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Bayesian inference is based on Bayes theorem:

π(θ) ∝ L(y|θ)p(θ)

We want to make inferences about a function g(θ) computing its
posterior mean

Eπ[g(θ)] =

∫
g(θ)π(θ)dθ

typically analytically intractable.
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Markov chain Monte Carlo

Define transition densities P(θt ,θt+1) of a Markov chain.

Generate θ1, . . . ,θm ∼ π(θ) (Target distribution).

Under certain conditions,

θt t→∞−→ π(θ) and
1

m

m∑
t=1

g(θti )
m→∞−→ Eπ(g(θi)) a.s.

The chain is dependent by definition but the arithmetic mean
of the chain values is a consistent estimator of the theoretical
mean.
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The Metropolis-Hastings Algorithm

At each iteration,

sample a candidate value θ′ ∼ q(·,θ).
accept w.p.

α(θ,θ′) = min

{
1,

π(θ′) q(θ,θ′)

π(θ) q(θ′,θ)

}
, (1)

where q(θ,θ′) is an arbitrary distribution which drives the
general performance of the algorithm.

π(θ) q(θ,θ′) α(θ,θ′) = π(θ′) q(θ′,θ) α(θ′,θ)
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Langevin Diffusions

Let ξ ∈ RD be a random vector with density f (ξ). A Langevin
diffusion with stationary distribution f (ξ) is defined by the SDE,

dξ(t) =
1

2
∇ξ log f (ξ(t)) dt + db(t)

where b denotes a D-dimensional Brownian motion. This is the
only non-explosive diffusion which is reversible with respect to f .

The Metropolis adjusted Langevin algorithm MALA is based on a
first order Euler discretization giving the following proposal
mechanism,

ξ(t+1) = ξ(t) +
ϵ2

2
∇ξ log f (ξ

(t)) + ϵz, z ∼ N(0, ID) (2)

where ϵ is the integration step size.
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Acceptance probability to ensure convergence to the invariant
distribution.

1 A new value ξ′ is sampled from a multivariate normal
distribution with mean

µ(ξ(t), ϵ) = ξ(t) +
ϵ2

2
∇ξ log f (ξ

(t))

and variance-covariance matrix ϵ2ID .

2 This value is accepted with probability given by,

min

{
1,

f (ξ′)

f (ξ(t))

exp{−||ξ′ − µ(ξ(t), ϵ)||2/2ϵ2}
exp{−||ξ(t) − µ(ξ′, ϵ)||2/2ϵ2}

}

since the proposal distribution is N(µ(ξ(t), ϵ), ϵ2ID).
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Riemann Manifold MALA

Moves are according to a Riemann metric and is referred to as
Riemann manifold MALA or MMALA. The proposal mechanism is
now given by,

ξ′i = µ(ξ(t), ϵ)i +
{
ϵ
√

G−1(ξ(t))z
}
i
, (3)

µ(ξ(t), ϵ)i = ξ
(t)
i +

ϵ2

2

{
G−1(ξ(t))∇ξ log f (ξ

(t))
}
i

− ϵ2
D∑
j=1

{
G−1(ξ(t))

dG(ξ(t))

dξj
G−1(ξ(t))

}
ij

+
ϵ2

2

D∑
j=1

{
G−1(ξ(t))

}
ij
tr

{
G−1(ξ(t))

dG(ξ(t))

dξj

}
(4)

Ricardo S. Ehlers USP

Riemann Manifold Methods in Bayesian Statistics



In Bayesian applications, given a sample y1, . . . , yn then

log f (ξ) = log f (ξ|y) = log f (ξ) + log f (y|ξ)− log f (y),

G(ξ) = −E

(
d2 log f (y|ξ)

dξ⊤ξ

)
− d2 log f (ξ)

dξ⊤ξ
,

1 Sample ξ′ from a multivariate normal distribution with mean
µ(ξ(t), ϵ) and variance matrix ϵ2G(ξ(t)).

2 Accept with probability min{1,A},

A =
f (ξ′)

f (ξ(t))

|G(ξ(t))|−1/2 exp

{
− 1

2ϵ2
(ξ′ − µ(ξ(t), ϵ))TG−1(ξ(t))(ξ′ − µ(ξ(t), ϵ))

}
|G(ξ′)|−1/2 exp

{
− 1

2ϵ2
(ξ(t) − µ(ξ′, ϵ))TG−1(ξ′)(ξ(t) − µ(ξ′, ϵ))

