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Abstract. In this paper we extend the work of Brooks and Ehlers (2002) and Brooks
et al. (2003) by constructing adaptive proposal schemes for reversible jump MCMC
in the context of autoregressive moving average models. In particular, the full
conditional distribution is not available for the added parameters and
approximations to it are provided by suggesting an adaptive updating scheme
which automatically selects proposal parameter values to improve the efficiency of
between-model moves. The performance of the proposed algorithms is assessed by
simulation studies and the methodology is illustrated by applying it to a real data
set.
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Introduction I

In many applications, there is substantial prior uncertainty concerning the choice of
most appropriate models for any given data.

Classical approach: use information criteria such as

Bayesian approach: index all models under consideration, treating this index as
another parameter and considering posterior model probabilities.

For k competing models M, ..., M, a priori we assign probabilities p(/;) to each
model.

For each model there is a vector of parameters 6, ¢ R" with:
e alikelihood given all observations p(y|0;, M;)
e a prior distribution p(6;|1;).

We obtain the posterior distribution for model and associated parameters via Bayes
theorem,
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Trans-dimensional Jumps I

The reversible jump algorithm (Green 1995) is a general strategy for generating
samples from 7(k, 8*)) based upon the standard Metropolis-Hastings approach of
proposing a move and defining a acceptance probability.

Suppose that the current state is (£, H(k)), where 8% has dimension ng, and we have
defined different move types allowing transitions between spaces of different
dimensions. A move type r is performed with probability p;(r) by generating u
from a proposal density ¢(-) and setting

(6", u') = g(6™, )
where n; + dim(u) = np + dim(u').
We accept (K, 0'*)) as the new state with probability min(1, A) where

4 T 0%)) p(r') g(w)
7 (k, 0") pi(r) q(w)

is called the acceptance ratio.

09(6™, u)
RICARRTS

(1)
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A class of moves for transitions between nested models consists of adding/deleting
parameters. Assuming that n; > ny then dim(u) = np — nj and the transition from

the larger model to the smaller one is deterministic. The acceptance ratio reduces to

m(k', 0% |y) pp(r')
(k, 0" |y) pi(r) q(u)

0g(6™), w)

A pr—
(0" w)

(2)

The applications in this paper will focus on a particular implementation in which
6*) = (8™ w). In this case, the Jacobian term is equal to 1 and the acceptance ratio
simplifies to

~ p(ylk,0%)) p(@F | Kp(K)  pr(r)
p(ylk,0%)  p(6W|k)p(k) pr(r)g(w)

= likelihood ratio x prior ratio x proposal ratio 3)

Choice of proposal distribution ¢ is crucial to cover the parameter space.

When possible use the complete conditionals, or approximations for the complete
conditionals Brooks and Ehlers (2002).
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Selection of ARIMA Models I

Ehlers and Brooks (2004) ARIMA(p, d, q) models

k q
Xt = ZCL] Xt—j + ij €t—j + €

j=1 j=1
are reparameterized in terms of inverse roots of characteristic polinomials

k q
[Ja-xp) xi =] =6L) e, e~ N(0,0%.

i=1 j=1
where X; = (1 — L)?Y,.

Stationarity /inversibility are easily imposed: |\;| <1,i=1,...,k and
‘52‘ <l,+=1,...,q.

k, ¢ and d are unknown parameters and play the role of model indicator. Upper
bounds on model order are fixed a priori and each model is equally likely.

Possible jumps: Addition/Deletion of 1 real root or a pair of complex conjugate
roots.

Possible proposals: Truncated Normal, Beta-based, Logistic-based.
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Parameter Priors I

Conditional on model order we assume independent priors for the real reciprocal

roots r € (—1,1) and any pairs of complex conjugate reciprocal roots (A;, A;+)

Aj = rcost +irsind

)\j* = rcost —irsind.

The prior is in terms of # and r and we assume prior independence,

—1

O(Aj, Aj+)

p<)‘j7)‘j*) :p(e)p(T‘) 6(9,?“)

We assume a § ~ U(0, 7) and a logistic-based prior for r

2e”

:1—1—6*%"

r

—1, 2z~ N(0,02). (4)

Large values of |z| correspond to values of |r| close to 1. This prior becomes more

concentrated around zero as o2 decreases and U-shaped and more concentrated

2

- Increases.

near-land1aso
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Assigning 2 ~ IG(a, 3) its full conditional distribution is given by

Ny + Ne 1 9 9
IG o+ ——— 8+ Z x+z 7
1:MER j:)\je(C

where n, and n. are the number of real roots and the number of complex conjugate

pairs respectively.
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Within-Model Moves I

Assigning o2 ~ IG(c, d) it is easy to see that its full conditional distribution has the
inverse Gamma form. This parameter is then updated by a Gibbs move.

In order to update the ARMA coefficients we randomly choose one of the reciprocal
roots and use Metropolis-Hastings updates with the proposal density centred on the

current value as follows.

e If we choose \; € R we propose a new value
N~ Ulmax(A; — 4§, —1), min(}\; + 9, 1)].

e If we choose )\; € C we propose a new value for (\;, \;+) by sampling
6% ~ Ulmax(0,0 — §), min(mw, 0 + §) and r* ~ U[max(r — §, —1), min(r + 9), 1], and
setting the proposed new values as r* cos 8* =+ ir* sin 6*.

This scheme ensures that new values are proposed in a neighbourhood of the

current ones and are restricted to stationarity /inversibility.
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Model Priors I

The root structure is not unique, except for £ = 1 or ¢ = 1. In order to assign a
uniform prior on the AR order, the prior probability for a certain value of £ should
be split uniformly over the possible configurations of real and complex roots
corresponding to that order. Likewise for the MA component.

