Bayesian Inference

Ricardo Ehlers
ehlers@icmc.usp.br
Departamento de Matemática Aplicada e Estatística
Universidade de São Paulo

Prior Distributions

Conjugate Priors

In some standard models, the posterior and predictive distributions can be found in closed form.

Definition

If $F=\{p(x \mid \theta), \theta \in \Theta\}$ is a family of sampling distributions then a class P of distributions is a conjugate family with respect to F if

$$
\forall p(x \mid \theta) \in F \quad \text { and } \quad p(\theta) \in P \Rightarrow p(\theta \mid x) \in P
$$

So, prior and posterior distributions belong to the same class.

In practice, the following steps determine the class of conjugate priors.

1. Identify the class P of distributions for θ such that $p(x \mid \theta)$ is proportional to a member of this class.
2. Verify whether P is closed under multiplication, i.e. if \forall $p_{1}, p_{2} \in P \exists k$ such that $k p_{1} p_{2} \in P$.

If also there exists a constant k such that $k^{-1}=\int p(x \mid \theta) d \theta<\infty$ and all $p \in P$ is defined as $p(\theta)=k p(x \mid \theta)$ then P is the natural conjugate family with respect to this sampling model.

Example. Let $X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli}(\theta)$. The joint sampling density is,

$$
p(\mathbf{x} \mid \theta)=\theta^{t}(1-\theta)^{n-t}, \quad 0<\theta<1 \quad \text { where } \quad t=\sum_{i=1}^{n} x_{i}
$$

and by Bayes theorem it follows that,

$$
p(\theta \mid \mathbf{x}) \propto \theta^{t}(1-\theta)^{n-t} p(\theta)
$$

Note that $p(\mathbf{x} \mid \theta)$ is proportional to the density of a $\operatorname{Beta}(t+1, n-t+1)$ distribution.

Also, if p_{1} and p_{2} are the densities of $\operatorname{Beta}\left(a_{1}, b_{1}\right)$ and $\operatorname{Beta}\left(a_{2}, b_{2}\right)$ then

$$
p_{1} p_{2} \propto \theta^{a_{1}+a_{2}-2}(1-\theta)^{b_{1}+b_{2}-2}
$$

which is proportional to the density of a Beta($\left.a_{1}+a_{2}-1, b_{1}+b_{2}-1\right)$ distribution.

- We conclude that the family of Beta distributions with integer parameters is the natural conjugate to the Bernoulli family.
- In practice, this class can be extended to include all Beta distributions, i.e. for all positive parameters.

Binomial Model

Let $X \mid \theta \sim \operatorname{Binomial}(n, \theta)$. Then,

$$
p(x \mid \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} .
$$

The natural conjugate family is the $\operatorname{Beta}(\alpha, \beta)$ distribution,

$$
p(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}, \alpha>0, \beta>0
$$

- The Beta function is defined as,

$$
B(a, b)=\int_{0}^{1} y^{a-1}(1-y)^{b-1} d y=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

$$
y \in(0,1), a>0, b>0
$$

- The Gamma function is defined as,

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

- Properties,
- Integrating by parts,

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha), \alpha>0 .
$$

- $\Gamma(1)=1$.
- $\Gamma(1 / 2)=\sqrt{\pi}$.
- For n positive integer,

$$
\begin{aligned}
& \Gamma(n+1)=n! \\
& \Gamma\left(n+\frac{1}{2}\right)=\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \cdots \frac{3}{2} \frac{1}{2} \sqrt{\pi}
\end{aligned}
$$

The posterior distribution is also Beta with parameters $\alpha+x$ and $\beta+n-x$,

$$
\begin{aligned}
p(\theta \mid x) & \propto \theta^{\alpha+x-1}(1-\theta)^{\beta+n-x-1} . \\
\theta \mid x & \sim \operatorname{Beta}(\alpha+x, \beta+n-x) .
\end{aligned}
$$

Beta(1,1), Beta(2,2) and Beta(1,3) priors, posterior and normalized likelihood for $n=12$ and $X=9$.

The predictive distribution is given by,

$$
p(x)=\binom{n}{x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} \theta^{\alpha+x-1}(1-\theta)^{\beta+n-x-1} d \theta
$$

$x=0,1, \ldots, n$.
Then, solving the integral we have,

$$
\begin{aligned}
p(x) & =\binom{n}{x} B^{-1}(\alpha, \beta) B(\alpha+x, \beta+n-x) \\
& =\binom{n}{x} \frac{B(\alpha+x, \beta+n-x)}{B(\alpha, \beta)}, \quad x=0,1, \ldots, n .
\end{aligned}
$$

This is called a Beta-Binomial distribution.

