1.1 WHAT IS A PARTIAL DIFFERENTIAL EQUATION? 5

EXERCISES

1.

10.

11.

Verify the linearity and nonlinearity of the eight examples of PDEs given
in the text, by checking whether or not equations (3) are valid.

Which of the following operators are linear?

(@ Su=u,+xu,
(b) Fu =u,+uu,
() u=u,+ ui

d Fu=u,+u,+1

(e) Pu =1+ x2(cos y)u, + uy,, — [arctan(x/y)]u

For each of the following equations, state the order and whether it
is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.

(a) Uy —uyy +1=0

(b) u, —uy +xu=0

© wp —Ueys +uuy =0

(d) Uy — Uy +x2=0

€ iuy—uy+u/x=0

® w(t+ud) P ru,1+u) =0

(g) uy+ eyl/ty =0

(h) ut+uxxxx+’\/1+u =0

Show that the difference of two solutions of an inhomogeneous linear
equation Yu = g with the same g is a solution of the homogeneous
equation Lu = 0.

Which of the following collections of 3-vectors [a, b, c¢] are vector
spaces? Provide reasons.

(a) The vectors with b = 0.

(b) The vectors with b = 1.

(¢) The vectors with ab = 0.

(d) All the linear combinations of the two vectors [1, 1, 0] and [2, O, 1].
(e) All the vectors such that ¢ — a = 2b.

Are the three vectors [1, 2, 3], [—2, 0, 1], and [1, 10, 17] linearly depen-
dent or independent? Do they span all vectors or not?

Are the functions 1 + x, 1 — x, and 1 + x + x? linearly dependent or
independent? Why?

Find a vector that, together with the vectors [1, 1, 1] and [1, 2, 1], forms
a basis of R3.

Show that the functions (¢; + ¢ sin®x + ¢z cos?x) form a vector space.
Find a basis of it. What is its dimension?

Show that the solutions of the differential equation u” — 3u” + 4u = 0
form a vector space. Find a basis of it.

Verify that u(x, y) = f(x)g(y)is asolution of the PDE uu,, = uu, for
all pairs of (differentiable) functions f and g of one variable.
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12.  Verify by direct substitution that
u,(x,y) = sin nx sinh ny

is a solution of u, + u,, = 0 for every n > 0.

1.2 FIRST-ORDER LINEAR EQUATIONS

We begin our study of PDEs by solving some simple ones. The solution is
quite geometric in spirit.

The simplest possible PDE is du/dx = O [where u = u(x, y)]. Its general
solution is u = f(y), where f is any function of one variable. For instance,
u =y?> —yand u = e’ cos y are two solutions. Because the solutions don’t
depend on x, they are constant on the lines y = constant in the xy plane.

THE CONSTANT COEFFICIENT EQUATION

Let us solve

au, +bu, =0, (1)

where a and b are constants not both zero.

Geometric Method The quantity au, + bu, is the directional derivative of
u in the direction of the vector V = (a, b) = ai + bj. It must always be zero.
This means that u(x, y) must be constant in the direction of V. The vector
(b, —a) is orthogonal to V. The lines parallel to V (see Figure 1) have the
equations bx — ay = constant. (They are called the characteristic lines.) The
solution is constant on each such line. Therefore, u(x, y) depends on bx — ay
only. Thus the solution is

u(x,y) = f(bx —ay), )

where f is any function of one variable. Let’s explain this conclusion more
explicitly. On the line bx — ay = c, the solution u has a constant value. Call

Figure 1
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uniqueness). It is also unstable. To illustrate the instability further, consider a
nonsingular matrix A with one very small eigenvalue. The solution is unique
but if b is slightly perturbed, then the error will be greatly magnified in the
solution u#. Such a matrix, in the context of scientific computation, is called
ill-conditioned. The ill-conditioning comes from the instability of the matrix
equation with a singular matrix.

As a fourth example, consider Laplace’s equation u,, + u,, = 0 in the
region D = {—00 < x < 00,0 < y < oo}. It is not a well-posed problem to
specify both u and u, on the boundary of D, for the following reason. It has
the solutions

1
u,(x,y)= ;e‘ﬁsin nx sinh ny. )

Notice that they have boundary data u,(x,0)=0 and du,/dy(x,0) =

e~V sin nx, which tends to zero as n — co. But for y # 0 the solutions
u,(x, y) do not tend to zero as n — oo. Thus the stability condition (iii) is
violated.

EXERCISES
1. Consider the problem

d*u
ﬁ-l—uzo

u(0)=0 and u(L)=0,

consisting of an ODE and a pair of boundary conditions. Clearly, the
function u(x) = 0 is a solution. Is this solution unique, or not? Does the
answer depend on L?

2. Consider the problem

u"(x) +u'(x) = f(x)
u'(0) = u(0) = 1[u'() + u(®)],

with f(x) a given function.

(a) Is the solution unique? Explain.

(b) Does a solution necessarily exist, or is there a condition that f(x)
must satisfy for existence? Explain.

3. Solve the boundary problem " = 0 for 0 < x < 1 with u/(0) + ku(0) = 0
and u/(1) £ ku(1) = 0. Do the + and — cases separately. What is special
about the case k = 27?

4. Consider the Neumann problem

Au= f(x,y,z) inD

9
T _0 onbdyD.
on
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(a) What can we surely add to any solution to get another solution? So
we don’t have uniqueness.
(b) Use the divergence theorem and the PDE to show that

// f(x,y,2)dxdydz =0
D

is anecessary condition for the Neumann problem to have a solution.
(c) Canyou give a physical interpretation of part (a) and/or (b) for either
heat flow or diffusion?

5. Consider the equation
uy +yuy, =0

with the boundary condition u(x, 0) = ¢(x).
(a) For ¢p(x) = x, show that no solution exists.
(b) For ¢(x) = 1, show that there are many solutions.

6. Solve the equation u, + 2xy*u, = 0.

1.6 TYPES OF SECOND-ORDER EQUATIONS

In this section we show how the Laplace, wave, and diffusion equations
are in some sense typical among all second-order PDEs. However, these
three equations are quite different from each other. It is natural that the
Laplace equation u,, + u,, = 0 and the wave equation u,, — u,, = 0 should
have very different properties. After all, the algebraic equation x? + y> =1
represents a circle, whereas the equation x> — y? = 1 represents a hyperbola.
The parabola is somehow in between.

In general, let’s consider the PDE

AUy + 2a12Uyy + axityy + ajuy + acuy 4+ agu = 0. (D

This is a linear equation of order two in two variables with six real constant
coefficients. (The factor 2 is introduced for convenience.)

Theorem 1. By a linear transformation of the independent variables, the
equation can be reduced to one of three forms, as follows.
(1) Elliptic case: If afz < aj1an, it is reducible to
Uy + Uy + =0

(where - - - denotes terms of order 1 or 0).
(i) Hyperbolic case: If a122 > aj1a7, it 1s reducible to

Uy — Uyy + - =0.



