Therefore $u_{tt} = c^2 u_{xx}$ and *u* is called a "weak" solution of the wave equation. In general, a *weak solution* of the wave equation is a distribution *u* for which

$$(u,\phi_{tt}-c^2\phi_{xx})=0$$

for all test functions $\phi(x, t)$.

Example 11.

Let *S* denote the sphere $\{|\mathbf{x}| = a\}$. Then the distribution $\phi \mapsto \iint_S \phi \, dS$ is denoted $\delta(|\mathbf{x}| - a)$. This notation makes sense because formally

$$\iiint \delta(|\mathbf{x}| - a)\phi(\mathbf{x}) \, d\mathbf{x} = \int_0^\infty \int_0^{2\pi} \int_0^\pi \phi(\mathbf{x}) \sin\theta \, d\theta \, d\psi \, \delta(r - a) \, r^2 dr$$
$$= a^2 \int_0^{2\pi} \int_0^\pi \phi(\mathbf{x}) \sin\theta \, d\theta \, d\psi$$
$$= \iint_S \phi \, dS.$$

Example 12.

Let *C* be a smooth curve in space. Then the line integral over *C* defines the distribution $\phi \mapsto \int_C \phi \, ds$, where *ds* denotes the arc length.

EXERCISES

- 1. Verify directly from the definition that $\phi \mapsto \int_{-\infty}^{\infty} f(x) \phi(x) dx$ is a distribution if f(x) is any function that is integrable on each bounded set.
- 2. Let f be any distribution. Verify that the functional f' defined by $(f', \phi) = -(f, \phi')$ satisfies the linearity and continuity properties and therefore is another distribution.
- 3. Verify that the derivative is a linear operator on the vector space of distributions.
- 4. Denoting $p(x) = x^+$, show that p' = H and $p'' = \delta$.
- 5. Verify, directly from the definition of a distribution, that the discontinuous function u(x, t) = H(x ct) is a weak solution of the wave equation.
- 6. Use Chapter 5 directly to prove (19) for all C^1 functions $\phi(x)$ that vanish near $\pm \pi$.
- 7. Let a sequence of L^2 functions $f_n(x)$ converge to a function f(x) in the mean-square sense. Show that it also converges weakly in the sense of distributions.
- 8. (a) Show that the product $\delta(x)\delta(y)\delta(z)$ makes sense as a threedimensional distribution.

- (b) Show that $\delta(\mathbf{x}) = \delta(x)\delta(y)\delta(z)$, where the first delta function is the three-dimensional one.
- 9. Show that no sense can be made of the square $[\delta(x)]^2$ as a distribution.
- 10. Verify that Example 11 is a distribution.
- 11. Verify that Example 12 is a distribution.
- 12. Let $\chi_a(x) = 1/2a$ for -a < x < a, and $\chi_a(x) = 0$ for |x| > a. Show that $\chi_a \to \delta$ weakly as $a \to 0$.

12.2 GREEN'S FUNCTIONS, REVISITED

Here we reinterpret the Green's functions and source functions for the most important PDEs.

LAPLACE OPERATOR

We saw in Section 6.1 that 1/r is a harmonic function in three dimensions except at the origin, where $r = |\mathbf{x}|$. Let $\phi(\mathbf{x})$ be a test function. By Exercise 7.2.2 we have the identity

$$\phi(\mathbf{0}) = -\iiint \frac{1}{r} \Delta \phi(\mathbf{x}) \frac{d\mathbf{x}}{4\pi}$$

This means precisely that

$$\Delta\left(-\frac{1}{4\pi r}\right) = \delta(\mathbf{x}) \tag{1}$$

in three dimensions. Because $\delta(\mathbf{x})$ vanishes except at the origin, formula (1) explains why 1/r is a harmonic function away from the origin and it explains exactly how it differs from being harmonic at the origin.

