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Prior Distributions



Conjugate Priors

In some standard models, the posterior and predictive distributions
can be found in closed form.

Definition
If F={p(x|0),6 € O} is a family of sampling distributions then a
class P of distributions is a conjugate family with respect to F if

V p(x|0) € F and p(f) € P = p(0|x) € P.

So, prior and posterior distributions belong to the same class.



In practice, the following steps determine the class of conjugate
priors.

1. Identify the class P of distributions for 6 such that p(x|0) is
proportional to a member of this class.

2. Verify whether P is closed under multiplication, i.e. if V
p1, p2 € P 3 k such that kp1po € P.

If also there exists a constant k such that k=1 = [ p(x|0)df < oo
and all p € P is defined as p() = k p(x|f) then P is the natural
conjugate family with respect to this sampling model.



Example. Let Xi,..., X, ~ Bernoulli(f). The joint sampling
density is,

p(x|0) =0 (1—60)"", 0<6O<1 where t= fo
i=1

and by Bayes theorem it follows that,

p(0]x) o< 0%(1 — 6)""p(0).

Note that p(x|@) is proportional to the density of a
Beta(t + 1, n — t + 1) distribution.

Also, if p1 and py are the densities of Beta(a1, b1) and Beta(ay, b2)
then

p1p2 9314-32—2(1 - 0)b1+b2—2’

which is proportional to the density of a
Beta(a; + a2 — 1, by + by — 1) distribution.



e We conclude that the family of Beta distributions with integer
parameters is the natural conjugate to the Bernoulli family.

e In practice, this class can be extended to include all Beta
distributions, i.e. for all positive parameters.



Binomial Model

Let X|0 ~ Binomial(n, &). Then,
(x]10) = " F(1—-0)"~
pix|o) = 1| .

The natural conjugate family is the Beta(«, 3) distribution,

MNa+6)

a—1¢1 _ pg\f-1
r(a)r(ﬁ)g 1-6)"" a>0,6>0

p(0)



e The Beta function is defined as,

1
Ba.b)= [y -y iy = 2
0
y €(0,1),a>0,b>0.

e The Gamma function is defined as,

r(a):/ x“te™dXx.
0

e Properties,
e Integrating by parts,
MNa+1) =al(a),a > 0.
e [(1)=1.
e [(1/2) = /7.

e For n positive integer,

Mn+1)=n!

(or2)- (-3 (2)-23%



The posterior distribution is also Beta with parameters o + x and
B+ n—x,

p(f]x) o oF* (1 — g)Bn—x-1

|x ~ Beta(a + x, 8 + n — x).



Beta(1,1), Beta(2,2) and Beta(1,3) priors, posterior and normalized
likelihood for n =12 and X = 9.
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The predictive distribution is given by,

X

p(x) = (n) Ma+8) /01 gotx1(1 — g)SH+n—x-1gg,

M(a)l(B)
x=0,1,...,n

Then, solving the integral we have,

P = (7)B @ M8+ x5+ n—x)

() B

This is called a Beta-Binomial distribution.



Predictive probabilities P(X = k) for n = 12 associated with
Beta(1,1), Beta(2,2) and Beta(1,3) conjugate priors.

k  Beta(1,1) Beta(2,2) Beta(1,3)
0 0.0769 0.0286 0.2000
1 0.0769 0.0527 0.1714
2 0.0769 0.0725 0.1451
3 0.0769 0.0879 0.1209
4 0.0769 0.0989 0.0989
5
6
7
8

0.0769 0.1055 0.0791
0.0769 0.1077 0.0615
0.0769 0.1055 0.0462
0.0769 0.0989 0.0330
9 0.0769 0.0879 0.0220
10  0.0769 0.0725 0.0132
11 0.0769 0.0527 0.0066
12 0.0769 0.0286 0.0022




Normal Model with Known Variance

For a random sample Xi,..., X, from a N(6,0?) with o2 known,
the likelihood function is,

p(xlf) = (2m2)‘"/zexp{_2i2 ) (x,-—e)z}

i=1

X  exp {—#(Y - 9)2}

This has the same form as the likelihood based on a single
observation replacing x by x and o2 by o2/n.
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Therefore, the previous results hold with appropriate substitutions.

