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Stochastic Production Frontier Models

In stochastic production frontier models it is usually assumed that the error term

is composed of a random error (v) capturing statistical noise and a one-sided

non-negative error (u). For cross-sectional data on N observed economic agents

(generically denoted by “firms”), the model can be expressed as

yi = f(xi,β) + vi − ui, i = 1, . . . , N (1)

where

yi is the logarithm of an output,

xi is a vector of the logarithms of inputs including an intercept and possibly

crossproducts,

β is the vector of coefficients and

vi are independent and identically distributed N(0, σ2
v) error terms

ui, which measures technical inefficiency of the ith firm.

vi and ui are assumed to be independent.
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Production Functions

For a product Q produced with 2 inputs: capital (K) and Labour (L) let

y = log(Q), x1 = log(K) and x2 = log(L). Production functions used here:

• Cobb-Douglas: y = β0 + β1x1 + β2x2,

• Translog y = β0 + β1x1 + β2x2 + 1
2β3x

2
1 + 1

2β4x
2
2 + β5x1x2,

• Constant Elasticity of Substitution (CES) y = β0 + v log( [(1− δ)K−ρ+ δL−ρ]−1/ρ),

where 0 < δ < 1, −∞ < v <∞ and ρ > −1,

• Generalized Production Function (GPF) z = y + λ exp(y) = β0 + β1x1 + β2x2,

The MCMC sampling is done using the package JAGS(Just Another Gibbs

Sampler, Plummer 2003) which was originally developed as a clone of the classic

BUGSpackage. JAGS was written in C++ and is designed to work closely with

the Rpackage where all statistical computations and graphics are done. It is open

source and freely available and can be downloaded from the website

http://www-fis.iarc.fr/˜ martyn/software/jags/ .
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Bayesian Models

For Cobb-Douglas, Translog and CES production functions the likelihood is

p(y|θ) =

n
∏

i=1

pN(yi|f(xi1, xi2, θ) − ui, σ
2).

For the GPF the likelihood function is given by

p(y|θ) =

n
∏

i=1

pN(zi|f(xi1, xi2, θ) − ui, σ
2)

∣

∣

∣

∣

dzi
dyi

∣

∣

∣

∣

. (2)

The parameters in θ are all assumed to be a priori independent.

• β0 ∼ N(0, σ2
β) constrained to be positive as we want to exclude production

frontiers in which more inputs lead to less output.

• βj ∼ N(0, σ2
β) truncated to βj > 0, as we want to exclude production frontiers

in which more inputs lead to less output

• For a CES production function we assign v ∼ N(0, σ2
v), ρ ∼ N(0, σ2

ρ) truncated

to ρ > −1 and δ ∼ Beta(a, b) and σ−2 ∼ Gamma(a, b).
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Priors for ui

1. ui ∼ Exp(λ) and λ ∼ Exp(− log r∗) implies prior median efficiency equals r∗

(van den Broeck et al. 1994).

2. ui ∼ N(0, λ) truncated to ui > 0 and λ−1 ∼ Ga(1, 1/37.5) ⇒

median(exp(−ui)) ≈ 0.875 with a reasonable spread (van den Broeck et al.

1994).

3. ui ∼ N(ξ, λ) truncated to ui > 0. Include a prior ξ ∼ N(0, σ2
ξ) and use the same

prior for λ as above.

4. ui ∼ Ga(φ, λ), Griffin and Steel (2004) propose a prior on φ and λ which

extends the informative prior for an exponential inefficiency distribution.

φ ∼ Ga(d1, d1 + 1) implies that mode(φ)=1 (centred around an exponential

prior with d1 controlling the variability). Also λ|φ ∼ Ga(φ,− log r∗) where

r∗=median(exp(−ui)).

5. ui ∼ LN(0, ψ2) and ψ−2 ∼ Ga(a, b).
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6. ui ∼ Generalized Gamma (c, φ, λ) where c, φ and λ are specified following the

development in Griffin and Steel (2004). We take λ|c, φ ∼ Ga(φ, (− log r∗)c) and

assume prior independence between c and ψ = φc assigning priors

ψ−1 ∼ Ga(d1, d1 + 1) and c−1 ∼ Ga(d2, d2 + 1).