Predictive probabilities $P(X=k)$ for $n=12$ associated with Beta(1,1), Beta(2,2) and Beta(1,3) conjugate priors.

k	$\operatorname{Beta}(1,1)$	$\operatorname{Beta}(2,2)$	$\operatorname{Beta}(1,3)$
0	0.0769	0.0286	0.2000
1	0.0769	0.0527	0.1714
2	0.0769	0.0725	0.1451
3	0.0769	0.0879	0.1209
4	0.0769	0.0989	0.0989
5	0.0769	0.1055	0.0791
6	0.0769	0.1077	0.0615
7	0.0769	0.1055	0.0462
8	0.0769	0.0989	0.0330
9	0.0769	0.0879	0.0220
10	0.0769	0.0725	0.0132
11	0.0769	0.0527	0.0066
12	0.0769	0.0286	0.0022

Normal Model with Known Variance

For a random sample X_{1}, \ldots, X_{n} from a $N\left(\theta, \sigma^{2}\right)$ with σ^{2} known, the likelihood function is,

$$
\begin{aligned}
p(\mathbf{x} \mid \theta) & =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right\} \\
& \propto \exp \left\{-\frac{n}{2 \sigma^{2}}(\bar{x}-\theta)^{2}\right\}
\end{aligned}
$$

This has the same form as the likelihood based on a single observation replacing x by \bar{x} and σ^{2} by σ^{2} / n.

Therefore, the previous results hold with appropriate substitutions. The posterior distribution of θ given \mathbf{x} is $N\left(\mu_{1}, \tau_{1}^{2}\right)$ where,

$$
\mu_{1}=\frac{\tau_{0}^{-2} \mu_{0}+n \sigma^{-2} \bar{x}}{\tau_{0}^{-2}+n \sigma^{-2}} \quad \text { and } \quad \tau_{1}^{-2}=\tau_{0}^{-2}+n \sigma^{-2}
$$

The posterior mean can be rewritten as,

$$
\mu_{1}=w \mu_{0}+(1-w) \bar{x}
$$

where,

$$
w=\frac{\tau_{0}^{-2}}{\tau_{0}^{-2}+n \sigma^{-2}} .
$$

Let X_{1}, \ldots, X_{n} be a random sample from a Poisson distribution with parameter θ. The joint probability function is given by,

$$
p(\mathbf{x} \mid \theta)=\frac{e^{-n \theta} \theta^{t}}{\prod x_{i}!} \propto e^{-n \theta} \theta^{t}, \quad \theta>0, \quad t=\sum_{i=1}^{n} x_{i}
$$

The likelihood kernel is of the form $\theta^{a} e^{-b \theta}$ which characterizes the Gamma family of distributions.

This family is closed under multiplication (check this!).
The natural conjugate prior for θ is Gamma with positive parameters α and β, i.e.

$$
p(\theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}, \quad \alpha>0, \beta>0, \theta>0
$$

The posterior density is then given by,

$$
p(\theta \mid x) \propto \theta^{\alpha+t-1} \exp \{-(\beta+n) \theta\}
$$

which corresponds (up to a constant) to the density of a $\operatorname{Gamma}(\alpha+t, \beta+n)$ distribution, i.e.

$$
\theta \mid x \sim \operatorname{Gamma}(\alpha+t, \beta+n)
$$

The posterior mean can be rewritten as,

$$
\begin{aligned}
E(\theta \mid \mathbf{x})=\frac{\alpha+t}{\beta+n} & =\left(\frac{\alpha}{\beta}\right) \frac{\beta}{\beta+n}+\left(\frac{t}{n}\right) \frac{n}{\beta+n} \\
& =E(\theta) \frac{\beta}{\beta+n}+\bar{x} \frac{n}{\beta+n}
\end{aligned}
$$

which is a compromise between prior and sample means.

Note that,

- When $n \rightarrow \infty$,

$$
E(\theta \mid \mathbf{x}) \rightarrow \bar{x}
$$

- When $\alpha \rightarrow 0$ and $\beta \rightarrow 0$ also,

$$
E(\theta \mid \mathbf{x}) \rightarrow \bar{x}
$$

but this would imply a limiting prior $p(\theta) \propto \theta^{-1}$ which is improper.

Gamma(1,2) prior, posterior and normalized likelihood for $n=5$ and $t=10$.

Gamma(1,2) prior, posterior and normalized likelihood for $n=50$ and $t=91$.

