Therefore $u_{t t}=c^{2} u_{x x}$ and u is called a "weak" solution of the wave equation. In general, a weak solution of the wave equation is a distribution u for which

$$
\left(u, \phi_{t t}-c^{2} \phi_{x x}\right)=0
$$

for all test functions $\phi(x, t)$.

Example 11.

Let S denote the sphere $\{|\mathbf{x}|=a\}$. Then the distribution $\phi \mapsto \iint_{S} \phi d S$ is denoted $\delta(|\mathbf{x}|-a)$. This notation makes sense because formally

$$
\begin{aligned}
\iiint \delta(|\mathbf{x}|-a) \phi(\mathbf{x}) d \mathbf{x} & =\int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\pi} \phi(\mathbf{x}) \sin \theta d \theta d \psi \delta(r-a) r^{2} d r \\
& =a^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \phi(\mathbf{x}) \sin \theta d \theta d \psi \\
& =\iint_{S} \phi d S
\end{aligned}
$$

Example 12.

Let C be a smooth curve in space. Then the line integral over C defines the distribution $\phi \mapsto \int_{C} \phi d s$, where $d s$ denotes the arc length.

EXERCISES

1. Verify directly from the definition that $\phi \mapsto \int_{-\infty}^{\infty} f(x) \phi(x) d x$ is a distribution if $f(x)$ is any function that is integrable on each bounded set.
2. Let f be any distribution. Verify that the functional f^{\prime} defined by $\left(f^{\prime}, \phi\right)=-\left(f, \phi^{\prime}\right)$ satisfies the linearity and continuity properties and therefore is another distribution.
3. Verify that the derivative is a linear operator on the vector space of distributions.
4. Denoting $p(x)=x^{+}$, show that $p^{\prime}=H$ and $p^{\prime \prime}=\delta$.
5. Verify, directly from the definition of a distribution, that the discontinuous function $u(x, t)=H(x-c t)$ is a weak solution of the wave equation.
6. Use Chapter 5 directly to prove (19) for all C^{1} functions $\phi(x)$ that vanish near $\pm \pi$.
7. Let a sequence of L^{2} functions $f_{n}(x)$ converge to a function $f(x)$ in the mean-square sense. Show that it also converges weakly in the sense of distributions.
8. (a) Show that the product $\delta(x) \delta(y) \delta(z)$ makes sense as a threedimensional distribution.
(b) Show that $\delta(\mathbf{x})=\delta(x) \delta(y) \delta(z)$, where the first delta function is the three-dimensional one.
9. Show that no sense can be made of the square $[\delta(x)]^{2}$ as a distribution.
10. Verify that Example 11 is a distribution.
11. Verify that Example 12 is a distribution.
12. Let $\chi_{a}(x)=1 / 2 a$ for $-a<x<a$, and $\chi_{a}(x)=0$ for $|x|>a$. Show that $\chi_{a} \rightarrow \delta$ weakly as $a \rightarrow 0$.

12.2 GREEN'S FUNCTIONS, REVISITED

Here we reinterpret the Green's functions and source functions for the most important PDEs.

LAPLACE OPERATOR

We saw in Section 6.1 that $1 / r$ is a harmonic function in three dimensions except at the origin, where $r=|\mathbf{x}|$. Let $\phi(\mathbf{x})$ be a test function. By Exercise 7.2.2 we have the identity

$$
\phi(\mathbf{0})=-\iiint \frac{1}{r} \Delta \phi(\mathbf{x}) \frac{d \mathbf{x}}{4 \pi} .
$$

This means precisely that

$$
\begin{equation*}
\Delta\left(-\frac{1}{4 \pi r}\right)=\delta(\mathbf{x}) \tag{1}
\end{equation*}
$$

in three dimensions. Because $\delta(\mathbf{x})$ vanishes except at the origin, formula (1) explains why $1 / r$ is a harmonic function away from the origin and it explains exactly how it differs from being harmonic at the origin.

