line 0 < x < ∞.
3. Derive the solution formula for the half-line Neumann prob-

lem wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞; wx (0, t) = 0; w(x, 0) =
φ(x).

4. Consider the following problem with a Robin boundary condition:

DE: ut = kuxx on the half-line 0 < x < ∞
(and 0 < t < ∞)

IC: u(x, 0) = x for t = 0 and 0 < x < ∞
BC: ux (0, t) − 2u(0, t) = 0 for x = 0.

(∗)

The purpose of this exercise is to verify the solution formula for (∗). Let
f (x) = x for x > 0, let f (x) = x + 1 − e2x for x < 0, and let

v(x, t) = 1√
4πkt

� ∞

−∞
e−(x−y)2/4kt f (y)dy.

(a) What PDE and initial condition does v(x, t) satisfy for
−∞ < x < ∞?

(b) Let w = vx − 2v. What PDE and initial condition does w(x, t) satisfy
for −∞ < x < ∞?

(c) Show that f �(x) − 2 f (x) is an odd function (for x �= 0).
(d) Use Exercise 2.4.11 to show that w is an odd function of x.
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The solution formula at any other point (x, t) is characterized by the num-
ber of reflections at each end (x = 0, l). This divides the space-time picture
into diamond-shaped regions as illustrated in Figure 6. Within each diamond
the solution v(x, t) is given by a different formula. Further examples may be
found in the exercises.

The formulas explain in detail how the solution looks. However, the
method is impossible to generalize to two- or three-dimensional problems,
nor does it work for the diffusion equation at all. Also, it is very complicated!
Therefore, in Chapter 4 we shall introduce a completely different method
(Fourier’s) for solving problems on a finite interval.

EXERCISES

1. Solve the Neumann problem for the wave equation on the half-line 0 <
x < ∞.

2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the
wave equation utt = c2uxx for x > 0. Assume that the end x = 0 is free
(ux = 0); it is initially at rest but has a constant initial velocity V for
a < x < 2a and has zero initial velocity elsewhere. Plot u versus x at the
times t = 0, a/c, 3a/2c, 2a/c, and 3a/c.

3. A wave f (x + ct) travels along a semi-infinite string (0 < x < ∞) for
t < 0. Find the vibrations u(x, t) of the string for t > 0 if the end x = 0
is fixed.

4. Repeat Exercise 3 if the end is free.
5. Solve utt = 4uxx for 0 < x < ∞, u(0, t) = 0, u(x, 0) ≡ 1, ut (x, 0) ≡ 0

using the reflection method. This solution has a singularity; find its lo-
cation.

6. Solve utt = c2uxx in 0 < x < ∞, 0 ≤ t < ∞, u(x, 0) = 0, ut (x, 0) =V ,

ut (0, t) + aux (0, t) = 0,

where V , a, and c are positive constants and a > c.
7. (a) Show that φodd(x) = (sign x)φ(|x|).

(b) Show thatφext(x)=φodd(x−2l[x/2l]), where [·] denotes the greatest
integer function.

(c) Show that

φext(x) =

⎧
⎪⎨
⎪⎩

φ
�

x −
 x

l

!
l
�

if
 x

l

!
even

−φ
�
−x −

 x
l

!
l − l

�
if
 x

l

!
odd.

8. For the wave equation in a finite interval (0, l) with Dirichlet conditions,
explain the solution formula within each diamond-shaped region.
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EXERCISES

1. Solve utt = c2uxx + xt, u(x, 0) = 0, ut (x, 0) = 0.

2. Solve utt = c2uxx + eax , u(x, 0) = 0, ut (x, 0) = 0.

3. Solve utt = c2uxx + cos x, u(x, 0) = sin x, ut (x, 0) = 1 + x .

4. Show that the solution of the inhomogeneous wave equation

utt = c2uxx + f, u(x, 0) = φ(x), ut (x, 0) = ψ(x),

is the sum of three terms, one each for f , φ, and ψ .
5. Let f (x, t) be any function and let u(x, t) = (1/2c)

��
�

f , where � is the
triangle of dependence. Verify directly by differentiation that

utt = c2uxx + f and u(x, 0) ≡ ut (x, 0) ≡ 0.

(Hint: Begin by writing the formula as the iterated integral

u(x, t) = 1

2c

� t

0

� x+ct−cs

x−ct+cs
f (y, s) dy ds

and differentiate with care using the rule in the Appendix. This exercise
is not easy.)

6. Derive the formula for the inhomogeneous wave equation in yet another
way.
(a) Write it as the system

ut + cux = v, vt − cvx = f.