The predictive distribution is also easily obtained as,

$$
\begin{aligned}
p(\mathbf{x}) & =\left[\prod_{i=1}^{n} \frac{1}{x_{i}!}\right] \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} \theta^{\alpha+t-1} e^{-(\beta+n) \theta} d \theta \\
& =\left[\prod_{i=1}^{n} \frac{1}{x_{i}!}\right] \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+t)}{(\beta+n)^{\alpha+t}} .
\end{aligned}
$$

For a single observation x and α integer valued it follows that,

$$
\begin{aligned}
p(x) & =\frac{1}{x!} \frac{\beta^{\alpha} \Gamma(\alpha+x)}{\Gamma(\alpha)(\beta+1)^{\alpha+x}} \\
& =\frac{1}{x!}\left(\frac{\beta}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{x} \frac{(\alpha+x-1)!}{(\alpha-1)!} \\
& =\binom{\alpha+x-1}{x}\left(\frac{\beta}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{x} .
\end{aligned}
$$

This is the probability function of a Negative-Binomial distribution with parameters α and β.

Mean and variance are easily obtained as,

$$
\begin{aligned}
E(X) & =E[E(X \mid \theta)]=E(\theta)=\alpha / \beta \\
\operatorname{Var}(X) & =E[\operatorname{Var}(X \mid \theta)]+\operatorname{Var}[E(X \mid \theta)] \\
& =E(\theta)+\operatorname{Var}(\theta)=\frac{\alpha(\beta+1)}{\beta^{2}} .
\end{aligned}
$$

Therefore, a future observation X (after observing x_{1}, \ldots, x_{n}) has a Negative-Binomial distribution with parameters $\alpha+t$ and $\beta+n$.

$$
p\left(x \mid x_{1}, \ldots, x_{n}\right)=\binom{\alpha+t+x-1}{x}\left(\frac{\beta+n}{\beta+n+1}\right)^{\alpha+t}\left(\frac{1}{\beta+n+1}\right)^{x} .
$$

Multinomial Distribution

In this model we denote the number of ocurrences in each of p categories in n independent trials by $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$ and the associated unknown probabilities by $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right)$.
There are $p-1$ parameters since $\sum_{i=1}^{p} \theta_{i}=1$.
The restriction $\sum_{i=1}^{p} X_{i}=n$ also applies.

Definition

We say that \mathbf{X} has a multinomial distribution with parameters n and $\boldsymbol{\theta}$ and the joint probability function of \mathbf{X} is given by,

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\frac{n!}{\prod_{i=1}^{p} x_{i}!} \prod_{i=1}^{p} \theta_{i}^{x_{i}}, \quad x_{i}=0, \ldots, n, \quad \sum_{i=1}^{p} x_{i}=n
$$

for $0<\theta_{i}<1$ and $\sum_{i=1}^{p} \theta_{i}=1$.

- This is clearly a generalization of the Binomial model which has only 2 categories.
- The marginal distribution of each X_{i} is Binomial with parameters n and θ_{i}, with

$$
E\left(X_{i}\right)=n \theta_{i}, \quad V\left(X_{i}\right)=n \theta_{i}\left(1-\theta_{i}\right), \quad \text { and } \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=-n \theta_{i} \theta_{j}
$$

Definition

The random vector $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right)$ follows a Dirichlet distribution with parameters $\alpha_{1}, \ldots, \alpha_{p}$, if its joint density function is given by,

$$
p\left(\boldsymbol{\theta} \mid \alpha_{1}, \ldots, \alpha_{p}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right), \ldots, \Gamma\left(\alpha_{p}\right)} \theta_{1}^{\alpha_{1}-1} \ldots \theta_{p}^{\alpha_{p}-1}, \quad \sum_{i=1}^{p} \theta_{i}=1
$$

for $\alpha_{1}, \ldots, \alpha_{p} k>0$ and $\alpha_{0}=\sum_{i=1}^{p} \alpha_{i}$.
Marginal moments,

$$
\begin{aligned}
E\left(\theta_{i}\right) & =\frac{\alpha_{i}}{\alpha_{0}}, \quad \operatorname{Var}\left(\theta_{i}\right)=\frac{\left(\alpha_{0}-\alpha_{i}\right) \alpha_{i}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)} \\
\operatorname{Cov}\left(\theta_{i}, \theta_{j}\right) & =-\frac{\alpha_{i} \alpha_{j}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}
\end{aligned}
$$

The Dirichlet family with parameters $\alpha_{1}, \ldots, \alpha_{p}$ is the natural conjugate prior for the multinomial model.

$$
p(\boldsymbol{\theta})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right), \ldots, \Gamma\left(\alpha_{p}\right)} \theta_{1}^{\alpha_{1}-1} \ldots \theta_{p}^{\alpha_{p}-1}, \quad \sum_{i=1}^{p} \theta_{i}=1
$$

with $\alpha_{1}, \ldots, \alpha_{p}>0$ and $\alpha_{0}=\sum_{i=1}^{p} \alpha_{i}$.
The posterior density is given by,

$$
p(\boldsymbol{\theta} \mid \mathbf{x}) \propto \prod_{i=1}^{p} \theta_{i}^{x_{i}} \prod_{i=1}^{p} \theta_{i}^{\alpha_{i}-1}=\prod_{i=1}^{p} \theta_{i}^{x_{i}+\alpha_{i}-1}
$$

which is the density of a Dirichlet distribution with parameters $x_{i}+\alpha_{i}, i=1, \ldots, p$

- The Dirichlet distribution is a generalization of the Beta distribution.
- The Beta distribution is obtained as a particular case for $p=2$.
- So, we are extending the conjugate analysis for binomial samples with Beta prior.

