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Abstract. In this paper we extend the work of Brooks and Ehlers (2002) and Brooks

et al. (2003) by constructing adaptive proposal schemes for reversible jump MCMC

in the context of autoregressive moving average models. In particular, the full

conditional distribution is not available for the added parameters and

approximations to it are provided by suggesting an adaptive updating scheme

which automatically selects proposal parameter values to improve the efficiency of

between-model moves. The performance of the proposed algorithms is assessed by

simulation studies and the methodology is illustrated by applying it to a real data

set.
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Introduction

In many applications, there is substantial prior uncertainty concerning the choice of

most appropriate models for any given data.

Classical approach: use information criteria such as

Akaike (1974) AIC(θi, Mi) = −2 log p(y|θi, Mi) + 2ni

Bayesian approach: index all models under consideration, treating this index as

another parameter and considering posterior model probabilities.

For k competing modelsM1, . . . , Mk, a prioriwe assign probabilities p(Mi) to each

model.

For each model there is a vector of parameters θi ∈ R
ni with:

• a likelihood given all observations p(y|θi, Mi)

• a prior distribution p(θi|Mi).

We obtain the posterior distribution for model and associated parameters via Bayes

theorem,

π(Mi, θi) ∝ p(y|θi, Mi) p(θi|Mi) p(Mi)
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Trans-dimensional Jumps

The reversible jump algorithm (Green 1995) is a general strategy for generating

samples from π(k, θ(k)) based upon the standard Metropolis-Hastings approach of

proposing a move and defining a acceptance probability.

Suppose that the current state is (k, θ(k)), where θ(k) has dimension nk, and we have

defined different move types allowing transitions between spaces of different

dimensions. A move type r is performed with probability pk(r) by generating u

from a proposal density q(·) and setting

(θ(k′), u′) = g(θ(k), u)

where nk + dim(u) = nk′ + dim(u′).

We accept (k′, θ(k′)) as the new state with probability min(1, A) where

A =
π(k′, θ(k′)) pk′(r′) q(u′)

π(k, θ(k)) pk(r) q(u)
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is called the acceptance ratio.
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A class of moves for transitions between nested models consists of adding/deleting

parameters. Assuming that nk′ > nk then dim(u) = nk′ − nk and the transition from

the larger model to the smaller one is deterministic. The acceptance ratio reduces to

A =
π(k′, θ(k′)|y) pk′(r′)

π(k, θ(k)|y) pk(r) q(u)

∣

∣

∣

∣

∣

∂g(θ(k), u)

∂(θ(k), u)

∣

∣

∣

∣

∣

(2)

The applications in this paper will focus on a particular implementation in which

θ(k′) = (θ(k), u). In this case, the Jacobian term is equal to 1 and the acceptance ratio

simplifies to

A =
p(y|k′, θ(k′))

p(y|k, θ(k))

p(θ(k′)|k′)p(k′)

p(θ(k)|k)p(k)

pk′(r′)

pk(r)q(u)

= likelihood ratio× prior ratio× proposal ratio (3)

Choice of proposal distribution q is crucial to cover the parameter space.

When possible use the complete conditionals, or approximations for the complete

conditionals Brooks and Ehlers (2002).
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Selection of ARIMAModels

Ehlers and Brooks (2004) ARIMA(p, d, q)models

Xt =
k

∑

j=1

aj Xt−j +

q
∑

j=1

bj ǫt−j + ǫt

are reparameterized in terms of inverse roots of characteristic polinomials

k
∏

i=1

(1 − λiL) Xt =

q
∏

j=1

(1 − δjL) ǫt, ǫt ∼ N(0, σ2).

where Xt = (1 − L)d Yt.

Stationarity/inversibility are easily imposed: |λi| < 1, i = 1, . . . , k and

|δi| < 1, i = 1, . . . , q.

k, q and d are unknown parameters and play the role of model indicator. Upper

bounds on model order are fixed a priori and each model is equally likely.

Possible jumps: Addition/Deletion of 1 real root or a pair of complex conjugate

roots.