Consider now the Dirichlet problem for the Poisson equation,

$$
\Delta u=f \quad \text { in } D, \quad u=0 \quad \text { on bdy } D
$$

Its solution is

$$
\begin{equation*}
u\left(\mathbf{x}_{0}\right)=\iiint_{D} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f(\mathbf{x}) d \mathbf{x} \tag{2}
\end{equation*}
$$

from Theorem 7.3.2, where $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is the Green's function. Now fix the point $\mathbf{x}_{0} \in D$. The left side of (2) can be written as

$$
u\left(\mathbf{x}_{0}\right)=\iiint_{D} \delta\left(\mathbf{x}-\mathbf{x}_{0}\right) u(\mathbf{x}) d \mathbf{x}
$$

solution of the problem

$$
\begin{align*}
S_{t} & =k \Delta S & & \text { for } \mathbf{x} \in D \\
S & =0 & & \text { for } \mathbf{x} \in \text { bdy } D \tag{13}\\
S & =\delta\left(\mathbf{x}-\mathbf{x}_{0}\right) & & \text { for } t=0 .
\end{align*}
$$

We denote it by $S\left(\mathbf{x}, \mathbf{x}_{0}, t\right)$. Let $u(\mathbf{x}, t)$ denote the solution of the same problem but with the initial function $\phi(\mathbf{x})$. Let λ_{n} and $X_{n}(\mathbf{x})$ denote the eigenvalues and (normalized) eigenfunctions for the domain D, as in Chapter 11. Then

$$
\begin{aligned}
u(\mathbf{x}, t) & =\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} k t} X_{n}(\mathbf{x}) \\
& =\sum_{n=1}^{\infty}\left[\iiint_{D} \phi(\mathbf{y}) X_{n}(\mathbf{y}) d \mathbf{y}\right] e^{-\lambda_{n} k t} X_{n}(\mathbf{x}) \\
& =\iiint \int_{D}\left[\sum_{n=1}^{\infty} e^{-\lambda_{n} k t} X_{n}(\mathbf{x}) X_{n}(\mathbf{y})\right] \phi(\mathbf{y}) d \mathbf{y}
\end{aligned}
$$

assuming that the switch of summation and integration is justified. Therefore, we have the formula

$$
\begin{equation*}
S\left(\mathbf{x}, \mathbf{x}_{0}, t\right)=\sum_{n=1}^{\infty} e^{-\lambda_{n} k t} X_{n}(\mathbf{x}) X_{n}\left(\mathbf{x}_{0}\right) \tag{14}
\end{equation*}
$$

However, the convergence of this series is a delicate question that we do not pursue.

EXERCISES

1. Give an interpretation of $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ as a stationary wave or as the steadystate diffusion of a substance.
2. An infinite string, at rest for $t<0$, receives an instantaneous transverse blow at $t=0$ which imparts an initial velocity of $V \delta\left(x-x_{0}\right)$, where V is a constant. Find the position of the string for $t>0$.
3. A semi-infinite string $(0<x<\infty)$, at rest for $t<0$ and held at $u=0$ at the end, receives an instantaneous transverse blow at $t=0$ which imparts an initial velocity of $V \delta\left(x-x_{0}\right)$, where V is a constant and $x_{0}>0$. Find the position of the string for $t>0$.
4. Let $S(x, t)$ be the source function (Riemann function) for the onedimensional wave equation. Calculate $\partial S / \partial t$ and find the PDE and initial conditions that it satisfies.
5. A force acting only at the origin leads to the wave equation $u_{t t}=c^{2} \Delta u+$ $\delta(\mathbf{x}) f(t)$ with vanishing initial conditions. Find the solution.
6. Find the formula for the general solution of the inhomogeneous wave equation in terms of the source function $S(\mathbf{x}, t)$.
7. Let $R(x, t)=S\left(x-x_{0}, t-t_{0}\right)$ for $t>t_{0}$ and let $R(x, t) \equiv 0$ for $t<t_{0}$. Let $R\left(x, t_{0}\right)$ remain undefined. Verify that R satisfies the inhomogeneous diffusion equation

$$
R_{t}-k \Delta R=\delta\left(x-x_{0}\right) \delta\left(t-t_{0}\right)
$$

8. (a) Prove that $\delta\left(a^{2}-r^{2}\right)=\delta(a-r) / 2 a$ for $a>0$ and $r>0$.
(b) Deduce that the three-dimensional Riemann function for the wave equation for $t>0$ is

$$
S(\mathbf{x}, t)=\frac{1}{2 \pi c} \delta\left(c^{2} t^{2}-|\mathbf{x}|^{2}\right)
$$

9. Derive the formula (12) for the Riemann function of the wave equation in two dimensions.
10. Consider an applied force $f(t)$ that acts only on the z axis and is independent of z, which leads to the wave equation

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right)+\delta(x, y) f(t)
$$

with vanishing initial conditions. Find the solution.
11. For any $a \neq b$, derive the identity

$$
\delta[(\lambda-a)(\lambda-b)]=\frac{1}{|a-b|}[\delta(\lambda-a)+\delta(\lambda-b)]
$$

12. A rectangular plate $\{0 \leq x \leq a, 0 \leq y \leq b\}$ initially has a hot spot at its center so that its initial temperature distribution is $u(x, y, 0)=$ $M \delta\left(x-\frac{a}{2}, y-\frac{b}{2}\right)$. Its edges are maintained at zero temperature. Let k be the diffusion constant. Find the temperature at any later time in the form of a series.
13. Calculate the distribution $\Delta(\log r)$ in two dimensions.

