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Stochastic Production Frontier Models

In stochastic production frontier models it is usually assumed that the error term
is composed of a random error (v) capturing statistical noise and a one-sided
non-negative error (u). For cross-sectional data on /V observed economic agents

(generically denoted by “firms”), the model can be expressed as

yi:f<wi718>+vi_ui7izl:"'?‘]\[ (1)
where

y; is the logarithm of an output,

x; is a vector of the logarithms of inputs including an intercept and possibly

crossproducts,
3 is the vector of coefficients and
v; are independent and identically distributed N(0, c2) error terms

u;, which measures technical inefficiency of the ¢th firm.
v; and u; are assumed to be independent.
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Production Functions
For a product () produced with 2 inputs: capital (K) and Labour (L) let
y = log(Q), r1 = log(K) and x5 = log(L). Production functions used here:
e Cobb-Douglas: y = () + 121 + Paxo,
e Translog y = [y + Bix1 + [foxa + %ﬁ:ﬂ% + %6451:% + G571,

e Constant Elasticity of Substitution (CES) y = 3y +vlog( [(1—0)K "+ dL~*]~1/*),
where) < d <1, —oco<wv<ooand p > —1,

e Generalized Production Function (GPF) z = y + Aexp(y) = By + Bix1 + Goxo,

The MCMC sampling is done using the package JAGS(Just Another Gibbs
Sampler, Plummer 2003) which was originally developed as a clone of the classic
BUGSpackage. JAGS was written in C++and is designed to work closely with
the Rpackage where all statistical computations and graphics are done. It is open

source and freely available and can be downloaded from the website

http://www-fis.iarc.fr/” martyn/software/jags/
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Bayesian Models
For Cobb-Douglas, Translog and CES production functions the likelihood is

p(ylO) = HPN yilf(win, Tig, 0) — ui70-2)°

For the GPF the likelihood function is given by

al,zZ

y|0 HpN Zz‘f Lil, Li2, > Ui, 0 ) dyz

The parameters in 0 are all assumed to be a priori independent.

® (o ~ N(0,073) constrained to be positive as we want to exclude production

frontiers in which more inputs lead to less output.

e 3, ~ N(0, 0%) truncated to 3; > 0, as we want to exclude production frontiers
in which more inputs lead to less output

e For a CES production function we a551gn v~ N(0,07), p~ N(0,07) truncated
top > —1and § ~ Beta(a,b) and 0=~ ~ Gamma(a, b).
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Priors for u;

. u; ~ Exp(\) and A ~ Exp(—logr*) implies prior median efficiency equals r*
(van den Broeck et al. 1994).

. u; ~ N(0, \) truncated to u; > 0 and A"t ~ Ga(1,1/37.5) =
median(exp(—u;)) ~ 0.875 with a reasonable spread (van den Broeck et al.
1994).

. u; ~ N(& N) truncated to u; > 0. Include a prior £ ~ N (0, ag) and use the same

prior for A as above.

. u; ~ Ga(p, N), Griffin and Steel (2004) propose a prior on ¢ and A which

extends the informative prior for an exponential inefficiency distribution.
¢ ~ Gal(dy,d; + 1) implies that mode(¢)=1 (centred around an exponential
prior with d; controlling the variability). Also A\|¢ ~ Ga(¢, —logr*) where

r*=median(exp(—u;)).

. u; ~ LN(0,94?) and ¢¥~2 ~ Ga(a,b).



6. u; ~ Generalized Gamma (c, ¢, \) where ¢, ¢ and X are specified following the
development in Griffin and Steel (2004). We take A|c, ¢ ~ Ga(¢, (—logr*)¢) and

assume prior independence between c and ¢ = ¢c assigning priors
'Qb_l ~ Ga(dl, d1 -+ 1) and C_1 ~ G@(dg, dg -+ 1)

This is again centred over the exponential case (mode at ¢ = ¢ = 1) but allows
considerable deviations from the exponential if we choose d; and ds not too
large. We take d; = dy = 3 here.

7. For u; ~ Weibull(c, \) we adapt the development in the Generalized Gamma
with ¢ = 1 and assign \|c ~ Exp((—logr*)°) and ¢! ~ Ga(ds, dy + 1) which is

centred over the exponential case.

The R code implemented allows the user to specify values for the

hyperparameters a%, o2, 0% a,b,dy, d and r*.
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Comparing Models

Compare and select the most appropriate model using the Deviance Information
Criterion (DIC), where lower values indicate a good model fit relative to the
number of parameters in the model (Spiegelhalter et al. 2002).

Denote the competing models by M, My, ... and the vector of parameters under
model M by ¢;, then
DIC(M;) = D; + p;

D; = —2log(p(y | &, M;)) is the deviance, measuring model fit,
D; = E(Dily).

p; = D; — D(&;) measures model complexity,

&= E&|y).

Computing Bayes factors from a MCMC output is not a trivial task and in
particular is not easily implemented in an all purpose package like JAGS(the

same is true for the WinBUGS package).
In this work we include an R function for the computation of DIC.
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DIC Weights
It could be misleading just to report the model with the lowest DIC.

It is difficult to say what would constitute an important difference between DIC

values.

DIC is subject to Monte Carlo error since it is a function of simulated quantities.

This might cast some doubt whether an improvement in model fit is substantial.

We propose to use DIC weights obtained by subtracting from each DIC the value

associated with the “best” model and setting
w; x exp(—ADIC(M;)/2)

where ADIC(M;) denotes the transformed DIC value for model i. The weights

are normalized to sum to 1 over the models under consideration.