Possible proposals: Truncated Normal, Beta-based, Logistic-based.
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Parameter Priors

Conditional on model order we assume independent priors for the real reciprocal

roots r ∈ (−1, 1) and any pairs of complex conjugate reciprocal roots (λj, λj∗)

λj = r cos θ + ir sin θ

λj∗ = r cos θ − ir sin θ.

The prior is in terms of θ and r and we assume prior independence,

p(λj, λj∗) = p(θ)p(r)

∣

∣

∣

∣

∂(λj, λj∗)

∂(θ, r)

∣

∣

∣

∣

−1

.

We assume a θ ∼ U(0, π) and a logistic-based prior for r

r =
2ex

1 + ex
− 1, x ∼ N(0, σ2

a). (4)

Large values of |x| correspond to values of |r| close to 1. This prior becomes more

concentrated around zero as σ2
a decreases and U -shaped and more concentrated

near -1 and 1 as σ2
a increases.
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Assigning σ2
a ∼ IG(α, β) its full conditional distribution is given by

IG



α +
nr + nc

2
, β +

1

2





∑

i:λi∈R

x2
i +

∑

j:λj∈C

x2
j









where nr and nc are the number of real roots and the number of complex conjugate

pairs respectively.
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Within-Model Moves

Assigning σ2
ǫ ∼ IG(c, d) it is easy to see that its full conditional distribution has the

inverse Gamma form. This parameter is then updated by a Gibbs move.

In order to update the ARMA coefficients we randomly choose one of the reciprocal

roots and use Metropolis-Hastings updates with the proposal density centred on the

current value as follows.

• If we choose λj ∈ Rwe propose a new value

λ′
j ∼ U [max(λj − δ,−1), min(λj + δ, 1)].

• If we choose λj ∈ Cwe propose a new value for (λj, λj∗) by sampling

θ∗ ∼ U [max(0, θ − δ), min(π, θ + δ) and r∗ ∼ U [max(r − δ,−1), min(r + δ), 1], and

setting the proposed new values as r∗ cos θ∗ ± ir∗ sin θ∗.

This scheme ensures that new values are proposed in a neighbourhood of the

current ones and are restricted to stationarity/inversibility.
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Model Priors

The root structure is not unique, except for k = 1 or q = 1. In order to assign a

uniform prior on the AR order, the prior probability for a certain value of k should

be split uniformly over the possible configurations of real and complex roots

corresponding to that order. Likewise for the MA component.

This can be accomplished by assigning,

P(r real and c complex roots) ∝
1

[k/2] + 1
.

This prior specification differs from Huerta and West (1999) where a uniform

distribution is assigned to the possible configurations of real and complex roots thus

leading to a non-uniform prior distribution on model order.
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Between-Model Moves

Four model move types are allowed each one proposed with probability 1/4.

We propose a real birth by adding one real reciprocal root r ∈ (−1, 1).

A complex birth is propose by adding a pair of complex reciprocal roots

u = r cos θ + ir sin θ

ū = r cos θ − ir sin θ

with new values sampled for (θ, r).

Under this parameterisation and updating scheme, the models can be treated as

nested so that the Jacobian of the transformation from (λ1, . . . , λk) to either

(λ1, . . . , λk, r) or (λ1, . . . , λk, u, ū) equals 1.

Conversely, a real (or complex) death is proposed by randomly selecting one real (or

complex) roots and deleting it (or the pair of complex conjugates).

We consider three families of proposal densities,

• sample r ∼ N(µ, σ2) truncated to (−1, 1),

• sample u ∼ Beta(α1, α2) and set r = 2u − 1,

• sample z ∼ N(µ, σ2) and set r =
2ez

1 + ez
− 1.
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Updating the Number of Unit Roots

A change in d implies a change in k only. For example, we can propose a move from

ARIMA(k, 0, q) to

ARIMA(k − 1, 1, q) or ARIMA(k − 2, 2, q)

so we allow unit roots (if they exist) to be either complex or real.