}
Ricardo S. Ehlers USP

Riemann Manifold Methods in Bayesian Statistics



Stochastic Volatility Models (with M. Zevallos and L.
Gasco)

A Stochastic Volatility model for a time series of financial returns,

yt = β exp(ht/2) εt ,

ht = ϕht−1 + ηt , ηt ∼ N(0, σ2)

E (εt) = 0, E (ε2t ) = 1, ηt and εt are independent ∀t, β > 0,
|ϕ| < 1 and εt follows a Gaussian, a generalized error distribution
(GED) with shape ν or a t distribution with ν degrees of freedom.
Defining θ = (β, σ, ϕ, ν),

f (y,h|θ) =
n∏

t=1

f (yt |ht , β) f (h1|ϕ, σ)
n∏

t=2

f (ht |ht−1, ϕ, σ)
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We implemented a hybrid method in which a MMALA scheme is
applied for the parameters and a MALA scheme is applied for the
volatilities.

Sample the latent variables h. Assuming the parameters as
constants, apply (2) with f = f (y,h) and gradient ∇
calculated with respect to h.

Sample parameters θ. Given (y,h), apply (3) and (4) with
f = f (y,h|θ)f (θ) and gradient ∇ calculated with respect to
θ.
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A simplified proposal mechanism is obtained when a constant
curvature is assumed. In this case, the last two terms in (4) vanish
and the proposal mean becomes,

µ(θ(t), ϵ) = θ(t) +
ϵ2

2
G−1(θ(t)) ∇θ log f (y,h|θ(t))f (θ(t)).
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Monte Carlo experiments. Bias and square root of the mean squared error
of posterior means. Parameters: β = 0.65, ϕ = 0.98, σ = 0.15 and
ν = 1.6 (for GED) and ν = 7 (for Student’s t).

Errors Method β ϕ σ ν
bias smse bias smse bias smse bias smse

Gaussian MALA -0.001 0.038 -0.022 0.028 0.051 0.056
MMALA 0.024 0.038 -0.011 0.015 0.000 0.014

GED MALA -0.002 0.032 -0.042 0.051 0.090 0.099 -0.011 0.128
MMALA 0.002 0.029 -0.027 0.032 0.050 0.054 0.048 0.115

Student’s t MALA -0.003 0.031 -0.063 0.072 0.122 0.131 0.912 2.311
MMALA -0.010 0.030 -0.101 0.107 0.180 0.185 0.287 1.428
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Absolute returns for the Pound/Dollar series and estimated volatilities
using MMALA under the three different errors.
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Stochastic simulation via Hamiltonian dynamics

For a closed and conservative system of particles the total energy is
constant and given by the Hamiltonian function. For purposes of
generate random values from an arbitrary distribution suppose that
function is given by,

H(θ,p) = − log π(θ|D)︸ ︷︷ ︸
potential
energy

+p′M−1p/2︸ ︷︷ ︸
kinetic
energy

(5)

p is the momentum, M is a mass matrix (positive definite).
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Calculate the final position of the particle via Hamiltonian
dynamics through the system of differential given by,

dθ

dt
= +

∂H

∂p
= pM−1

dp

dt
= −∂H

∂θ
= ∇θ log π(θ|D) (6)

Introducing the auxiliary variables p and using the gradients will
lead to a more efficient exploration of the parameter space.
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These differential equations cannot be solved analytically. The
Störmer-Verlet (or Leapfrog) numerical integrator discretizes the
Hamiltonian dynamics as the following steps,

p(τ+ϵ/2) = p(τ) +
ϵ

2
∇θL(θ(τ))

θ(τ+ϵ) = θ(τ) + ϵM−1p(τ+ϵ/2)

p(τ+ϵ) = p(τ+ϵ/2) +
ϵ

2
∇θL(θ(τ+ϵ))

for some user specified small step-size ϵ > 0. After a given number
of time steps this results in a proposal (θ∗,p∗).

Ricardo S. Ehlers USP

Riemann Manifold Methods in Bayesian Statistics



Metropolis acceptance probability corrects discretization error
and ensures convergence to the invariant distribution.

The joint distribution of (θ,p) is our target distribution,

transition to a proposed value (θ∗,p∗) is accepted w.p.