This was first suggested in Burnham and Anderson (1998) for the Akaike
Information Criterion (the differences are interpreted as the strength of
evidence). It can be extended to be used with the DIC which, as pointed out in
Spiegelhalter et al. (2002), can be viewed as a Bayesian analogue of AIC.
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Example

123 cross-sectional data from the US electric industry in 1970 available at
http://econ.queensu.ca/jae/1998-v13.2/zellner-ryu/d ata.zr

For the 28 competing models a total of 100 000 iterations were run, and the first
half was discarded as burn-in. After burn-in, simulated values of every 5th

iteration were kept for posterior analysis.

From Table 1 the most adequate model is the one that uses the GPF and a
truncated normal distribution for the inefficiency terms. Note that model
comparison is much easier in the transformed scale of the DIC weights. The
weight for the second best model (CES + truncated normal inefficiencies) is less
than half the weight for the most adequate model. Another subset of models
(GPF + lognormal, CES + lognormal and Cobb-Douglas + truncated normal)

received small weights.

Figure 1 shows the posterior distributions of ranks associated with exp(—u;) of
the best firm (left column) and the worst firm (right column) using the truncated
normal considering all production functions. The truncated normal frontier
model differentiates pretty well the more efficient from the less efficient firms.
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Table 1: Model comparison based on 10 000 simulations.

Prod Function inefficiency D; D(&) Di DIC weight rank
Cobb-Douglas exp —19.5609 —28.3636 8.8027 —10.7581 0.00044 23
Cobb-Douglas tnorm —30.9996 —41.6037 10.6041 —20.3956 0.05449 5
Cobb-Douglas halfnorm  —19.0528 —27.2502 8.1974 —10.8554 0.00046 22
Cobb-Douglas gamma —19.8941 —28.6195 8.7254 —11.1687 0.00054 21
Cobb-Douglas gen.gamma —20.2863 —28.6803 8.3940 —11.8924 0.00078 19
Cobb-Douglas weibull —18.6541 —26.1266 7.4726 —11.1815 0.00054 20
Cobb-Douglas lognorm —27.6661 —37.6017 9.9355 —17.7306 0.01437 6
Translog exp —15.0361 —23.8715 8.8353 —6.2008 0.00005 25
Translog thorm —23.9300 —33.2167  9.2867 —14.6432 0.00307 7
Translog halfnorm —12.8873 —20.6193 7.7320 —5.1554 0.00003 27
Translog gamma —15.1713 —23.7525 8.5812 —6.5900 0.00005 24
Translog gen.gamma —13.8555 —21.7858 7.9303 —5.9252 0.00004 26
Translog weibull —12.8305 —20.5585 7.7280 —5.1025 0.00003 28
Translog lognorm —22.0603 —31.4122 9.3519 —12.7084 0.00117 13
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Prod Function inefficiency D;

D(&) i DIC  weight rank

CES
CES
CES
CES
CES
CES
CES
GPF
GPF
GPF
GPF
GPF
GPF
GPF

exp —19.5195
tnorm —31.2346
halfnorm  —19.5870
gamma —20.2690
gen.gamma —20.1451
weibull —18.8055
lognorm  —28.1078
exp —19.9535
tnorm —33.4537
halfnorm  —20.0239
gamma —20.9083

gen.gamma —20.8332
weibull —19.6832
lognorm  —28.8473

—26.4384 6.9190 —12.6005 0.00111
—39.2628 8.0282 —23.2065 0.22216
—25.8898 6.3028 —13.2842 0.00156
—26.6339 6.3649 —13.9041 0.00212
—26.8770 6.7319 —13.4132 0.00166
—24.9562 6.1507 —12.6548 0.00114
—35.6027 7.4949 —20.6130 0.06074
—27.9918 8.0382 —11.9153 0.00078
—41.8647 8.4110 —25.0428 0.55643
—27.4804 7.4566 —12.5673 0.00109
—28.9271 8.0188 —12.8895 0.00128
—28.1687 7.3355 —13.4978 0.00173
—27.0591 7.3759 —12.3073 0.00095
—36.7637 7.9164 —20.9309 0.07121

15
2
11
8
10
14
4
18
1
16
12
9
17
3
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Figure 1: Posterior distributions of the ranks of the best firm (left column) and the worst firm (right column) for a truncated
normal inefficiency term considering the four production functions.
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JAGScommands

JAGScommands used for the model with a GPF and a truncated normal distribution for ;.

data {
for (i in 1:N) {
zeros[i] <- 0
X[i,1] <- Xreg[i,1]-xbar[1]
X[i,2] <- Xreg[i,2]-xbar[2]
}
xbar[1] <- mean(Xreg[,1])
xbar[2] <- mean(Xreq[,2])
}
model {
for(i in 1:N) {
zeros[i] © dpois(p[i])
p[i] <- -0.5 * log(tau/(2 * 3.141593))
+0.5 *tau * pow(y[i][+gamma *exp(y[i])-muli],2)
-log(1+gamma *exp(y[i]))+10000
mul[i] <- alphaO +inprod(beta[],X[i,]) - uli]
}
beta[1l] ©~ dnorm(0.0,0.001)T(0,)
beta[2] © dnorm(0.0,0.001)T(0,)

(*)
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(*)

alpha0 = dnorm(0.0,0.001)

gamma ~ dgamma(0.1,0.01)

tau ©~ dgamma(0.01,0.01)

sigma2 <- l/tau

for (i in 1:N) {
uli] © dnorm(zeta,invlambda)T(0,)
eff[i] <- exp(-u[i])

}

invlambda ~ dgamma(1,1/37.5)

zeta © dnorm(0.0, 1E-3)T(0,)

lambda <- 1/invlambda

alpha <- alphaO-inprod(beta[],xbar{])
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