After we accept or reject d + 1 new values of k and q are proposed and accepted or

rejected. So it is possible to go from (k, d, q) to (k, d + 1, q) in two steps. In practice,

values other than d = 0, 1 or 2 would not make much sense, so this is the range of

possible values that we adopt here.

The criteria for proposing these moves are as follows:

• we randomly choose one root which is greater (in absolute value) than a

prespecified lower bound L and propose 1 or 2 differences depending on the

root being real or complex (this implies deleting 1 or 2 roots).

• Otherwise, the number of differences is decreased by 1 or 2, which implies

adding 1 or 2 roots by sampling from U(-1,-L) or U(L,1) with probability 1/2.
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Adaptive Proposals for Reciprocal Roots

When updating the AR component we can use the same expressions that appear in

Brooks and Ehlers (2002) with the error terms redefined for ARMAmodels.

Proposing a move from q to q + 1 in the MA component by adding one real

reciprocal root, r the representation for the higher dimensional model is

k
∏

i=1

(1 − λiL)yt = (1 − rL)

q
∏

j=1

(1 − δjL)ǫ′t

so that ǫt = (1 − rL)ǫ′t = ǫ′t − rǫ′t−1 where the ǫt denote the error terms in the original

model and ǫ′t depends on r in a complicated non-linear way.

Treating ǫ′t−1 as if it were fixed in the larger model the likelihood function under the

larger model is given by,

L(y | k, q, λ, δ, σ2
ǫ ) ∝ exp

[

−
1

2σ2
ǫ

∑

(ǫt + rǫt−1)
2

]

.

and again expressions given in Brooks and Ehlers (2002) can be used here with

slight modifications. Likewise for complex birth and death in the MA component.
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Simulation Study

Data sets were simulated from AR(3), MA(3) and ARMA(3,3) processes and for the

three proposals we ran our algorithm for 1 million iterations (discarding the first

500,000) using the first 20, 50, 100, 500 and 1000 observations and recorded the

estimated posterior probability of the true model. Maximum model orders are

kmax = qmax = 5 and d = 0, 1, 2.

In Table 1 we show the results for the simulated AR(3). For each proposal

distribution the first row refers to the average posterior probability of the true model

while the second row shows the proportion of correct choices of the true model.

Clearly, the performance of the algorithm improves as the sample size increases and

a similar pattern is observed for the three proposals considered. Acceptable

performances seem to be achieved for at least 200 observations.
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Table 1: Model probabilities and proportion of correct model for a simulated AR(3).

Sample size

proposal 20 50 100 200 500 1000

Truncated normal 0.0092 0.0398 0.1074 0.2677 0.4565 0.5480

0.0000 0.1500 0.3500 0.6000 0.9000 0.9500

Beta-based 0.0096 0.0441 0.1059 0.2702 0.4812 0.5404

0.0000 0.1500 0.3500 0.6500 0.9500 0.9000

Logistic-based 0.0092 0.0414 0.1058 0.2628 0.4822 0.5436

0.0000 0.1500 0.3000 0.6000 0.9500 0.9000
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Figure 1: Southern oscillation index (SOI), 540 measurements taken between 1950-1995.
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Table 2: Posterior model order probabilities, 500,000 iterations after a 500,000 burn-in,

Proposal d (p, q) 0 1 2 3 4 5

Truncated normal 0 1 0.0000 0.2245 0.0518 0.0503 0.0398 0.0336

2 0.0024 0.0164 0.0556 0.0292 0.0249 0.0184

3 0.0111 0.0173 0.0374 0.0286 0.0247 0.0186

4 0.0130 0.0083 0.0178 0.0134 0.0140 0.0104

5 0.0200 0.0071 0.0148 0.0113 0.0103 0.0085

1 0 0.0000 0.0135 0.0089 0.0156 0.0147 0.0193

1 0.0000 0.0023 0.0042 0.0067 0.0078 0.0105

2 0.0001 0.0018 0.0032 0.0053 0.0067 0.0086

3 0.0004 0.0020 0.0024 0.0041 0.0042 0.0058

4 0.0004 0.0012 0.0024 0.0034 0.0050 0.0060
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