The marginal posterior means are,

$$
\begin{aligned}
E\left(\theta_{i} \mid x_{i}\right) & =\frac{\alpha_{i}+x_{i}}{\alpha_{0}+n} \\
& =\frac{\alpha_{0}}{\alpha_{0}+n} E\left(\theta_{i}\right)+\frac{n}{\alpha_{0}+n} x_{i}
\end{aligned}
$$

Normal Model with Unknown Variance

Let X_{1}, \ldots, X_{n} a random sample from a $N\left(\theta, \sigma^{2}\right)$ distribution with θ known and $\phi=\sigma^{-2}$ unknown.
In this case,

$$
p(\mathbf{x} \mid \theta, \phi) \propto \phi^{n / 2} \exp \left\{-\frac{\phi}{2} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right\} .
$$

The kernel has the same form as that of a Gamma distribution.
Since the Gamma family is closed under multiplication this is our natural conjugate prior for ϕ,

$$
\phi \sim \operatorname{Gamma}\left(\frac{n_{0}}{2}, \frac{n_{0} \sigma_{0}^{2}}{2}\right) .
$$

Define $n s_{0}^{2}=\sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}$ and apply Bayes theorem to obtain,

$$
\begin{aligned}
p(\phi \mid \mathbf{x}) & \propto \phi^{n / 2} \exp \left\{-\frac{\phi}{2} n s_{0}^{2}\right\} \phi^{n_{0} / 2-1} \exp \left\{-\frac{\phi}{2} n_{0} \sigma_{0}^{2}\right\} \\
& =\phi^{\left(n_{0}+n\right) / 2-1} \exp \left\{-\frac{\phi}{2}\left(n_{0} \sigma_{0}^{2}+n s_{0}^{2}\right)\right\} .
\end{aligned}
$$

Then,

$$
\phi \left\lvert\, \mathbf{x} \sim \operatorname{Gamma}\left(\frac{n_{0}+n}{2}, \frac{n_{0} \sigma_{0}^{2}+n s_{0}^{2}}{2}\right) .\right.
$$

Equivalently,

$$
\begin{aligned}
n_{0} \sigma_{0}^{2} \phi & \sim \chi_{n_{0}}^{2} \\
\left(n_{0} \sigma_{0}^{2}+n s_{0}^{2}\right) \phi \mid \mathbf{x} & \sim \chi_{n_{0}+n}^{2}
\end{aligned}
$$

Also, the posterior mean,

$$
\frac{n_{0}+n}{n_{0} \sigma_{0}^{2}+n s_{0}^{2}} \rightarrow \frac{1}{s_{0}^{2}}=\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right]^{-1}
$$

when $n \rightarrow \infty$.

A continuous random variable X follows an Inverse Gamma distribution with parameters $\alpha>0$ and $\beta>0$, if its density function is given by,

$$
p(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} e^{-\beta / x}, \quad x>0
$$

Mean and variance are given by,

$$
\begin{aligned}
E(X) & =\frac{\beta}{\alpha-1}, \alpha>1 \\
V(X) & =\frac{\beta^{2}}{(\alpha-1)^{2}(\alpha-2)}, \alpha>2
\end{aligned}
$$

- This is the distribution of $1 / X$ when $X \sim \operatorname{Ga}(\alpha, \beta)$.
- Check that this is the natural conjugate prior distribution for σ^{2} in the previous problem.

Mixtures of conjugate priors

Let ϕ a discrete random variable assuming values $\phi_{1}, \ldots, \phi_{k}$ and suppose that we can assign a conjugate distribution for θ given each value of ϕ, i.e. we can specify $p\left(\theta \mid \phi_{i}\right), i=1, \ldots, k$.

Then, the prior distribution of θ is a mixture of distributions,

$$
p(\theta)=\sum_{i=1}^{k} p\left(\theta \mid \phi_{i}\right) p\left(\phi_{i}\right)
$$

It can be verified that the posterior distribution is still a mixture of distributions.

