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EXERCISES

1. Solve utt = c2uxx , u(x, 0) = ex , ut (x, 0) = sin x .

2. Solve utt = c2uxx , u(x, 0) = log(1 + x2), ut (x, 0) = 4 + x .

3. The midpoint of a piano string of tension T , density ρ, and length l is hit
by a hammer whose head diameter is 2a. A flea is sitting at a distance
l/4 from one end. (Assume that a < l/4; otherwise, poor flea!) How long
does it take for the disturbance to reach the flea?

4. Justify the conclusion at the beginning of Section 2.1 that every solution
of the wave equation has the form f (x + ct) + g(x − ct).

5. (The hammer blow) Let φ(x) ≡ 0 and ψ(x) = 1 for |x | < a and
ψ(x) = 0 for |x | ≥ a. Sketch the string profile (u versus x) at each of
the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c. [Hint:
Calculate

u(x, t) = 1

2c

� x+ct

x−ct
ψ(s) ds = 1

2c
{length of (x− ct, x + ct) ∩ (−a, a)}.

Then u(x, a/2c) = (1/2c) {length of (x − a/2, x + a/2) ∩ (−a, a)}.
This takes on different values for |x | < a/2, for a/2 < x < 3a/2, and
for x > 3a/2. Continue in this manner for each case.]

6. In Exercise 5, find the greatest displacement, maxx u(x, t), as a function
of t.

7. If both φ and ψ are odd functions of x, show that the solution u(x, t) of
the wave equation is also odd in x for all t.

8. A spherical wave is a solution of the three-dimensional wave equation
of the form u(r, t), where r is the distance to the origin (the spherical
coordinate). The wave equation takes the form

utt = c2

�
urr + 2

r
ur

�
(“spherical wave equation”).

(a) Change variables v = ru to get the equation for v: vt t = c2vrr .
(b) Solve for v using (3) and thereby solve the spherical wave equat-

ion.
(c) Use (8) to solve it with initial conditions u(r, 0) = φ(r ),

ut (r, 0) = ψ(r ), taking both φ(r) and ψ(r) to be even functions
of r.

9. Solve uxx − 3uxt − 4utt = 0, u(x, 0) = x2, ut (x, 0) = ex . (Hint: Fac-
tor the operator as we did for the wave equation.)

10. Solve uxx + uxt − 20utt = 0, u(x, 0) = φ(x), ut (x, 0) = ψ(x).
11. Find the general solution of 3utt + 10uxt + 3uxx = sin(x + t).
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is the cornerstone of the theory of relativity. It means that a signal located at
the position x0 at the instant t0 cannot move faster than the speed of light. The
domain of influence of (x0, t0) consists of all the points that can be reached by
a signal of speed c starting from the point x0 at the time t0. It turns out that the
solutions of the three-dimensional wave equation always travel at speeds ex-
actly equal to c and never slower. Therefore, the causality principle is sharper
in three dimensions than in one. This sharp form is called Huygens’s principle
(see Chapter 9).

Flatland is an imaginary two-dimensional world. You can think of yourself
as a waterbug confined to the surface of a pond. You wouldn’t want to live there
because Huygens’s principle is not valid in two dimensions (see Section 9.2).
Each sound you make would automatically mix with the “echoes” of your
previous sounds. And each view would be mixed fuzzily with the previous
views. Three is the best of all possible dimensions.

EXERCISES

1. Use the energy conservation of the wave equation to prove that the only
solution with φ ≡ 0 and ψ ≡ 0 is u ≡ 0. (Hint: Use the first vanishing
theorem in Section A.1.)

2. For a solution u(x, t) of the wave equation with ρ = T = c = 1, the energy
density is defined as e = 1

2 (u2
t + u2

x ) and the momentum density as p =
utux.
(a) Show that ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x .
(b) Show that both e(x, t) and p(x, t) also satisfy the wave equation.

3. Show that the wave equation has the following invariance properties.
(a) Any translate u(x − y, t), where y is fixed, is also a solution.
(b) Any derivative, say ux, of a solution is also a solution.
(c) The dilated function u(ax, at) is also a solution, for any constant a.

4. If u(x, t) satisfies the wave equation utt = uxx, prove the identity

u(x + h, t + k) + u(x − h, t − k) = u(x + k, t + h) + u(x − k, t − h)

for all x, t, h, and k. Sketch the quadrilateral Q whose vertices are the
arguments in the identity.