The posterior distribution of 6 given x is N(u1,72) where,

_ 7'62#0 + no—2

7'(;2 + no—2

X _ _ _
and 7’12:T02+n(7 2

H1

The posterior mean can be rewritten as,
p = wpo + (1 — w)x

where,
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Poisson Model

Let Xi,..., X, be a random sample from a Poisson distribution
with parameter 0. The joint probability function is given by,

efn9 t

p(x|0) = W

n
xe et >0, t= Zx,.
i=1

The likelihood kernel is of the form 682e—?? which characterizes the
Gamma family of distributions.

This family is closed under multiplication (check this!).

The natural conjugate prior for 6 is Gamma with positive
parameters « and f3, i.e.

_ Ba a—1_—360
p(9)——r(a)9 e, a>0, >0 60>0.
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The posterior density is then given by,
p(0]x) oc 09+ exp {—(B + n)6}

which corresponds (up to a constant) to the density of a
Gamma(a + t, 8 + n) distribution, i.e.

0)x ~ Gamma(a + t, 8+ n).

The posterior mean can be rewritten as,

_at+t (o I} t n
BN =5 = <B>ﬁ+n+<n>ﬂ+n

= ﬂmﬂin+xﬁiﬁ

which is a compromise between prior and sample means.

14



Note that,

e When n — oo,
E(0|x) — X

e When @ — 0 and 5 — 0 also,
E(0]x) — X

but this would imply a limiting prior p(6) o =1 which is
improper.
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Gamma(1,2) prior, posterior and normalized likelihood for n =5 and
t = 10.
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Gamma(1,2) prior, posterior and normalized likelihood for n = 50 and

t =091.
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The predictive distribution is also easily obtained as,

T L B [ et (B
p(x) = []_[1)(/!] r(a)/o gott—1e=(B+mo g

i=

oy | BY Ta+y)
B [iljx,-!] M) (8 + n)ott’
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For a single observation x and « integer valued it follows that,

1 p° Mo+ x)
P = ey (3 1)

B % (fﬂ)a(ﬂ—luy(a(;:)!l)!

- () G

N X B+1 B+1) °
This is the probability function of a Negative-Binomial distribution
with parameters o and (3.

Mean and variance are easily obtained as,
E(X) = E[E(X]0)] = E(0) =a/B
Var(X) = E[Var(X|0)] + Var[E(X]0)]
a(B8+1)

= E(0)+ Var(9) = g
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Therefore, a future observation X (after observing xi, ..., x,) has
a Negative-Binomial distribution with parameters a4+ t and 5 + n.

_ (at+t+x—1\( B+n \*'* 1 .
p(X|Xl7"-aXﬂ) - ( X ><ﬁ—|—n—|—1) (B“‘n‘i‘l) '
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Multinomial Distribution

In this model we denote the number of ocurrences in each of p
categories in n independent trials by X = (X1,...,X;) and the
associated unknown probabilities by 6 = (61, ...,0,).

There are p — 1 parameters since Y 7, 6; = 1.
The restriction Y ?_; X; = n also applies.
Definition

We say that X has a multinomial distribution with parameters n
and @ and the joint probability function of X is given by,

n! L P
p(x|0):p7X|H9j(lv Xizo)"'anv ZX,’ZH
=171 =1 i=1
for0 <6 <land >  6;=1
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e This is clearly a generalization of the Binomial model which
has only 2 categories.

e The marginal distribution of each X; is Binomial with
parameters n and 6;, with

E(X,) = n9,-, V(X,) = n9,-(1—0,-)7 and COV(X,',)(_,') = —n9,-6j.
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Definition
The random vector 6 =
with parameters asq, ...,

(01,...,0,) follows a Dirichlet distribution
ap, if its joint density function is given by,

(o) a1l ga 1
Olag,...,ap) = 07 0,7 0; =1,
POIGL: e = gy ) Z

for a1,...,apk >0and ag = Y 1, o

Marginal moments,

E6;) = &, Var(6;) = (a0 — aj)a
ag af(ag +1)
[eHe%
COV(@,', 9_,') = *7@5(040 ;ll- 1)
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The Dirichlet family with parameters a1, ..., ap is the natural
conjugate prior for the multinomial model.

p(0) = r(al)’r.(.oio’)r(ap)elal_l ‘ Oép_l Ze _1,

with aq,...,ap > 0and ag = Y 7, o

The posterior density is given by,

p

p(]x) HeX' He?*f*l =[[o

i=1 i=1 i=1

which is the density of a Dirichlet distribution with parameters
Xi+ap,i=1...,p
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e The Dirichlet distribution is a generalization of the Beta
distribution.

e The Beta distribution is obtained as a particular case for
p=2.

e So, we are extending the conjugate analysis for binomial
samples with Beta prior.