Applying the Bayes theorem we obtain,

$$
p(\theta \mid x)=\frac{p(\theta) p(x \mid \theta)}{\int p(\theta) p(x \mid \theta) d \theta}=\frac{\sum_{i=1}^{k} p(x \mid \theta) p\left(\theta \mid \phi_{i}\right) p\left(\phi_{i}\right)}{\sum_{i=1}^{k} p\left(\phi_{i}\right) \int p(x \mid \theta) p\left(\theta \mid \phi_{i}\right) d \theta}
$$

Also, by Bayes theorem,

$$
p\left(\theta \mid x, \phi_{i}\right)=\frac{p(x \mid \theta) p\left(\theta \mid \phi_{i}\right)}{\int p(x \mid \theta) p\left(\theta \mid \phi_{i}\right) d \theta}=\frac{p(x \mid \theta) p\left(\theta \mid \phi_{i}\right)}{m\left(x \mid \phi_{i}\right)}
$$

or equivalently, $p(x \mid \theta) p\left(\theta \mid \phi_{i}\right)=p\left(\theta \mid x, \phi_{i}\right) m\left(x \mid \phi_{i}\right)$
Again by Bayes theorem, the posterior distribution of ϕ_{i} is obtained as,

$$
p\left(\phi_{i} \mid x\right)=\frac{m\left(x \mid \phi_{i}\right) p\left(\phi_{i}\right)}{p(x)} .
$$

Finally, we can write the posterior distribution of θ as,

$$
p(\theta \mid x)=\frac{\sum_{i=1}^{k} p\left(\theta \mid x, \phi_{i}\right) m\left(x \mid \phi_{i}\right) p\left(\phi_{i}\right)}{\sum_{i=1}^{k} m\left(x \mid \phi_{i}\right) p\left(\phi_{i}\right)}=\sum_{i=1}^{k} p\left(\theta \mid x, \phi_{i}\right) p\left(\phi_{i} \mid x\right)
$$

As a consequence, the predictive distribution is also a mixture of conditional predictive distributions,

$$
p(x)=\sum_{i=1}^{k} m\left(x \mid \phi_{i}\right) p\left(\phi_{i}\right)
$$

Example. If $\theta \in(0,1)$, the family of $\operatorname{Beta}(a, b)$ prior distributions is convenient but these are unimodal and left or right skewed (if $a \neq b$). Other interesting forms which might be more suitable to our prior information can be obtained by mixing 2 or 3 elements from this family.

Suppose that

$$
\theta \sim 0.25 \operatorname{Beta}(3,8)+0.75 \operatorname{Beta}(8,3)
$$

Then,

- $\theta \in(0.5,0.95)$ with high probability (0.714).
- $\theta \in(0.1,0.4)$ with moderate probability (0.2).
- The modes are 0.23 and 0.78 .

On the other hand,

$$
\theta \sim 0,33 \operatorname{Beta}(4,10)+0,33 \operatorname{Beta}(15,28)+0,33 \operatorname{Beta}(50,70)
$$

tells us that $\theta>0.6$ with negligible probabbility and $E(\theta)=0.35$.

Normal Model with Unknown Mean and Variance

Let X_{1}, \ldots, X_{n} a random sample from a $N\left(\theta, \sigma^{2}\right)$ distribution with θ and $\phi=\sigma^{-2}$ unknown.

Suppose we assume the following prior distribution for (θ, ϕ),

$$
\begin{aligned}
\theta \mid \phi & \sim N\left(\mu_{0}, \tau_{0}^{2} \phi^{-1}\right) \\
\phi & \sim \operatorname{Gamma}\left(\frac{n_{0}}{2}, \frac{n_{0} \sigma_{0}^{2}}{2}\right) .
\end{aligned}
$$

What is the marginal prior distribution of θ ?

$$
\begin{aligned}
p(\theta) & =\int p(\theta \mid \phi) p(\phi) d \phi \\
& \propto \int_{0}^{\infty} \phi^{\left(n_{0}+1\right) / 2-1} \exp \left\{-\frac{\phi}{2}\left[n_{0} \sigma_{0}^{2}+\tau_{0}^{-2}\left(\theta-\mu_{0}\right)^{2}\right]\right\} d \phi \\
& \propto\left[\frac{n_{0} \sigma_{0}^{2}+\tau_{0}^{-2}\left(\theta-\mu_{0}\right)^{2}}{2}\right]^{-\frac{n_{0}+1}{2}} \\
& \propto\left[1+\frac{\tau_{0}^{-2}\left(\theta-\mu_{0}\right)^{2}}{n_{0} \sigma_{0}^{2}}\right]^{-\frac{n_{0}+1}{2}}
\end{aligned}
$$