Consider now the Dirichlet problem for the Poisson equation,

$$\Delta u = f \quad \text{in } D, \qquad u = 0 \quad \text{on bdy } D.$$

Its solution is

$$u(\mathbf{x}_0) = \iiint_D G(\mathbf{x}, \mathbf{x}_0) f(\mathbf{x}) \, d\mathbf{x}$$
(2)

from Theorem 7.3.2, where $G(\mathbf{x}, \mathbf{x}_0)$ is the Green's function. Now fix the point $\mathbf{x}_0 \in D$. The left side of (2) can be written as

$$u(\mathbf{x}_0) = \iiint_D \delta(\mathbf{x} - \mathbf{x}_0) u(\mathbf{x}) \, d\mathbf{x}.$$

342 CHAPTER 12 DISTRIBUTIONS AND TRANSFORMS

solution of the problem

$$S_t = k\Delta S \qquad \text{for } \mathbf{x} \in D$$

$$S = 0 \qquad \text{for } \mathbf{x} \in \text{bdy } D \qquad (13)$$

$$S = \delta(\mathbf{x} - \mathbf{x}_0) \qquad \text{for } t = 0.$$

We denote it by $S(\mathbf{x}, \mathbf{x}_0, t)$. Let $u(\mathbf{x}, t)$ denote the solution of the same problem but with the initial function $\phi(\mathbf{x})$. Let λ_n and $X_n(\mathbf{x})$ denote the eigenvalues and (normalized) eigenfunctions for the domain *D*, as in Chapter 11. Then

$$u(\mathbf{x}, t) = \sum_{n=1}^{\infty} c_n e^{-\lambda_n k t} X_n(\mathbf{x})$$

=
$$\sum_{n=1}^{\infty} \left[\iiint_D \phi(\mathbf{y}) X_n(\mathbf{y}) \, d\mathbf{y} \right] e^{-\lambda_n k t} X_n(\mathbf{x})$$

=
$$\iiint_D \left[\sum_{n=1}^{\infty} e^{-\lambda_n k t} X_n(\mathbf{x}) X_n(\mathbf{y}) \right] \phi(\mathbf{y}) \, d\mathbf{y},$$

assuming that the switch of summation and integration is justified. Therefore, we have the formula

$$S(\mathbf{x}, \mathbf{x}_0, t) = \sum_{n=1}^{\infty} e^{-\lambda_n k t} X_n(\mathbf{x}) X_n(\mathbf{x}_0).$$
(14)

However, the convergence of this series is a delicate question that we do not pursue.

EXERCISES

- 1. Give an interpretation of $G(\mathbf{x}, \mathbf{x}_0)$ as a stationary wave or as the steadystate diffusion of a substance.
- 2. An infinite string, at rest for t < 0, receives an instantaneous transverse blow at t = 0 which imparts an initial velocity of $V \delta(x x_0)$, where V is a constant. Find the position of the string for t > 0.
- 3. A semi-infinite string $(0 < x < \infty)$, at rest for t < 0 and held at u = 0 at the end, receives an instantaneous transverse blow at t = 0 which imparts an initial velocity of $V \delta(x x_0)$, where V is a constant and $x_0 > 0$. Find the position of the string for t > 0.

- 4. Let S(x, t) be the source function (Riemann function) for the onedimensional wave equation. Calculate $\partial S/\partial t$ and find the PDE and initial conditions that it satisfies.
- 5. A force acting only at the origin leads to the wave equation $u_{tt} = c^2 \Delta u + \delta(\mathbf{x}) f(t)$ with vanishing initial conditions. Find the solution.
- 6. Find the formula for the general solution of the inhomogeneous wave equation in terms of the source function $S(\mathbf{x}, t)$.
- 7. Let $R(x, t) = S(x x_0, t t_0)$ for $t > t_0$ and let $R(x, t) \equiv 0$ for $t < t_0$. Let $R(x, t_0)$ remain undefined. Verify that *R* satisfies the inhomogeneous diffusion equation

$$R_t - k \Delta R = \delta(x - x_0)\delta(t - t_0).$$

8. (a) Prove that δ(a² - r²) = δ(a - r)/2a for a > 0 and r > 0.
(b) Deduce that the three-dimensional Riemann function for the wave equation for t > 0 is

$$S(\mathbf{x},t) = \frac{1}{2\pi c} \delta(c^2 t^2 - |\mathbf{x}|^2).$$

- 9. Derive the formula (12) for the Riemann function of the wave equation in two dimensions.
- 10. Consider an applied force f(t) that acts only on the *z* axis and is independent of *z*, which leads to the wave equation

$$u_{tt} = c^2(u_{xx} + u_{yy}) + \delta(x, y)f(t)$$

with vanishing initial conditions. Find the solution.