This is again centred over the exponential case (mode at φ = c = 1) but allows

considerable deviations from the exponential if we choose d1 and d2 not too

large. We take d1 = d2 = 3 here.

7. For ui ∼ Weibull(c, λ) we adapt the development in the Generalized Gamma

with φ = 1 and assign λ|c ∼ Exp((− log r∗)c) and c−1 ∼ Ga(d2, d2 + 1) which is

centred over the exponential case.

The Rcode implemented allows the user to specify values for the

hyperparameters σ2
β, σ2

v, σ
2
ρ, a, b, d1, d2 and r∗.

All R functions used are available: http://leg.ufpr.br/˜ ehlers/SPF .
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Comparing Models

Compare and select the most appropriate model using the Deviance Information

Criterion (DIC), where lower values indicate a good model fit relative to the

number of parameters in the model (Spiegelhalter et al. 2002).

Denote the competing models by M1,M2, . . . and the vector of parameters under

model Mi by ξi, then

DIC(Mi) = Di + pi

Di = −2 log(p(y | ξi,Mi)) is the deviance, measuring model fit,

Di = E(Di|y).

pi = Di −D(ξ̄i) measures model complexity,

ξ̄i = E(ξi|y).

Computing Bayes factors from a MCMC output is not a trivial task and in

particular is not easily implemented in an all purpose package like JAGS(the

same is true for the WinBUGS package).

In this work we include an R function for the computation of DIC.
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DIC Weights

It could be misleading just to report the model with the lowest DIC.

It is difficult to say what would constitute an important difference between DIC

values.

DIC is subject to Monte Carlo error since it is a function of simulated quantities.

This might cast some doubt whether an improvement in model fit is substantial.

We propose to use DIC weights obtained by subtracting from each DIC the value

associated with the “best” model and setting

wi ∝ exp(−∆DIC(Mi)/2)

where ∆DIC(Mi) denotes the transformed DIC value for model i. The weights

are normalized to sum to 1 over the models under consideration.

This was first suggested in Burnham and Anderson (1998) for the Akaike
Information Criterion (the differences are interpreted as the strength of
evidence). It can be extended to be used with the DIC which, as pointed out in
Spiegelhalter et al. (2002), can be viewed as a Bayesian analogue of AIC.
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Example

123 cross-sectional data from the US electric industry in 1970 available at

http://econ.queensu.ca/jae/1998-v13.2/zellner-ryu/d ata.zr .

For the 28 competing models a total of 100 000 iterations were run, and the first

half was discarded as burn-in. After burn-in, simulated values of every 5th

iteration were kept for posterior analysis.

From Table 1 the most adequate model is the one that uses the GPF and a

truncated normal distribution for the inefficiency terms. Note that model

comparison is much easier in the transformed scale of the DIC weights. The

weight for the second best model (CES + truncated normal inefficiencies) is less

than half the weight for the most adequate model. Another subset of models

(GPF + lognormal, CES + lognormal and Cobb-Douglas + truncated normal)

received small weights.

Figure 1 shows the posterior distributions of ranks associated with exp(−ui) of
the best firm (left column) and the worst firm (right column) using the truncated
normal considering all production functions. The truncated normal frontier
model differentiates pretty well the more efficient from the less efficient firms.
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Table 1: Model comparison based on 10 000 simulations.