Then,

$$
\theta \sim t_{n_{0}}\left(\mu_{0}, \sigma_{0}^{2} \tau_{0}^{2}\right)
$$

Also, combining likelihood function with priors we obtain,

$$
\begin{aligned}
\theta \mid \phi, \mathbf{x} & \sim N\left(\mu_{1}, \tau_{1}^{2} \phi^{-1}\right) \\
\phi \mid \mathbf{x} & \sim \operatorname{Gamma}\left(\frac{n_{1}}{2}, \frac{n_{1} \sigma_{1}^{2}}{2}\right) .
\end{aligned}
$$

where,

$$
\begin{aligned}
\mu_{1} & =\frac{\tau_{0}^{-2} \phi \mu_{0}+n \phi \bar{x}}{\tau_{0}^{-2} \phi+n \phi}=\frac{\tau_{0}^{-2} \mu_{0}+n \bar{x}}{\tau_{0}^{-2}+n} \\
\tau_{1}^{-2} & =\tau_{0}^{-2}+n \\
n_{1} & =n_{0}+n \\
n_{1} \sigma_{1}^{2} & =n_{0} \sigma_{0}^{2}+\sum\left(x_{i}-\bar{x}\right)^{2}+\tau_{0}^{-2} n\left(\mu_{0}-\bar{x}\right)^{2} /\left(\tau_{0}^{-2}+n\right) .
\end{aligned}
$$

Then,

$$
\theta \sim t_{n_{1}}\left(\mu_{1}, \sigma_{1}^{2} \tau_{1}^{2}\right)
$$

Hierachical Priors

Suppose now that ϕ is a continuous random vector which contains the parameters in the prior distribution of θ (the hyperparameters).

Then we specify $p(\theta \mid \phi)$ and $p(\phi)$ to obtain the joint prior distribution $p(\theta, \phi)$.

The marginal prior is obtained as,

$$
p(\theta)=\int p(\theta \mid \phi) p(\phi) d \phi
$$

Applying Bayes theorem, we obtain the joint posterior distribution as,

$$
\begin{aligned}
p(\theta, \phi \mid \mathbf{x}) & \propto p(\mathbf{x} \mid \theta, \phi) p(\theta \mid \phi) p(\phi) \\
& \propto p(\mathbf{x} \mid \theta) p(\theta \mid \phi) p(\phi)
\end{aligned}
$$

The marginal posterior distribution of θ is obtained by integration,

$$
p(\theta \mid \mathbf{x})=\int p(\theta, \phi \mid \mathbf{x}) d \phi
$$

- The prior specification was split in stages.
- Instead of fixing the value of ϕ we assign a prior distribution completing the second stage in the hierarchy.
- There is no theoretical limit for the number of stages, but in practice 2 or 3 stages are employed in general.

Example. Let X_{1}, \ldots, X_{n} such that $X_{i} \sim N\left(\theta_{i}, \sigma^{2}\right)$ with σ^{2} known and we need to specify a prior distribution for $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$.
In the first stage we can set $\theta_{i} \sim N\left(\mu, \tau^{2}\right), i=1, \ldots, n$. Fixing the value $\tau^{2}=\tau_{0}^{2}$ and assuming that μ is normaly distributed then $\boldsymbol{\theta}$ follows a multivariate normal distribution.

Now, fixing the value $\mu=\mu_{0}$ and assuming that τ^{-2} follows a Gamma distribution will imply a multivariate Student- t distribution for θ.

Jeffreys Prior

Intuitively, thinking of all possible values of θ as equally likely seems to be a natural choice to represent complete ignorance.

Bayes and Laplace used a uniform distribution for estimating $\theta \in(0,1)$, i.e. $\theta \sim \operatorname{Beta}(1,1)$.

In general, if $p(\theta) \propto k$ for $\theta \in \Theta \subset \mathbb{R}$ then no particular set of values of θ is preferable.

This choice brings some technical difficulties,

- If the parameter space Θ is unbounded the distribution is improper,

$$
\int p(\theta) d \theta=\infty
$$

- If $\phi=g(\theta)$ is a nonlinear monotone reparameterization of θ then $p(\phi)$ is non-uniform since,

$$
p(\phi)=p_{\theta}\left(g^{-1}(\phi)\right)\left|\frac{d \theta}{d \phi}\right| \propto\left|\frac{d \theta}{d \phi}\right| .
$$

But clearly, if you are completely ignorant about θ you should be completely ignorant about any function of θ.

Jeffreys Prior

Harold Jeffreys' idea to specify a prior was motivated by the desire that inference should not depend on how a model is parameterized.

Jeffreys (1961) proposed a class of priors that is invariant to 1-1 transformations, although generally improper.