This can be accomplished by assigning,

P 1 and 1 t —.
(r real and ¢ complex roots) 72 11

This prior specification differs from Huerta and West (1999) where a uniform

distribution is assigned to the possible configurations of real and complex roots thus

leading to a non-uniform prior distribution on model order.
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Between-Model Moves I

Four model move types are allowed each one proposed with probability 1/4.
We propose a real birth by adding one real reciprocal root € (—1,1).
A complex birth is propose by adding a pair of complex reciprocal roots
u = rcosf +irsinf
4 = rcosf —irsind
with new values sampled for (6, r).

Under this parameterisation and updating scheme, the models can be treated as
nested so that the Jacobian of the transformation from (A, .., A\;) to either
(A1, ooy Ay ) or (Mg, ..., Ag, u, ) equals 1.

Conversely, a real (or complex) death is proposed by randomly selecting one real (or
complex) roots and deleting it (or the pair of complex conjugates).

We consider three families of proposal densities,
e sample r ~ N(u,0?) truncated to (—1,1),

e sample u ~ Beta(ay, o) and set r = 2u — 1,
2e”
1 +e?

e sample z ~ N(u,0%) and setr =
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Updating the Number of Unit Roots I

A change in d implies a change in k£ only. For example, we can propose a move from
ARIMA(E, 0, g) to

ARIMA(k —1,1,q) or ARIMA(k —2,2,q)
so we allow unit roots (if they exist) to be either complex or real.

After we accept or reject d + 1 new values of k and ¢ are proposed and accepted or
rejected. So it is possible to go from (&, d, q) to (k,d + 1, ¢) in two steps. In practice,
values other than d = 0, 1 or 2 would not make much sense, so this is the range of

possible values that we adopt here.

The criteria for proposing these moves are as follows:

e we randomly choose one root which is greater (in absolute value) than a
prespecified lower bound L and propose 1 or 2 differences depending on the
root being real or complex (this implies deleting 1 or 2 roots).

e Otherwise, the number of differences is decreased by 1 or 2, which implies
adding 1 or 2 roots by sampling from U(-1,-L) or U(L,1) with probability 1/2.
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Adaptive Proposals for Reciprocal Roots I

When updating the AR component we can use the same expressions that appear in
Brooks and Ehlers (2002) with the error terms redefined for ARMA models.

Proposing a move from ¢ to ¢ + 1 in the MA component by adding one real
reciprocal root, r the representation for the higher dimensional model is

k

q
H(l—)\Lyt (1—rL) H1—5L
j=1

1=1

sothate¢ = (1 —rL)e, = €, — re,_, where the ¢, denote the error terms in the original
t = €& t—1 8

model and €. depends on r in a complicated non-linear wav.
t

Treating ¢;_, as if it were fixed in the larger model the likelihood function under the
larger model is given by,

1
2 2
Ly | k,q, A, 0,07) < exp [—2062 g (€ +1ep1) ] :

and again expressions given in Brooks and Ehlers (2002) can be used here with
slight modifications. Likewise for complex birth and death in the MA component.
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Simulation Study I

Data sets were simulated from AR(3), MA(3) and ARMA(3,3) processes and for the
three proposals we ran our algorithm for 1 million iterations (discarding the first
500,000) using the first 20, 50, 100, 500 and 1000 observations and recorded the
estimated posterior probability of the true model. Maximum model orders are
kmax = Qmax = D and d = 0,1, 2.

In Table 1 we show the results for the simulated AR(3). For each proposal
distribution the first row refers to the average posterior probability of the true model
while the second row shows the proportion of correct choices of the true model.

Clearly, the performance of the algorithm improves as the sample size increases and
a similar pattern is observed for the three proposals considered. Acceptable
performances seem to be achieved for at least 200 observations.
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Table 1: Model probabilities and proportion of correct model for a simulated AR(3).

Sample size
proposal 20 50 100 200 500 1000
Truncated normal 0.0092 0.0398 0.1074 0.2677 0.4565 0.5480
0.0000 0.1500 0.3500 0.6000 0.9000 0.9500
Beta-based 0.0096 0.0441 0.1059 0.2702 0.4812 0.5404
0.0000 0.1500 0.3500 0.6500 0.9500 0.9000
Logistic-based 0.0092 0.0414 0.1058 0.2628 0.4822 0.5436
0.0000 0.1500 0.3000 0.6000 0.9500 0.9000
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Figure 1: Southern oscillation index (SOI), 540 measurements taken between 1950-1995.

Table 2: Posterior model order probabilities, 500,000 iterations after a 500,000 burn-in,

Proposal d (p,q) 0 1 2 3 4 5
Truncated normal 0 1 0.0000 0.2245 0.0518 0.0503 0.0398 0.0336
2 0.0024 0.0164 0.0556 0.0292 0.0249 0.0184
3 0.0111 0.0173 0.0374 0.0286 0.0247 0.0186
4  0.0130 0.0083 0.0178 0.0134 0.0140 0.0104
5 0.0200 0.0071 0.0148 0.0113 0.0103 0.0085
1 0 0.0000 0.0135 0.0089 0.0156 0.0147 0.0193
1 0.0000 0.0023 0.0042 0.0067 0.0078 0.0105
2 0.0001 0.0018 0.0032 0.0053 0.0067 0.0086
3 0.0004 0.0020 0.0024 0.0041 0.0042 0.0058
4 0.0004 0.0012 0.0024 0.0034 0.0050 0.0060
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