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Therefore utt = c2uxx and u is called a “weak” solution of the wave
equation. In general, a weak solution of the wave equation is a distribu-
tion u for which

(u, φt t − c2φxx ) = 0

for all test functions φ(x, t). �

Example 11.

Let S denote the sphere {|x| = a}. Then the distribution φ �→
��

S φ d S
is denoted δ(|x| − a). This notation makes sense because formally
���

δ(|x| − a)φ(x) dx =
� ∞

0

� 2π

0

� π

0
φ(x) sin θ dθ dψ δ(r − a) r2dr

= a2

� 2π

0

� π

0
φ(x) sin θ dθ dψ

=
��

S

φ d S. �

Example 12.

Let C be a smooth curve in space. Then the line integral over C defines
the distribution φ �→

�
C φ ds, where ds denotes the arc length. �

EXERCISES

1. Verify directly from the definition that φ �→
� ∞
−∞ f (x) φ(x) dx is a dis-

tribution if f (x) is any function that is integrable on each bounded set.
2. Let f be any distribution. Verify that the functional f � defined by

( f �, φ) = −( f, φ�) satisfies the linearity and continuity properties and
therefore is another distribution.

3. Verify that the derivative is a linear operator on the vector space of
distributions.

4. Denoting p(x) = x+, show that p� = H and p�� = δ.
5. Verify, directly from the definition of a distribution, that the discon-

tinuous function u(x, t) = H (x − ct) is a weak solution of the wave
equation.

6. Use Chapter 5 directly to prove (19) for all C1 functions φ(x) that vanish
near ±π .

7. Let a sequence of L2 functions f n(x) converge to a function f (x) in the
mean-square sense. Show that it also converges weakly in the sense of
distributions.

8. (a) Show that the product δ(x)δ(y)δ(z) makes sense as a three-
dimensional distribution.
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(b) Show that δ(x) = δ(x)δ(y)δ(z), where the first delta function is the
three-dimensional one.

9. Show that no sense can be made of the square [δ(x)]2 as a distribution.
10. Verify that Example 11 is a distribution.
11. Verify that Example 12 is a distribution.
12. Let χa(x) = 1/2a for −a < x < a, and χa(x) = 0 for |x | > a. Show

that χa → δ weakly as a → 0.

12.2 GREEN’S FUNCTIONS, REVISITED

Here we reinterpret the Green’s functions and source functions for the most
important PDEs.

LAPLACE OPERATOR

We saw in Section 6.1 that 1/r is a harmonic function in three dimensions
except at the origin, where r = |x|. Let φ(x) be a test function. By Exercise
7.2.2 we have the identity

φ(0) = −
���

1

r
�φ(x)

dx
4π

.

This means precisely that

�

�
− 1

4πr

�
= δ(x) (1)

in three dimensions. Because δ(x) vanishes except at the origin, formula (1)
explains why 1/r is a harmonic function away from the origin and it explains
exactly how it differs from being harmonic at the origin.

Consider now the Dirichlet problem for the Poisson equation,

�u = f in D, u = 0 on bdy D.

Its solution is

u(x0) =
���

D

G(x, x0) f (x) dx (2)

from Theorem 7.3.2, where G(x, x0) is the Green’s function. Now fix the point
x0 ∈ D. The left side of (2) can be written as

u(x0) =
���

D

δ(x − x0)u(x) dx.
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solution of the problem

St = k�S for x ∈ D

S = 0 for x ∈ bdy D

S = δ(x − x0) for t = 0.

(13)

We denote it by S(x, x0, t). Let u(x, t) denote the solution of the same problem
but with the initial function φ(x). Let λn and Xn(x) denote the eigenvalues
and (normalized) eigenfunctions for the domain D, as in Chapter 11. Then

u(x, t) =
∞�

n=1

cne−λnkt Xn(x)

=
∞�

n=1

⎡
⎣

���

D

φ(y)Xn(y) dy

⎤
⎦e−λnkt Xn(x)

=
���

D

� ∞�

n=1

e−λnkt Xn(x)Xn(y)

�
φ(y) dy,

assuming that the switch of summation and integration is justified. Therefore,
we have the formula

S(x, x0, t) =
∞�

n=1

e−λnkt Xn(x)Xn(x0). (14)

However, the convergence of this series is a delicate question that we do not
pursue.