5. For the damped string, equation (1.3.3), show that the energy decreases.
6. Prove that, among all possible dimensions, only in three dimensions can

one have distortionless spherical wave propagation with attenuation. This
means the following. A spherical wave in n-dimensional space satisfies
the PDE

utt = c2

�
urr + n − 1

r
ur

�
,

where r is the spherical coordinate. Consider such a wave that has
the special form u(r, t) = α(r ) f (t − β(r )), where α(r) is called the
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This is one of the few fortunate examples that can be integrated. The
exponent is

− x2 − 2xy + y2 + 4kty
4kt

.

Completing the square in the y variable, it is

− (y + 2kt − x)2

4kt
+ kt − x .

We let p = (y + 2kt − x)/
√

4kt so that dp = dy/
√

4kt . Then

u(x, t) = ekt−x
� ∞

−∞
e−p2 dp√

π
= ekt−x .

By the maximum principle, a solution in a bounded interval can-
not grow in time. However, this particular solution grows, rather than
decays, in time. The reason is that the left side of the rod is initially
very hot [u(x, 0) → +∞ as x → −∞] and the heat gradually diffuses
throughout the rod. �

EXERCISES

1. Solve the diffusion equation with the initial condition

φ(x) = 1 for |x | < l and φ(x) = 0 for |x | > l.

Write your answer in terms of erf(x).
2. Do the same for φ(x) = 1 for x > 0 and φ(x) = 3 for x < 0.
3. Use (8) to solve the diffusion equation if φ(x) = e3x . (You may also use

Exercises 6 and 7 below.)
4. Solve the diffusion equation if φ(x) = e−x for x > 0 and φ(x) = 0 for

x < 0.
5. Prove properties (a) to (e) of the diffusion equation (1).
6. Compute

� ∞
0 e−x2

dx . (Hint: This is a function that cannot be integrated
by formula. So use the following trick. Transform the double integral� ∞

0 e−x2
dx ·

� ∞
0 e−y2

dy into polar coordinates and you’ll end up with a
function that can be integrated easily.)

7. Use Exercise 6 to show that
� ∞
−∞ e−p2

dp = √
π . Then substitute

p = x/
√

4kt to show that
� ∞

−∞
S(x, t) dx = 1.

8. Show that for any fixed δ > 0 (no matter how small),

max
δ≤|x |<∞

S(x, t) → 0 as t → 0.
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For the wave equation we have seen most of these properties already. That
there is no maximum principle is easy to see. Generally speaking, the wave
equation just moves information along the characteristic lines. In more than
one dimension we’ll see that it spreads information in expanding circles or
spheres.

For the diffusion equation we discuss property (ii), that singularities are
immediately lost, in Section 3.5. The solution is differentiable to all orders
even if the initial data are not. Properties (iii), (v), and (vi) have been shown
already. The fact that information is gradually lost [property (vii)] is clear
from the graph of a typical solution, for instance, from S(x, t).

As for property (i) for the diffusion equation, notice from formula (2.4.8)
that the value of u(x, t) depends on the values of the initial datum φ(y) for
all y, where −∞ < y < ∞. Conversely, the value of φ at a point x0 has an
immediate effect everywhere (for t > 0), even though most of its effect is
only for a short time near x0. Therefore, the speed of propagation is infinite.
Exercise 2(b) shows that solutions of the diffusion equation can travel at
any speed. This is in stark contrast to the wave equation (and all hyperbolic
equations).

As for (iv), there are several ways to see that the diffusion equation is not
well-posed for t < 0 (“backward in time”). One way is the following. Let

un(x, t) = 1

n
sin nx e−n2kt . (1)

You can check that this satisfies the diffusion equation for all x, t. Also,
un(x, 0) = n−1 sin nx → 0 uniformly as n → ∞. But consider any t < 0, say
t = −1. Then un(x, −1) = n−1 sin nx e+kn2 → ±∞ uniformly as n → ∞
except for a few x. Thus un is close to the zero solution at time t = 0 but not
at time t = −1. This violates the stability, in the uniform sense at least.

Another way is to let u(x, t) = S(x, t + 1). This is a solu-
tion of the diffusion equation ut = kuxx for t > −1, −∞ < x < ∞. But
u(0, t) → ∞ as t � −1, as we saw above. So we cannot solve backwards
in time with the perfectly nice-looking initial data (4πk)−1e−x2/4.

Besides, any physicist knows that heat flow, brownian motion, and so on,
are irreversible processes. Going backward leads to chaos.

EXERCISES

1. Show that there is no maximum principle for the wave equation.
2. Consider a traveling wave u(x, t) = f (x − at) where f is a given function

of one variable.
(a) If it is a solution of the wave equation, show that the speed must be

a = ±c (unless f is a linear function).
(b) If it is a solution of the diffusion equation, find f and show that the

speed a is arbitrary.