The marginal posterior means are,

Q; + X;
E(H,-]x,-) B oz:)+nl
« n
= 0 E(G,‘) + Xj.
apg+n ag+n
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Normal Model with Unknown Variance

Let Xi,..., X, a random sample from a N(#, o?) distribution with
6 known and ¢ = o2 unknown.

In this case,

. ¢ <
p(x|0, @) x ¢ /2 exp {—2 Z(X,' - 9)2}.

i=1

The kernel has the same form as that of a Gamma distribution.

Since the Gamma family is closed under multiplication this is our
natural conjugate prior for ¢,

2
nog nNpo
¢ ~ Gamma < O) .

27 2
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Define ns3 =

n

" ,(xi — 0)? and apply Bayes theorem to obtain,

p(d|x) o "% exp {—?nsg} ¢"/> L exp {—?noag}
¢(no+n)/2—1 exp {;Z)(noag + nsg)} g
Then, , ,
o|x ~ Gamma (noj n, n0002+ nso> .

27



Equivalently,
2
n00—0¢ ~ Xno
2 2 2
(nOUO =+ n50)¢ ‘ X~ Xng+n
Also, the posterior mean,

no +n 1 = 5
L NS o S
noos + nsi  sa n’z_;( i=9)

when n — oo.
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Definition

A continuous random variable X follows an Inverse Gamma
distribution with parameters o > 0 and 3 > 0, if its density
function is given by,

p(x|a, B) = I'fa) x—(etl) o=B/x > 0.

Mean and variance are given by,

E(X) = %,a>1
62
V(X) = (a—1)2(a—2)’a>2'

e This is the distribution of 1/X when X ~ Ga(«, ).
e Check that this is the natural conjugate prior distribution for
o2 in the previous problem.
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Mixtures of conjugate priors

Let ¢ a discrete random variable assuming values ¢1, ..., ¢, and
suppose that we can assign a conjugate distribution for 6 given
each value of ¢, i.e. we can specify p(0|¢;), i=1,..., k.

Then, the prior distribution of # is a mixture of distributions,

k

p(0) = p(0l¢r)p(¢0)-

i=1

It can be verified that the posterior distribution is still a mixture of
distributions.

30



Applying the Bayes theorem we obtain,

x|0)p(0]o:)p(oi)
o - PO ,;p

k
/ PO)PXIO)AD 5™ b)) / p(x19)p(0]1)d6

i=1

Also, by Bayes theorem,
p(x|0)p(0l¢i) _ p(x[0)p(6]¢i)
[ pcioreeionds ")

or equivalently, p(x|8)p(0|oi)=p(0|x, ¢;)m(x|®;)
Again by Bayes theorem, the posterior distribution of ¢; is

obtained as,
m(x|¢:)p(4i)
p(x)

p(9|X, d)l) =

p(dilx) =

31



Finally, we can write the posterior distribution of ¢ as,

k
>_ (ol onmixlep(e)
p(d |x) = =— Z (01x, ¢i)p(¢ilx)
> m(x|¢:)p(¢7) -

i=1

As a consequence, the predictive distribution is also a mixture of
conditional predictive distributions,

k

p(x) = Z m(x|$i)p(¢i)-

i=1

32



Example. If § € (0,1), the family of Beta(a, b) prior distributions
is convenient but these are unimodal and left or right skewed (if
a # b). Other interesting forms which might be more suitable to
our prior information can be obtained by mixing 2 or 3 elements
from this family.
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Suppose that
6 ~ 0.25Beta(3, 8) + 0.75Beta(8, 3)

. Then,

e 0 €(0.5,0.95) with high probability (0.714).
e 0 €(0.1,0.4) with moderate probability (0.2).
e The modes are 0.23 and 0.78.

On the other hand,

6 ~ 0,33Beta(4,10) + 0, 33Beta(15, 28) + 0, 33Beta(50, 70)

tells us that # > 0.6 with negligible probabbility and E(6) = 0.35.

34



258(3,8)+.75B(8,3)

.33B(4,10)+.33B(15,28)+.33B(50,70)
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Normal Model with Unknown Mean and

Variance

Let Xi,...,X, a random sample from a N(@,O’z) distribution with
6 and ¢ = o2 unknown.

