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Example 2.

Find the solution of (4) that satisfies the auxiliary condition u(0, y) = y3.
Indeed, putting x = 0 in (7), we get y3 = f (e−0 y), so that f (y) = y3.
Therefore, u(x, y) = (e−x y)3 = e−3x y3. �

Example 3.

Solve the PDE

ux + 2xy2uy = 0. (8)

The characteristic curves satisfy the ODE dy/dx = 2xy2/1 = 2xy2.
To solve the ODE, we separate variables: dy/y2 = 2x dx ; hence
−1/y = x2 − C , so that

y = (C − x2)
−1

. (9)

These curves are the characteristics. Again, u(x, y) is a constant on each
such curve. (Check it by writing it out.) So u(x, y) = f (C), where f is an
arbitrary function. Therefore, the general solution of (8) is obtained by
solving (9) for C. That is,

u(x, y) = f
�

x2 + 1

y

�
. (10)

Again this is easily checked by differentiation, using the chain
rule: ux = 2x · f �(x2 + 1/y) and uy = −(1/y2) · f �(x2 + 1/y), whence
ux + 2xy2uy = 0. �

In summary, the geometric method works nicely for any PDE of the form
a(x, y)ux + b(x, y)uy = 0. It reduces the solution of the PDE to the solution
of the ODE dy/dx = b(x, y)/a(x, y). If the ODE can be solved, so can the
PDE. Every solution of the PDE is constant on the solution curves of the ODE.

Moral Solutions of PDEs generally depend on arbitrary functions (instead
of arbitrary constants). You need an auxiliary condition if you want to deter-
mine a unique solution. Such conditions are usually called initial or boundary
conditions. We shall encounter these conditions throughout the book.

EXERCISES

1. Solve the first-order equation 2ut + 3ux = 0 with the auxiliary condition
u = sin x when t = 0.

2. Solve the equation 3uy + uxy = 0. (Hint : Let v = uy.)
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3. Solve the equation (1 + x2)ux + uy = 0. Sketch some of the character-
istic curves.

4. Check that (7) indeed solves (4).
5. Solve the equation xux + yuy = 0.
6. Solve the equation

√
1 − x2ux + uy = 0 with the condition u(0, y) = y.

7. (a) Solve the equation yux + xuy = 0 with u(0, y) = e−y2
.

(b) In which region of the xy plane is the solution uniquely determined?
8. Solve aux + buy + cu = 0.
9. Solve the equation ux + uy = 1.

10. Solve ux + uy + u = ex+2y with u(x, 0) = 0.
11. Solve aux + buy = f (x, y), where f (x, y) is a given function. If a �= 0,

write the solution in the form

u(x, y) = (a2 + b2)
−1/2

�

L
f ds + g(bx − ay),

where g is an arbitrary function of one variable, L is the characteristic
line segment from the y axis to the point (x, y), and the integral is a line
integral. (Hint: Use the coordinate method.)

12. Show that the new coordinate axes defined by (3) are orthogonal.
13. Use the coordinate method to solve the equation

ux + 2uy + (2x − y)u = 2x2 + 3xy − 2y2.

1.3 FLOWS, VIBRATIONS, AND DIFFUSIONS

The subject of PDEs was practically a branch of physics until the twentieth
century. In this section we present a series of examples of PDEs as they occur
in physics. They provide the basic motivation for all the PDE problems we
study in the rest of the book. We shall see that most often in physical problems
the independent variables are those of space x, y, z, and time t.

Example 1. Simple Transport

Consider a fluid, water, say, flowing at a constant rate c along a horizontal
pipe of fixed cross section in the positive x direction. A substance, say
a pollutant, is suspended in the water. Let u(x, t) be its concentration in
grams/centimeter at time t. Then

ut + cux = 0. (1)

(That is, the rate of change ut of concentration is proportional to the
gradient ux. Diffusion is assumed to be negligible.) Solving this equation
as in Section 1.2, we find that the concentration is a function of (x – ct)