12.3 FOURIER TRANSFORMS

Just as problems on finite intervals lead to Fourier series, problems on the whole line $(-\infty, \infty)$ lead to Fourier integrals. To understand this relationship, consider a function $f(x)$ defined on the interval $(-l, l)$. Its Fourier series, in

THREE DIMENSIONS

In three dimensions the Fourier transform is defined as

$$
F(\mathbf{k})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{x}) e^{-i \mathbf{k} \cdot \mathbf{x}} d \mathbf{x}
$$

where $\mathbf{x}=(x, y, z), \mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$, and $\mathbf{k} \cdot \mathbf{x}=x k_{1}+y k_{2}+z k_{3}$. Then one recovers $f(\mathbf{x})$ from the formula

$$
f(\mathbf{x})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mathbf{k}) e^{+i \mathbf{k} \cdot \mathbf{x}} \frac{d \mathbf{k}}{(2 \pi)^{3}}
$$

EXERCISES

1. Verify each entry in the table of Fourier transforms. (Use (15) as needed.)
2. Verify each entry in the table of properties of Fourier transforms.
3. Show that

$$
\begin{aligned}
\frac{1}{2 \pi^{2} c r} \int_{0}^{\infty} \sin k c t \sin k r d k & =\frac{1}{8 \pi^{2} c r} \int_{-\infty}^{\infty}\left[e^{i k(c t-r)}-e^{i k(c t+r)}\right] d k \\
& =\frac{1}{4 \pi c r}[\delta(c t-r)-\delta(c t+r)]
\end{aligned}
$$

4. Prove the following properties of the convolution.
(a) $f * g=g * f$.
(b) $(f * g)^{\prime}=f^{\prime} * g=f * g^{\prime}$, where ${ }^{\prime}$ denotes the derivative in one variable.
(c) $f *(g * h)=(f * g) * h$.
5. (a) Show that $\delta * f=f$ for any distribution f, where δ is the delta function.
(b) Show that $\delta^{\prime} * f=f^{\prime}$ for any distribution f, where ${ }^{\prime}$ is the derivative.
6. Let $f(x)$ be a continuous function defined for $-\infty<x<\infty$ such that its Fourier transform $F(k)$ satisfies

$$
F(k)=0 \quad \text { for }|k|>\pi
$$

Such a function is said to be band-limited.
(a) Show that

$$
f(x)=\sum_{n=-\infty}^{\infty} f(n) \frac{\sin [\pi(x-n)]}{\pi(x-n)}
$$

Thus $f(x)$ is completely determined by its values at the integers! We say that $f(x)$ is sampled at the integers.
(b) Let $F(k)=1$ in the interval $(-\pi, \pi)$ and $F(k)=0$ outside this interval. Calculate both sides of (a) directly to verify that they are equal.
(Hints: (a) Write $f(x)$ in terms of $F(k)$. Notice that $f(n)$ is the nth Fourier coefficient of $F(k)$ on $[-\pi, \pi]$. Deduce that $F(k)=\Sigma f(n) e^{-i n k}$
in $[-\pi, \pi]$. Substitute this back into $f(x)$, and then interchange the integral with the series.)
7. (a) Let $f(x)$ be a continuous function on the line $(-\infty, \infty)$ that vanishes for large $|x|$. Show that the function

$$
g(x)=\sum_{n=-\infty}^{\infty} f(x+2 \pi n)
$$

is periodic with period 2π.
(b) Show that the Fourier coefficients c_{m} of $g(x)$ on the interval $(-\pi, \pi)$ are $F(m) / 2 \pi$, where $F(k)$ is the Fourier transform of $f(x)$.
(c) In the Fourier series of $g(x)$ on $(-\pi, \pi)$, let $x=0$ to obtain the Poisson summation formula

$$
\sum_{n=-\infty}^{\infty} f(2 \pi n)=\sum_{n=-\infty}^{\infty} \frac{1}{2 \pi} F(n)
$$

8. Let $\chi_{a}(x)$ be the function in Exercise 12.1.12. Compute its Fourier transform $\hat{\chi}_{a}(k)$. Use it to show that $\hat{\chi}_{a} \rightarrow 1$ weakly as $a \rightarrow 0$.
9. Use Fourier transforms to solve the ODE $-u_{x x}+a^{2} u=\delta$, where $\delta=\delta(x)$ is the delta function.