EXERCISES

1. Give an interpretation of G(x, x0) as a stationary wave or as the steady-
state diffusion of a substance.

2. An infinite string, at rest for t < 0, receives an instantaneous transverse
blow at t = 0 which imparts an initial velocity of V δ(x − x0), where V
is a constant. Find the position of the string for t > 0.

3. A semi-infinite string (0 < x < ∞), at rest for t < 0 and held at u = 0 at
the end, receives an instantaneous transverse blow at t = 0 which imparts
an initial velocity of V δ(x − x0), where V is a constant and x0 > 0. Find
the position of the string for t > 0.
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4. Let S(x, t) be the source function (Riemann function) for the one-
dimensional wave equation. Calculate ∂S/∂t and find the PDE and initial
conditions that it satisfies.

5. A force acting only at the origin leads to the wave equation utt = c2�u +
δ(x) f (t) with vanishing initial conditions. Find the solution.

6. Find the formula for the general solution of the inhomogeneous wave
equation in terms of the source function S(x, t).

7. Let R(x, t) = S(x − x0, t − t0) for t > t0 and let R(x, t) ≡ 0 for t < t0.
Let R(x, t0) remain undefined. Verify that R satisfies the inhomogeneous
diffusion equation

Rt − k �R = δ(x − x0)δ(t − t0).

8. (a) Prove that δ(a2 − r2) = δ(a − r )/2a for a > 0 and r > 0.
(b) Deduce that the three-dimensional Riemann function for the wave
equation for t > 0 is

S(x, t) = 1

2πc
δ(c2t2 − |x|2).

9. Derive the formula (12) for the Riemann function of the wave equation
in two dimensions.

10. Consider an applied force f (t) that acts only on the z axis and is inde-
pendent of z, which leads to the wave equation

utt = c2(uxx + uyy) + δ(x, y) f (t)

with vanishing initial conditions. Find the solution.
11. For any a �= b, derive the identity

δ[(λ − a)(λ − b)] = 1

|a − b| [δ(λ − a) + δ(λ − b)].

12. A rectangular plate {0 ≤ x ≤ a, 0 ≤ y ≤ b} initially has a hot spot
at its center so that its initial temperature distribution is u(x, y, 0) =
Mδ(x − a

2 , y − b
2 ). Its edges are maintained at zero temperature. Let k

be the diffusion constant. Find the temperature at any later time in the
form of a series.

13. Calculate the distribution �(log r ) in two dimensions.

12.3 FOURIER TRANSFORMS

Just as problems on finite intervals lead to Fourier series, problems on the
whole line (−∞, ∞) lead to Fourier integrals. To understand this relationship,
consider a function f (x) defined on the interval (−l, l). Its Fourier series, in
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THREE DIMENSIONS

In three dimensions the Fourier transform is defined as

F(k) =
� ∞

−∞

� ∞

−∞

� ∞

−∞
f (x)e−ik ·x dx,

where x = (x, y, z), k = (k1, k2, k3), and k · x = xk1 + yk2 + zk3. Then one
recovers f (x) from the formula

f (x) =
� ∞

−∞

� ∞

−∞

� ∞

−∞
F(k) e+ik ·x dk

(2π )3 .

EXERCISES

1. Verify each entry in the table of Fourier transforms. (Use (15) as needed.)
2. Verify each entry in the table of properties of Fourier transforms.
3. Show that

1

2π2cr

� ∞

0
sin kct sin kr dk = 1

8π2cr

� ∞

−∞
[eik(ct−r ) − eik(ct+r )] dk

= 1

4πcr
[δ(ct − r ) − δ(ct + r )].

4. Prove the following properties of the convolution.
(a) f ∗ g = g ∗ f .
(b) ( f ∗ g)� = f � ∗ g = f ∗ g�, where � denotes the derivative in one

variable.
(c) f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

5. (a) Show that δ ∗ f = f for any distribution f , where δ is the delta
function.

(b) Show that δ� ∗ f = f � for any distribution f , where � is the derivative.
6. Let f (x) be a continuous function defined for −∞ < x < ∞ such that its

Fourier transform F(k) satisfies

F(k) = 0 for |k| > π.

Such a function is said to be band-limited.
(a) Show that

f (x) =
∞�

n=−∞
f (n)

sin[π (x − n)]

π (x − n)
.

Thus f (x) is completely determined by its values at the integers! We
say that f (x) is sampled at the integers.