Suppose we assume the following prior distribution for (6, ¢),

9|¢ ~ N(M0>Tg¢_1)

2
No Nooyg
~ G — .
10} amma ( ) )

What is the marginal prior distribution of 67

36



Then,

/ p(616)p(6)do

Aw ¢(n0+1)/2*1 exp {_i[nogg +7'0_2(0 . M0)2]} d¢

_ _ngt+l
noag + 70_2(9 — ,uo)2
2
] i1
14+ Ta2(9 —2,u0)2 ’ ’
nooy

0 ~ tno(:“*07 0(2)7'(?).

37



Also, combining likelihood function with priors we obtain,

where,

6’(257)( ~ N(:U’lale(bil)
¢|x ~ Gamma <n1 n101>.

27 2

7o “Ppio + ngx B 7o 2o + X

Taqu—knqﬁ N ng+n

7'0_2+n

ng+n

oo + > _(xi — X)* + 15 n(o — %)/ (152

0 ~ tny (1, 0177).

+ n).
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Hierachical Priors

Suppose now that ¢ is a continuous random vector which contains
the parameters in the prior distribution of 6 (the hyperparameters).

Then we specify p(0|¢) and p(¢) to obtain the joint prior
distribution p(6, ¢).

The marginal prior is obtained as,
p(6) = [ pl6I6)p(6)do.

Applying Bayes theorem, we obtain the joint posterior distribution
as,

p(0,¢x) o< p(x|6,¢) p(0]¢) p(e)
o p(x[0) p(0¢) p(o)

39



The marginal posterior distribution of 6 is obtained by integration,

pl0h) = [ p(6. 61x)do.

e The prior specification was split in stages.

e Instead of fixing the value of ¢ we assign a prior distribution
completing the second stage in the hierarchy.

e There is no theoretical limit for the number of stages, but in
practice 2 or 3 stages are employed in general.

40



Example. Let Xi,..., X, such that X; ~ N(6;,0?) with 02 known
and we need to specify a prior distribution for @ = (61, ...,6,).

In the first stage we can set 6; ~ N(u,72), i = 1,..., n. Fixing the
value 72 = Tg and assuming that p is normaly distributed then 6
follows a multivariate normal distribution.

Now, fixing the value y = po and assuming that 72 follows a
Gamma distribution will imply a multivariate Student-t distribution
for 6.

41



Jeffreys Prior

Intuitively, thinking of all possible values of 6 as equally likely
seems to be a natural choice to represent complete ignorance.

Bayes and Laplace used a uniform distribution for estimating
0 €(0,1), i.e. 6 ~ Beta(1,1).

In general, if p(A) o k for § € © C R then no particular set of
values of 0 is preferable.

42



This choice brings some technical difficulties,

e If the parameter space © is unbounded the distribution is
improper,
/p(Q)dQ = 00.

e If » = g() is a nonlinear monotone reparameterization of
then p(¢) is non-uniform since,

do| |de
do| ™ |do|

But clearly, if you are completely ignorant about 6 you should be
completely ignorant about any function of 6.

p(6) = pa(g ()

43



Jeffreys Prior

Harold Jeffreys’ idea to specify a prior was motivated by the desire
that inference should not depend on how a model is parameterized.

Jeffreys (1961) proposed a class of priors that is invariant to 1-1
transformations, although generally improper.
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Definition
For one observation X with probability (density) function p(x|6),
the expected Fisher information measure of 6 through X is defined

asy

If @ is a vector the expected Fisher information matrix is defined as,

o) [- 22260
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e The concept of informatios is associated to a kind of mean
curvature of the likelihood function (the more curvature the
more precise is the information).

e The mean curvature measured by the second derivative is in
most cases negative, therefore the minus sign.

e The expectation is with respect to the distribution of X|6.

46



Definition
If X has probability (density) function p(x|f), the Jeffreys prior for

0 is given by,
p(0) o [1(O)]/2.

If @ is a vector of parameters then,

p(6) x | det 1(0)[*/2.
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Definition

X follows a location model if there exist a function f and a
quantity 6 such that p(x|0) = f(x — @) and @ is called location
parameter.

The definition is also valid if 8 is a vector of parameters.

Examples are the normal distribution with known variance and the
multivariate normal with variance-covariance matrix known

The Jeffreys prior for a location model is,

p(0) o constante.
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Definition
X follows a scale model if there exist a function f and a quantity o
such that p(x|o) = (1/0)f(x/o) and o is called scale parameter.