11. For any $a \neq b$, derive the identity

$$\delta[(\lambda - a)(\lambda - b)] = \frac{1}{|a - b|} [\delta(\lambda - a) + \delta(\lambda - b)].$$

- 12. A rectangular plate $\{0 \le x \le a, 0 \le y \le b\}$ initially has a hot spot at its center so that its initial temperature distribution is $u(x, y, 0) = M\delta(x \frac{a}{2}, y \frac{b}{2})$. Its edges are maintained at zero temperature. Let *k* be the diffusion constant. Find the temperature at any later time in the form of a series.
- 13. Calculate the distribution $\Delta(\log r)$ in two dimensions.

12.3 FOURIER TRANSFORMS

Just as problems on finite intervals lead to Fourier series, problems on the whole line $(-\infty, \infty)$ lead to Fourier integrals. To understand this relationship, consider a function f(x) defined on the interval (-l, l). Its Fourier series, in

348 CHAPTER 12 DISTRIBUTIONS AND TRANSFORMS

THREE DIMENSIONS

In three dimensions the Fourier transform is defined as

$$F(\mathbf{k}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{x}) e^{-i\mathbf{k}\cdot\mathbf{x}} d\mathbf{x},$$

where $\mathbf{x} = (x, y, z)$, $\mathbf{k} = (k_1, k_2, k_3)$, and $\mathbf{k} \cdot \mathbf{x} = xk_1 + yk_2 + zk_3$. Then one recovers $f(\mathbf{x})$ from the formula

$$f(\mathbf{x}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mathbf{k}) e^{+i\mathbf{k}\cdot\mathbf{x}} \frac{d\mathbf{k}}{(2\pi)^3}.$$

EXERCISES

- 1. Verify each entry in the table of Fourier transforms. (Use (15) as needed.)
- 2. Verify each entry in the table of properties of Fourier transforms.
- 3. Show that

$$\frac{1}{2\pi^2 cr} \int_0^\infty \sin kct \sin kr \, dk = \frac{1}{8\pi^2 cr} \int_{-\infty}^\infty [e^{ik(ct-r)} - e^{ik(ct+r)}] \, dk$$
$$= \frac{1}{4\pi cr} [\delta(ct-r) - \delta(ct+r)].$$

- 4. Prove the following properties of the convolution.

 - (a) f * g = g * f.
 (b) (f * g)' = f' * g = f * g', where ' denotes the derivative in one variable.
 - (c) f * (g * h) = (f * g) * h.
- 5. (a) Show that $\delta * f = f$ for any distribution f, where δ is the delta function.
 - (b) Show that $\delta' * f = f'$ for any distribution f, where ' is the derivative.
- 6. Let f(x) be a continuous function defined for $-\infty < x < \infty$ such that its Fourier transform F(k) satisfies

$$F(k) = 0 \qquad \text{for } |k| > \pi.$$

Such a function is said to be *band-limited*. (a) Show that

$$f(x) = \sum_{n=-\infty}^{\infty} f(n) \frac{\sin[\pi(x-n)]}{\pi(x-n)}.$$

Thus f(x) is completely determined by its values at the integers! We say that f(x) is *sampled* at the integers.

(b) Let F(k) = 1 in the interval $(-\pi, \pi)$ and F(k) = 0 outside this interval. Calculate both sides of (a) directly to verify that they are equal.

(*Hints*: (a) Write f(x) in terms of F(k). Notice that f(n) is the *n*th Fourier coefficient of F(k) on $[-\pi, \pi]$. Deduce that $F(k) = \sum f(n)e^{-ink}$ in $[-\pi, \pi]$. Substitute this back into f(x), and then interchange the integral with the series.)

7. (a) Let f(x) be a continuous function on the line $(-\infty, \infty)$ that vanishes for large |x|. Show that the function

$$g(x) = \sum_{n = -\infty}^{\infty} f(x + 2\pi n)$$

is periodic with period 2π .