α[(θ,p), (θ∗,p∗)] = min

[
f (θ∗,p∗)

f (θ,p)
, 1

]
= min [exp[H(θ,p)− H(θ∗,p∗)], 1] .

M is typically diagonal with constant elements, M = mId .
The HMC algorithm in its simplest form takes m = 1.
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The algorithm is as follows.

1 Give an inital position, θ(0).

2 Iniciate the iterations i = 1, . . . ,N (size of chain).

1 Draw p∗ ∼ Nd(0, Id) and u ∼ U(0, 1),

2 Do (θI ,pI ) = (θ(i−1),p∗), H0 = H(θI ,pI )
3 Repeat the Störmer-Verlet numerical solution in an adequate

number of times and choose some step-size ϵ for the
discretization of the system.

4 At the end of the trajectory, do H1 = H(θL,pL)
5 Do, α[(θL,pL), (θI ,pI )] = min [exp(H0 − H1), 1]
6 Metropolis-hastings acceptance rule,

θ(i) =

{
θL, with probability α[(θL,pL), (θI ,pI )] > u

θI , otherwise

Note that the exponential of the negative Hamiltonian function is
a joint density function and all parameters must lie on the real line.
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Bayesian inference for extreme value distributions (with M.
Hartmann)

The Generalized Extreme Value (GEV) distribuion function,

F (x |µ, σ, ξ) = exp

{
−
(
1 + ξ

x − µ

σ

)−1/ξ

+

}
, (7)

where µ ∈ R, σ > 0 and ξ ∈ R are location, scale and shape
parameters respectively. The + sign denotes the positive part of
the argument.
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Densities and cumulative distribution functions of a GEV(0,1,ξ) with
ξ ∈ [−0.5, 0.5].
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Histogram and plots of maximum sea levels (in metres) from 1923 to
1987 at Port Pirie, South Australia.
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Modelling Time Dependence

AR-GEV(p) model,

Yt = µ+

p∑
j=1

θjYt−j + et , et ∼ GEV (0, σ, ξ).

The likelihood function,

l(µ,θ, σ, ξ) =
n∏

t=p+1

f (yt |Dt−1, µ,θ, σ, ξ)IΩt (yt), (8)

where Dt−1 = (yt−1, . . . , yt−p) and θ = (θ1, . . . , θp).
Denoting µt = µ+

∑p
j=1 θjYt−j then

Ωt = {yt : 1 + ξ(yt − µt)/σ > 0}
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Maximum annual level of Lake Michigan, 1860 to 1955 (96 observations).
Time Series Data Library https://datamarket.com/data/set/22p3/
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Predictions plus 95% credible intervals (last 3 observations removed from
estimation) and observed values (circles).
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Bayesian Analysis of Clustered Binary Data (with N. Friel
and D. Bandyopadhyay)

Consider a spatial situation where we observe a binary
response yis for subject i , at site s within subject i .

We assume that Yis ∼ Bernoulli(pis) with

P(Yis = 1) = pis = 1− F (−(x′iβ + ϕis))

= 1− exp
{
−
[
1− ξ(x′iβ + ϕis)

]−1/ξ

+

}
Assuming that β, ϕ and ξ are a priori independent the joint
posterior distribution is given by,

p(β,ϕ, ξ|y,X) ∝
n∏

i=1

p(yi |xi ,β,ϕi ) p(ϕi ) p(β) p(ξ).
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Instead of the usual CAR model for the spatial effects we assume,

ϕi ∼ N(0,Σ)

Ω = Σ−1 ∼ G-WishartW (κ,S)

degrees of freedom κ and scale matrix S , constrained to have null
entries for each zero in the adjacency matrix W ,

Wss′ =

{
1, s ∼ s ′

0, otherwise

Its density function is given by,

p(Ω|W ) =
1

ZW (κ,S)
|Ω|(κ−2)/2 exp

{
−1

2
tr(SΩ)

}
I (Ω ∈ MW ), κ > 2
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Start with a hybrid algorithm,

sample β and ξ using RMHMC assuming spatial effects as
constants,
sample spatial effects using traditional MCMC.

Computing the normalizing constant ZW (κ,S) is not
straightforward,

ZW (κ, S) =

∫
|Ω|(κ−2)/2 exp

{
−1

2
tr(SΩ)

}
I (Ω ∈ MW )dΩ.
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Thank you !
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