Prod Function inefficiency Di D(ξ̄i) pi DIC weight rank

Cobb-Douglas exp −19.5609 −28.3636 8.8027 −10.7581 0.00044 23

Cobb-Douglas tnorm −30.9996 −41.6037 10.6041 −20.3956 0.05449 5

Cobb-Douglas halfnorm −19.0528 −27.2502 8.1974 −10.8554 0.00046 22

Cobb-Douglas gamma −19.8941 −28.6195 8.7254 −11.1687 0.00054 21

Cobb-Douglas gen.gamma −20.2863 −28.6803 8.3940 −11.8924 0.00078 19

Cobb-Douglas weibull −18.6541 −26.1266 7.4726 −11.1815 0.00054 20

Cobb-Douglas lognorm −27.6661 −37.6017 9.9355 −17.7306 0.01437 6

Translog exp −15.0361 −23.8715 8.8353 −6.2008 0.00005 25

Translog tnorm −23.9300 −33.2167 9.2867 −14.6432 0.00307 7

Translog halfnorm −12.8873 −20.6193 7.7320 −5.1554 0.00003 27

Translog gamma −15.1713 −23.7525 8.5812 −6.5900 0.00005 24

Translog gen.gamma −13.8555 −21.7858 7.9303 −5.9252 0.00004 26

Translog weibull −12.8305 −20.5585 7.7280 −5.1025 0.00003 28

Translog lognorm −22.0603 −31.4122 9.3519 −12.7084 0.00117 13
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Prod Function inefficiency Di D(ξ̄i) pi DIC weight rank

CES exp −19.5195 −26.4384 6.9190 −12.6005 0.00111 15

CES tnorm −31.2346 −39.2628 8.0282 −23.2065 0.22216 2

CES halfnorm −19.5870 −25.8898 6.3028 −13.2842 0.00156 11

CES gamma −20.2690 −26.6339 6.3649 −13.9041 0.00212 8

CES gen.gamma −20.1451 −26.8770 6.7319 −13.4132 0.00166 10

CES weibull −18.8055 −24.9562 6.1507 −12.6548 0.00114 14

CES lognorm −28.1078 −35.6027 7.4949 −20.6130 0.06074 4

GPF exp −19.9535 −27.9918 8.0382 −11.9153 0.00078 18

GPF tnorm −33.4537 −41.8647 8.4110 −25.0428 0.55643 1

GPF halfnorm −20.0239 −27.4804 7.4566 −12.5673 0.00109 16

GPF gamma −20.9083 −28.9271 8.0188 −12.8895 0.00128 12

GPF gen.gamma −20.8332 −28.1687 7.3355 −13.4978 0.00173 9

GPF weibull −19.6832 −27.0591 7.3759 −12.3073 0.00095 17

GPF lognorm −28.8473 −36.7637 7.9164 −20.9309 0.07121 3
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Figure 1: Posterior distributions of the ranks of the best firm (left column) and the worst firm (right column) for a truncated
normal inefficiency term considering the four production functions.
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JAGScommands

JAGScommands used for the model with a GPF and a truncated normal distribution for ui.

data {

for (i in 1:N) {

zeros[i] <- 0

X[i,1] <- Xreg[i,1]-xbar[1]

X[i,2] <- Xreg[i,2]-xbar[2]

}

xbar[1] <- mean(Xreg[,1])

xbar[2] <- mean(Xreg[,2])

}

model {

for(i in 1:N) {

zeros[i] ˜ dpois(p[i])

p[i] <- -0.5 * log(tau/(2 * 3.141593))

+0.5 * tau * pow(y[i]+gamma * exp(y[i])-mu[i],2)

-log(1+gamma * exp(y[i]))+10000

mu[i] <- alpha0 +inprod(beta[],X[i,]) - u[i]

}

beta[1] ˜ dnorm(0.0,0.001)T(0,)

beta[2] ˜ dnorm(0.0,0.001)T(0,)

( * )

( * )

alpha0 ˜ dnorm(0.0,0.001)

gamma ˜ dgamma(0.1,0.01)

tau ˜ dgamma(0.01,0.01)

sigma2 <- 1/tau

for (i in 1:N) {

u[i] ˜ dnorm(zeta,invlambda)T(0,)

eff[i] <- exp(-u[i])

}

invlambda ˜ dgamma(1,1/37.5)

zeta ˜ dnorm(0.0, 1E-3)T(0,)

lambda <- 1/invlambda

alpha <- alpha0-inprod(beta[],xbar[])

}
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