(b) Let F(k) = 1 in the interval (−π, π ) and F(k) = 0 outside this interval.
Calculate both sides of (a) directly to verify that they are equal.

(Hints: (a) Write f (x) in terms of F(k). Notice that f (n) is the nth
Fourier coefficient of F(k) on [−π,π ]. Deduce that F(k) = � f (n)e−ink
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in [−π,π ]. Substitute this back into f (x), and then interchange the integral
with the series.)

7. (a) Let f (x) be a continuous function on the line (−∞,∞) that vanishes
for large |x |. Show that the function

g(x) =
∞�

n=−∞
f (x + 2πn)

is periodic with period 2π .
(b) Show that the Fourier coefficients cm of g(x) on the interval (−π, π )

are F(m)/2π , where F(k) is the Fourier transform of f (x).
(c) In the Fourier series of g(x) on (−π, π ), let x = 0 to obtain the Poisson

summation formula
∞�

n=−∞
f (2πn) =

∞�

n=−∞

1

2π
F(n).

8. Let χa(x) be the function in Exercise 12.1.12. Compute its Fourier trans-
form χ̂a(k). Use it to show that χ̂a → 1 weakly as a → 0.

9. Use Fourier transforms to solve the ODE −uxx + a2u = δ, where
δ = δ(x) is the delta function.

12.4 SOURCE FUNCTIONS

In this section we show how useful the Fourier transform can be in finding
the source function of a PDE from scratch.

DIFFUSION

The source function is properly defined as the unique solution of the problem

St = Sxx (−∞ < x < ∞, 0 < t < ∞), S(x, 0) = δ(x) (1)

where we have taken the diffusion constant to be 1. Let’s assume no knowledge
at all about the form of S(x, t). We only assume it has a Fourier transform as
a distribution in x, for each t. Call its transform

Ŝ(k, t) =
� ∞

−∞
S(x, t)e−ikx dx .

(Here k denotes the frequency variable, not the diffusion constant.) By property
(i) of Fourier transforms, the PDE takes the form

∂ Ŝ
∂t

= (ik)2 Ŝ = −k2 Ŝ, Ŝ(k, 0) = 1. (2)

For each k this is an ODE that is easy to solve. The solution is

Ŝ(k, t) = e−k2t . (3)
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This improper integral clearly converges for y > 0. It is split into two parts
and integrated directly as

u(x, y) = 1

2π (i x − y)
eikx−ky

����
∞

0

+ 1

2π (i x + y)
eikx+ky

����
0

−∞

= 1

2π

�
1

y − i x
+ 1

y + i x

�
= y

π (x2 + y2)
,

(17)

in agreement with Exercise 7.4.6.

EXERCISES

1. Use the Fourier transform directly to solve the heat equation with a con-
vection term, namely, ut = κuxx + μux for −∞ < x < ∞, with an initial
condition u(x, 0) = φ(x), assuming that u(x, t) is bounded and κ > 0.

2. Use the Fourier transform in the x variable to find the harmonic function in
the half-plane {y > 0} that satisfies the Neumann condition ∂u/∂y = h(x)
on {y = 0}.

3. Use the Fourier transform to find the bounded solution of the equation
−�u + m2u = δ(x) in free three-dimensional space with m > 0.

4. If p(x) is a polynomial and f (x) is any continuous function on the interval
[a, b], show that g(x) =

� b
a p(x − s) f (s) ds is also a polynomial.

5. In the three-dimensional half-space {(x, y, z) : z > 0}, solve the Laplace
equation with u(x, y, 0) = δ(x, y), where δ denotes the delta function, as
follows.
(a) Show that

u(x, y, z) =
� ∞

−∞

� ∞

−∞
eikx+ily e−z

√
k2+l2 dkdl

4π2
.

(b) Letting ρ =
√

k2 + l2, r =
�

x2 + y2, and θ be the angle between
(x, y) and (k, l), so that xk + yl = ρr cos θ , show that

u(x, y, z) =
� 2π

0

� ∞

0
eiρrcosθe−zρ ρ dρ

dθ

4π2
.

(c) Carry out the integral with respect to ρ and then use an extensive
table of integrals to evaluate the θ integral.

6. Use the Fourier transform to solve uxx + uyy = 0 in the infinite strip
{0 < y < 1, −∞ < x < ∞}, together with the conditions u(x, 0) = 0
and u(x, 1) = f (x).