Definition

For one observation X with probability (density) function $p(x \mid \theta)$, the expected Fisher information measure of θ through X is defined as,

$$
I(\theta)=E\left[-\frac{\partial^{2} \log p(x \mid \theta)}{\partial \theta^{2}}\right] .
$$

If $\boldsymbol{\theta}$ is a vector the expected Fisher information matrix is defined as,

$$
\mathbf{I}(\boldsymbol{\theta})=E\left[-\frac{\partial^{2} \log p(x \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right]
$$

- The concept of informatios is associated to a kind of mean curvature of the likelihood function (the more curvature the more precise is the information).
- The mean curvature measured by the second derivative is in most cases negative, therefore the minus sign.
- The expectation is with respect to the distribution of $X \mid \theta$.

Definition

If X has probability (density) function $p(x \mid \theta)$, the Jeffreys prior for θ is given by,

$$
p(\theta) \propto[I(\theta)]^{1 / 2}
$$

If $\boldsymbol{\theta}$ is a vector of parameters then,

$$
p(\boldsymbol{\theta}) \propto|\operatorname{det} \mathbf{I}(\boldsymbol{\theta})|^{1 / 2}
$$

Definition

X follows a location model if there exist a function f and a quantity θ such that $p(x \mid \theta)=f(x-\theta)$ and θ is called location parameter.

The definition is also valid if θ is a vector of parameters.

Examples are the normal distribution with known variance and the multivariate normal with variance-covariance matrix known

The Jeffreys prior for a location model is,

$$
p(\theta) \propto \text { constante. }
$$

Definition

X follows a scale model if there exist a function f and a quantity σ such that $p(x \mid \sigma)=(1 / \sigma) f(x / \sigma)$ and σ is called scale parameter.

Examples are the exponential distribution with parameter θ and scale parameter $\sigma=1 / \theta$ and the $N\left(\theta, \sigma^{2}\right)$ with known mean and scale σ.

The Jeffreys prior for a scale parameter is,

$$
p(\theta) \propto \sigma^{-1}
$$

Definition

X follow a location-scale model if there exist a function f and quantities θ and σ such that,

$$
p(x \mid \theta, \sigma)=\frac{1}{\sigma} f\left(\frac{x-\theta}{\sigma}\right) .
$$

In this case θ is called location parameter and σ is the scale parameter.

Examples are the uni and multivariate normal and the Cauchy distributions.

The Jeffreys prior for a location-scale parameter usually assumes independence between θ and σ, so that

$$
p(\theta, \sigma)=p(\theta) p(\sigma) \propto \sigma^{-1}
$$

Invariance of Jeffreys prior

For a 1 to 1 transformation $\phi=g(\theta)$, a direct application of the change of variables theorem shows that,

$$
p(\phi)=p(\theta)\left|\frac{d \theta}{d \phi}\right| \propto I(\phi)^{1 / 2} .
$$

Example. Let $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ with μ and σ^{2} unknown. In this case,

$$
p\left(x \mid \mu, \sigma^{2}\right) \propto \frac{1}{\sigma} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\}
$$

so (μ, σ) is the location-scale parameter and $p(\mu, \sigma) \propto \sigma^{-1}$ is the prior.

By the invariance property, the prior for $\left(\mu, \sigma^{2}\right)$ in the normal model is $p\left(\mu, \sigma^{2}\right) \propto \sigma^{-2}$.

Example. Let $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\theta)$. Then,

$$
\log p(\mathbf{x} \mid \theta)=-n \theta+\sum_{i=1}^{n} x_{i} \log \theta-\log \prod_{i=1}^{n} x_{i}!
$$

and taking the second derivative it follows that,

$$
\frac{\partial^{2} \log p(x \mid \theta)}{\partial \theta^{2}}=\frac{\partial}{\partial \theta}\left[-n+\frac{\sum_{i=1}^{n} x_{i}}{\theta}\right]=-\frac{\sum_{i=1}^{n} x_{i}}{\theta^{2}}
$$

and then,

$$
I(\theta)=\frac{1}{\theta^{2}} E\left[\sum_{i=1}^{n} x_{i}\right]=\frac{n}{\theta} \propto \theta^{-1} .
$$

So, the Jeffreys prior for θ in the Poisson model is,

$$
p(\theta) \propto \theta^{-1 / 2}
$$

- This is also obtained taking the natural conjugate $\operatorname{Gamma}(\alpha, \beta)$ and setting $\alpha=1 / 2$ and $\beta \rightarrow 0$.
- Is this proper?

Example. Let $X_{1}, \ldots, X_{n} \sim$ Exponential (λ). The Fisher information is given by,

$$
I(\lambda)=\frac{n}{\lambda^{2}}
$$

so that the Jeffreys prior is,

$$
p(\lambda) \propto \lambda^{-1}
$$

This prior is improper (why?)