12.4 SOURCE FUNCTIONS

In this section we show how useful the Fourier transform can be in finding the source function of a PDE from scratch.

DIFFUSION

The source function is properly defined as the unique solution of the problem

$$
\begin{equation*}
S_{t}=S_{x x} \quad(-\infty<x<\infty, \quad 0<t<\infty), \quad S(x, 0)=\delta(x) \tag{1}
\end{equation*}
$$

where we have taken the diffusion constant to be 1. Let's assume no knowledge at all about the form of $S(x, t)$. We only assume it has a Fourier transform as a distribution in x, for each t. Call its transform

$$
\hat{S}(k, t)=\int_{-\infty}^{\infty} S(x, t) e^{-i k x} d x
$$

(Here k denotes the frequency variable, not the diffusion constant.) By property (i) of Fourier transforms, the PDE takes the form

$$
\begin{equation*}
\frac{\partial \hat{S}}{\partial t}=(i k)^{2} \hat{S}=-k^{2} \hat{S}, \quad \hat{S}(k, 0)=1 \tag{2}
\end{equation*}
$$

For each k this is an ODE that is easy to solve. The solution is

$$
\begin{equation*}
\hat{S}(k, t)=e^{-k^{2} t} \tag{3}
\end{equation*}
$$

This improper integral clearly converges for $y>0$. It is split into two parts and integrated directly as

$$
\begin{align*}
u(x, y) & =\left.\frac{1}{2 \pi(i x-y)} e^{i k x-k y}\right|_{0} ^{\infty}+\left.\frac{1}{2 \pi(i x+y)} e^{i k x+k y}\right|_{-\infty} ^{0} \tag{17}\\
& =\frac{1}{2 \pi}\left(\frac{1}{y-i x}+\frac{1}{y+i x}\right)=\frac{y}{\pi\left(x^{2}+y^{2}\right)}
\end{align*}
$$

in agreement with Exercise 7.4.6.

EXERCISES

1. Use the Fourier transform directly to solve the heat equation with a convection term, namely, $u_{t}=\kappa u_{x x}+\mu u_{x}$ for $-\infty<x<\infty$, with an initial condition $u(x, 0)=\phi(x)$, assuming that $u(x, t)$ is bounded and $\kappa>0$.
2. Use the Fourier transform in the x variable to find the harmonic function in the half-plane $\{y>0\}$ that satisfies the Neumann condition $\partial u / \partial y=h(x)$ on $\{y=0\}$.
3. Use the Fourier transform to find the bounded solution of the equation $-\Delta u+m^{2} u=\delta(\mathbf{x})$ in free three-dimensional space with $m>0$.
4. If $p(x)$ is a polynomial and $f(x)$ is any continuous function on the interval $[a, b]$, show that $g(x)=\int_{a}^{b} p(x-s) f(s) d s$ is also a polynomial.
5. In the three-dimensional half-space $\{(x, y, z): z>0\}$, solve the Laplace equation with $u(x, y, 0)=\delta(x, y)$, where δ denotes the delta function, as follows.
(a) Show that

$$
u(x, y, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i k x+i l y} e^{-z \sqrt{k^{2}+l^{2}}} \frac{d k d l}{4 \pi^{2}}
$$

(b) Letting $\rho=\sqrt{k^{2}+l^{2}}, r=\sqrt{x^{2}+y^{2}}$, and θ be the angle between (x, y) and (k, l), so that $x k+y l=\rho r \cos \theta$, show that

$$
u(x, y, z)=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{i \rho r \cos \theta} e^{-z \rho} \rho d \rho \frac{d \theta}{4 \pi^{2}}
$$

(c) Carry out the integral with respect to ρ and then use an extensive table of integrals to evaluate the θ integral.
6. Use the Fourier transform to solve $u_{x x}+u_{y y}=0$ in the infinite strip $\{0<y<1,-\infty<x<\infty\}$, together with the conditions $u(x, 0)=0$ and $u(x, 1)=f(x)$.