Examples are the exponential distribution with parameter 6 and
scale parameter o = 1/6 and the N(6, 0?) with known mean and

scale o.

The Jeffreys prior for a scale parameter is,

p(0) ox o™

49



Definition
X follow a location-scale model if there exist a function f and
quantities 6 and ¢ such that,

p(x|6, ) = %f (X - 9) .

g

In this case 6 is called location parameter and o is the scale
parameter.

Examples are the uni and multivariate normal and the Cauchy
distributions.

The Jeffreys prior for a location-scale parameter usually assumes
independence between 6 and o, so that

p(6,5) = p(8)p(c) o 5.
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Invariance of Jeffreys prior

For a 1 to 1 transformation ¢ = g(#), a direct application of the
change of variables theorem shows that,

pl6) = p(6) | 5o | < 1012
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Example. Let Xi,..., X, ~ N(u,o?) with & and o unknown. In

this case,
1 1 /x—u 2
2 J— [
p(XIu,U)mUeXP{ 2( . >}

so (u, o) is the location-scale parameter and p(u, o) oc o1 is the
prior.

By the invariance property, the prior for (1, 02) in the normal

model is p(u,0?) oc 072
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Example. Let Xi,..., X, ~ Poisson(#). Then,
log p(x|0) = —n9+ZX, log 6 — Iong,

and taking the second derivative it follows that,

&logp(x|6) a0 [_n+ i X:} L XX

06? oL 6 62

and then,

] e

So, the Jeffreys prior for @ in the Poisson model is,

p(0) x 6712,
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e This is also obtained taking the natural conjugate
Gamma(a, 3) and setting & = 1/2 and 8 — 0.

e |s this proper?
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p(6)

— Gamma(1/2,2)
Gamma(1/2,0.1)
= - Gamma(1/2,0.001)




Example. Let Xi,..., X, ~ Exponential(A). The Fisher
information is given by,

so that the Jeffreys prior is,

p(\) oc AL,

This prior is improper (why?)
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Example. Let Xi,..., X, ~ Bernoulli(d). Then,

log p(x|0) = Zx, log(6 Zx,-) log(1 — 0)
i=1

and taking the second derivative,

9 log p(x|6) _ o S Xi _ (n—>>1xi)
062 00 0 1-0

_27:1 xi  (n—3i, Xi)'

02 (1-0)
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The Jeffreys prior for 6 in the Bernoulli model is,

p(0) x 67121 — 9)~1/2,

This is also obtained taking the natural conjugate Beta(«, 3) and
setting « = 1/2 and = 1/2.
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p(6)

25
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Example. Multinomial model. The number of ocurrences in each
of p categories in n independent trials is denoted by

X = (Xi,...,Xp) and the associated unknown probabilities by
0= (61,...,6p).

The joint probability function of X is,

p(x|0) = IHOX’ xi=0,...,n, E Xi=n
1% 5y :
=

for0<§;<land >  6;=1

The parameter space is given by,

p
©={0:0<0;<1,i=1,...,p) 6;i=1}
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A natural noninformative prior for 8 is to take a3 = ..., ap = 1 in
the Dirichlet conjugate prior,

p(8) x 1, 8¢ 0.

What would be the Jeffreys prior in this case?
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Recall that,

p(x|0) =

so that,

H9 Xi = ,...,n,
llX’

=il

log p(x|0) = Zx, log6; + C
=il

dlogp(x|6) _ xi

20, 6
82 log p(x|0) 2
ao.00, - /0

for i = j and zero otherwise.
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The Fisher information matrix is thus diagonal with diagonal
elements, .

1 nb; n

g EX) '

1

Then,

11(8) = noy ... 0,7,

and the Jeffreys prior is,

p(6) x 6,12, 0,12,

This is proportional to a Dirichlet density with
a; =--- = ap = 1/2, which is a proper prior.
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To sum up

Jeffreys prior violates the likelihood principle since the Fisher
information depends on the sampling distribution.

Jeffreys prior is widely accepted for single parameter models,
but somewhat more controversial and often subject to
modification, in multiparameter models.

Jeffreys priors are usually improper.

In a few models, the use of improper priors can result in
improper posteriors.

Use of improper priors makes model selection and hypothesis
testing difficult.

General purpose packages WinBUGS and JAGS do not allow
the use of improper priors.
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