Example. Let $X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli}(\theta)$. Then,

$$
\log p(\mathbf{x} \mid \theta)=\sum_{i=1}^{n} x_{i} \log (\theta)+\left(n-\sum_{i=1}^{n} x_{i}\right) \log (1-\theta)
$$

and taking the second derivative,

$$
\begin{aligned}
\frac{\partial^{2} \log p(x \mid \theta)}{\partial \theta^{2}} & =\frac{\partial}{\partial \theta}\left[\frac{\sum_{i=1}^{n} x_{i}}{\theta}-\frac{\left(n-\sum_{i=1}^{n} x_{i}\right)}{1-\theta}\right] \\
& =-\frac{\sum_{i=1}^{n} x_{i}}{\theta^{2}}-\frac{\left(n-\sum_{i=1}^{n} x_{i}\right)}{(1-\theta)^{2}}
\end{aligned}
$$

Then,

$$
\begin{aligned}
I(\theta) & =\frac{1}{\theta^{2}} E\left[\sum_{i=1}^{n} X_{i}\right]+\frac{1}{(1-\theta)^{2}}\left(n-E\left[\sum_{i=1}^{n} X_{i}\right]\right) \\
& =\frac{n}{\theta(1-\theta)} \propto \theta^{-1}(1-\theta)^{-1}
\end{aligned}
$$

The Jeffreys prior for θ in the Bernoulli model is,

$$
p(\theta) \propto \theta^{-1 / 2}(1-\theta)^{-1 / 2} .
$$

This is also obtained taking the natural conjugate $\operatorname{Beta}(\alpha, \beta)$ and setting $\alpha=1 / 2$ and $\beta=1 / 2$.

Example. Multinomial model. The number of ocurrences in each of p categories in n independent trials is denoted by
$\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$ and the associated unknown probabilities by
$\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right)$.
The joint probability function of \mathbf{X} is,

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\frac{n!}{\prod_{i=1}^{p} x_{i}!} \prod_{i=1}^{p} \theta_{i}^{x_{i}}, \quad x_{i}=0, \ldots, n, \quad \sum_{i=1}^{p} x_{i}=n
$$

for $0<\theta_{i}<1$ and $\sum_{i=1}^{p} \theta_{i}=1$.
The parameter space is given by,

$$
\Theta=\left\{\boldsymbol{\theta}: 0<\theta_{i}<1, i=1, \ldots, p, \sum_{i=1}^{p} \theta_{i}=1\right\}
$$

A natural noninformative prior for $\boldsymbol{\theta}$ is to take $\alpha_{1}=\ldots, \alpha_{p}=1$ in the Dirichlet conjugate prior,

$$
p(\boldsymbol{\theta}) \propto 1, \boldsymbol{\theta} \in \Theta .
$$

What would be the Jeffreys prior in this case?

Recall that,

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\frac{n!}{\prod_{i=1}^{p} x_{i}!} \prod_{i=1}^{p} \theta_{i}^{x_{i}}, \quad x_{i}=0, \ldots, n, \quad \sum_{i=1}^{p} x_{i}=n
$$

so that,

$$
\begin{gathered}
\log p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{i=1}^{p} x_{i} \log \theta_{i}+C \\
\frac{\partial \log p(\mathbf{x} \mid \boldsymbol{\theta})}{\partial \theta_{i}}=\frac{x_{i}}{\theta_{i}} \\
\frac{\partial^{2} \log p(\mathbf{x} \mid \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}=-x_{i} / \theta_{i}^{2}
\end{gathered}
$$

for $i=j$ and zero otherwise.

The Fisher information matrix is thus diagonal with diagonal elements,

$$
\frac{1}{\theta_{i}^{2}} E\left(X_{i}\right)=\frac{n \theta_{i}}{\theta_{i}^{2}}=\frac{n}{\theta_{i}}
$$

Then,

$$
|I(\boldsymbol{\theta})|=n \theta_{1}^{-1} \ldots \theta_{p}^{-1}
$$

and the Jeffreys prior is,

$$
p(\boldsymbol{\theta}) \propto \theta_{1}^{-1 / 2} \ldots \theta_{p}^{-1 / 2}
$$

This is proportional to a Dirichlet density with $\alpha_{1}=\cdots=\alpha_{p}=1 / 2$, which is a proper prior.

To sum up

- Jeffreys prior violates the likelihood principle since the Fisher information depends on the sampling distribution.
- Jeffreys prior is widely accepted for single parameter models, but somewhat more controversial and often subject to modification, in multiparameter models.
- Jeffreys priors are usually improper.
- In a few models, the use of improper priors can result in improper posteriors.
- Use of improper priors makes model selection and hypothesis testing difficult.
- General purpose packages WinBUGS and JAGS do not allow the use of improper priors.