п

- (b) Show that the Fourier coefficients c_m of g(x) on the interval $(-\pi, \pi)$ are $F(m)/2\pi$, where F(k) is the Fourier transform of f(x).
- (c) In the Fourier series of g(x) on $(-\pi, \pi)$, let x = 0 to obtain the *Poisson* summation formula

$$\sum_{n=-\infty}^{\infty} f(2\pi n) = \sum_{n=-\infty}^{\infty} \frac{1}{2\pi} F(n).$$

- 8. Let $\chi_a(x)$ be the function in Exercise 12.1.12. Compute its Fourier transform $\hat{\chi}_a(k)$. Use it to show that $\hat{\chi}_a \to 1$ weakly as $a \to 0$.
- 9. Use Fourier transforms to solve the ODE $-u_{xx} + a^2 u = \delta$, where $\delta = \delta(x)$ is the delta function.

12.4 SOURCE FUNCTIONS

In this section we show how useful the Fourier transform can be in finding the source function of a PDE *from scratch*.

DIFFUSION

The source function is properly defined as the unique solution of the problem

$$S_t = S_{xx}$$
 (- $\infty < x < \infty$, 0 < t < ∞), $S(x, 0) = \delta(x)$ (1)

where we have taken the diffusion constant to be 1. Let's assume no knowledge at all about the form of S(x, t). We only assume it has a Fourier transform as a distribution in x, for each t. Call its transform

$$\hat{S}(k,t) = \int_{-\infty}^{\infty} S(x,t) e^{-ikx} dx$$

(Here *k* denotes the frequency variable, not the diffusion constant.) By property (i) of Fourier transforms, the PD<u>E takes the form</u>

$$\frac{\partial \hat{S}}{\partial t} = (ik)^2 \hat{S} = -k^2 \hat{S}, \qquad \hat{S}(k,0) = 1.$$
⁽²⁾

For each *k* this is an ODE that is easy to solve. The solution is

$$\hat{S}(k,t) = e^{-k^2 t}.$$
 (3)

352 CHAPTER 12 DISTRIBUTIONS AND TRANSFORMS

This improper integral clearly converges for y > 0. It is split into two parts and integrated directly as

$$u(x, y) = \frac{1}{2\pi(ix - y)} e^{ikx - ky} \Big|_{0}^{\infty} + \frac{1}{2\pi(ix + y)} e^{ikx + ky} \Big|_{-\infty}^{0}$$

$$= \frac{1}{2\pi} \left(\frac{1}{y - ix} + \frac{1}{y + ix} \right) = \frac{y}{\pi(x^{2} + y^{2})},$$
(17)

in agreement with Exercise 7.4.6.

EXERCISES

- 1. Use the Fourier transform directly to solve the heat equation with a convection term, namely, $u_t = \kappa u_{xx} + \mu u_x$ for $-\infty < x < \infty$, with an initial condition $u(x, 0) = \phi(x)$, assuming that u(x, t) is bounded and $\kappa > 0$.
- 2. Use the Fourier transform in the *x* variable to find the harmonic function in the half-plane $\{y > 0\}$ that satisfies the Neumann condition $\partial u/\partial y = h(x)$ on $\{y = 0\}$.
- 3. Use the Fourier transform to find the bounded solution of the equation $-\Delta u + m^2 u = \delta(\mathbf{x})$ in free three-dimensional space with m > 0.
- 4. If p(x) is a polynomial and f(x) is any continuous function on the interval [a, b], show that $g(x) = \int_a^b p(x s) f(s) ds$ is also a polynomial.
- 5. In the three-dimensional half-space $\{(x, y, z): z > 0\}$, solve the Laplace equation with $u(x, y, 0) = \delta(x, y)$, where δ denotes the delta function, as follows.
 - (a) Show that

$$u(x, y, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ikx + ily} e^{-z\sqrt{k^2 + l^2}} \frac{dkdl}{4\pi^2}.$$

(b) Letting $\rho = \sqrt{k^2 + l^2}$, $r = \sqrt{x^2 + y^2}$, and θ be the angle between (x, y) and (k, l), so that $xk + yl = \rho r \cos \theta$, show that

$$u(x, y, z) = \int_0^{2\pi} \int_0^\infty e^{i\rho r \cos\theta} e^{-z\rho} \rho \, d\rho \frac{d\theta}{4\pi^2}.$$

- (c) Carry out the integral with respect to ρ and then use an extensive table of integrals to evaluate the θ integral.
- 6. Use the Fourier transform to solve $u_{xx} + u_{yy} = 0$ in the infinite strip $\{0 < y < 1, -\infty < x < \infty\}$, together with the conditions u(x, 0) = 0 and u(x, 1) = f(x).