(b) Solve the first equation for u in terms of v as

u(x, t) =
� t

0
v(x − ct + cs, s) ds.

(c) Similarly, solve the second equation for v in terms of f .
(d) Substitute part (c) into part (b) and write as an iterated integral.

7. Let A be a positive-definite n × n matrix. Let

S(t) =
∞�

m=0

(−1)m A2mt2m+1

(2m + 1)!
.

(a) Show that this series of matrices converges uniformly for bounded
t and its sum S(t) solves the problem S��(t) + A2S(t) = 0, S(0) =
0, S�(0) = I, where I is the identity matrix. Therefore, it makes
sense to denote S(t) as A−1 sin tA and to denote its derivative S�(t)
as cos(tA).

(b) Show that the solution of (13) is (14).
8. Show that the source operator for the wave equation solves the problem

st t − c2sxx = 0, s(0) = 0, st (0) = I,

where I is the identity operator.
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EXERCISES

1. (a) Use the Fourier expansion to explain why the note produced by a
violin string rises sharply by one octave when the string is clamped
exactly at its midpoint.

(b) Explain why the note rises when the string is tightened.
2. Consider a metal rod (0 < x < l), insulated along its sides but not at its

ends, which is initially at temperature = 1. Suddenly both ends are plunged
into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

1 = 4

π

�
sin

πx
l

+ 1

3
sin

3πx
l

+ 1

5
sin

5πx
l

+ · · ·
�

3. A quantum-mechanical particle on the line with an infinite potential out-
side the interval (0, l) (“particle in a box”) is given by Schrödinger’s
equation ut = iuxx on (0, l) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

4. Consider waves in a resistant medium that satisfy the problem

utt = c2uxx − rut for 0 < x < l
u = 0 at both ends

u(x, 0) = φ(x) ut (x, 0) = ψ(x),

where r is a constant, 0 < r < 2πc/ l. Write down the series expansion
of the solution.

5. Do the same for 2πc/ l < r < 4πc/ l.
6. Separate the variables for the equation tut = uxx + 2u with the boundary

conditions u(0, t) = u(π, t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition u(x, 0) = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

The same method works for both the Neumann and Robin boundary conditions
(BCs). In the former case, (4.1.2) is replaced by ux (0, t) = ux (l, t) = 0. Then
the eigenfunctions are the solutions X(x) of

−X �� = λX, X �(0) = X �(l) = 0, (1)

other than the trivial solution X (x) ≡ 0.
As before, let’s first search for the positive eigenvalues λ = β2 > 0. As

in (4.1.6), X (x) = C cos βx + D sin βx , so that

X �(x) = −Cβ sin βx + Dβ cos βx .
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so that T (t) = e−iλt and X(x) satisfies exactly the same problem (1) as before.
Therefore, the solution is

u(x, t) = 1

2
A0 +

∞�

n=1

Ane−i(nπ/ l)2t cos
nπx

l
.

The initial condition requires the cosine expansion (6).

EXERCISES

1. Solve the diffusion problem ut = kuxx in 0 < x < l, with the mixed
boundary conditions u(0, t) = ux (l, t) = 0.

2. Consider the equation utt = c2uxx for 0 < x < l, with the boundary con-
ditions ux (0, t) = 0, u(l, t) = 0 (Neumann at the left, Dirichlet at the
right).
(a) Show that the eigenfunctions are cos[(n + 1

2 )πx/ l].
(b) Write the series expansion for a solution u(x, t).

3. Solve the Schrödinger equation ut = ikuxx for real k in the interval
0 < x < l with the boundary conditions ux (0, t) = 0, u(l, t) = 0.

4. Consider diffusion inside an enclosed circular tube. Let its length (circum-
ference) be 2l. Let x denote the arc length parameter where −l ≤ x ≤ l.
Then the concentration of the diffusing substance satisfies

ut = kuxx for − l ≤ x ≤ l

u(−l, t) = u(l, t) and ux (−l, t) = ux (l, t).

These are called periodic boundary conditions.
(a) Show that the eigenvalues are λ = (nπ/ l)2 for n = 0, 1, 2, 3, . . . .
(b) Show that the concentration is

u(x, t) = 1

2
A0 +

∞�

n=1

�
An cos

nπx
l

+ Bn sin
nπx

l

�
e−n2π2kt/ l2

.

4.3 THE ROBIN CONDITION

We continue the method of separation of variables for the case of the Robin
condition. The Robin condition means that we are solving −X �� = λX with
the boundary conditions

X � − a0 X = 0 at x = 0 (1)
X � + al X = 0 at x = l. (2)

The two constants a0 and al should be considered as given.


