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Prior Distributions



Conjugate Priors

In some standard models, the posterior and predictive distributions
can be found in closed form.

Definition

If F = {p(x |θ), θ ∈ Θ} is a family of sampling distributions then a
class P of distributions is a conjugate family with respect to F if

∀ p(x |θ) ∈ F and p(θ) ∈ P ⇒ p(θ|x) ∈ P.

So, prior and posterior distributions belong to the same class.
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In practice, the following steps determine the class of conjugate
priors.

1. Identify the class P of distributions for θ such that p(x |θ) is
proportional to a member of this class.

2. Verify whether P is closed under multiplication, i.e. if ∀
p1, p2 ∈ P ∃ k such that kp1p2 ∈ P.

If also there exists a constant k such that k−1 =
∫
p(x |θ)dθ <∞

and all p ∈ P is defined as p(θ) = k p(x |θ) then P is the natural
conjugate family with respect to this sampling model.
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Example. Let X1, . . . ,Xn ∼ Bernoulli(θ). The joint sampling
density is,

p(x|θ) = θt(1− θ)n−t , 0 < θ < 1 where t =
n∑

i=1

xi

and by Bayes theorem it follows that,

p(θ|x) ∝ θt(1− θ)n−tp(θ).

Note that p(x|θ) is proportional to the density of a
Beta(t + 1, n − t + 1) distribution.

Also, if p1 and p2 are the densities of Beta(a1, b1) and Beta(a2, b2)
then

p1p2 ∝ θa1+a2−2(1− θ)b1+b2−2,

which is proportional to the density of a
Beta(a1 + a2 − 1, b1 + b2 − 1) distribution.
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• We conclude that the family of Beta distributions with integer
parameters is the natural conjugate to the Bernoulli family.

• In practice, this class can be extended to include all Beta
distributions, i.e. for all positive parameters.
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Binomial Model

Let X |θ ∼ Binomial(n, θ). Then,

p(x |θ) =

(
n

x

)
θx(1− θ)n−x .

The natural conjugate family is the Beta(α, β) distribution,

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, α > 0, β > 0
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• The Beta function is defined as,

B(a, b) =

∫ 1

0
ya−1(1− y)b−1dy =

Γ(a)Γ(b)

Γ(a + b)
,

y ∈ (0, 1), a > 0, b > 0.

• The Gamma function is defined as,

Γ(α) =

∫ ∞
0

xα−1e−xdx .

• Properties,

• Integrating by parts,

Γ(α + 1) = αΓ(α), α > 0.

• Γ(1) = 1.
• Γ(1/2) =

√
π.

• For n positive integer,

Γ(n + 1) = n!

Γ

(
n +

1

2

)
=

(
n − 1

2

)(
n − 3

2

)
. . .

3

2

1

2

√
π
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The posterior distribution is also Beta with parameters α + x and
β + n − x ,

p(θ|x) ∝ θα+x−1(1− θ)β+n−x−1.

θ|x ∼ Beta(α + x , β + n − x).
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Beta(1,1), Beta(2,2) and Beta(1,3) priors, posterior and normalized
likelihood for n = 12 and X = 9.
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The predictive distribution is given by,

p(x) =

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0
θα+x−1(1− θ)β+n−x−1dθ,

x = 0, 1, . . . , n.

Then, solving the integral we have,

p(x) =

(
n

x

)
B−1(α, β)B(α + x , β + n − x)

=

(
n

x

)
B(α + x , β + n − x)

B(α, β)
, x = 0, 1, . . . , n.

This is called a Beta-Binomial distribution.
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Predictive probabilities P(X = k) for n = 12 associated with
Beta(1,1), Beta(2,2) and Beta(1,3) conjugate priors.

k Beta(1,1) Beta(2,2) Beta(1,3)

0 0.0769 0.0286 0.2000
1 0.0769 0.0527 0.1714
2 0.0769 0.0725 0.1451
3 0.0769 0.0879 0.1209
4 0.0769 0.0989 0.0989
5 0.0769 0.1055 0.0791
6 0.0769 0.1077 0.0615
7 0.0769 0.1055 0.0462
8 0.0769 0.0989 0.0330
9 0.0769 0.0879 0.0220
10 0.0769 0.0725 0.0132
11 0.0769 0.0527 0.0066
12 0.0769 0.0286 0.0022
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Normal Model with Known Variance

For a random sample X1, . . . ,Xn from a N(θ, σ2) with σ2 known,
the likelihood function is,

p(x|θ) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − θ)2

}
∝ exp

{
− n

2σ2
(x − θ)2

}
This has the same form as the likelihood based on a single
observation replacing x by x and σ2 by σ2/n.
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Therefore, the previous results hold with appropriate substitutions.
The posterior distribution of θ given x is N(µ1, τ

2
1 ) where,

µ1 =
τ−2

0 µ0 + nσ−2x

τ−2
0 + nσ−2

and τ−2
1 = τ−2

0 + nσ−2.

The posterior mean can be rewritten as,

µ1 = wµ0 + (1− w)x

where,

w =
τ−2

0

τ−2
0 + nσ−2

.
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Poisson Model

Let X1, . . . ,Xn be a random sample from a Poisson distribution
with parameter θ. The joint probability function is given by,

p(x|θ) =
e−nθθt∏

xi !
∝ e−nθθt , θ > 0, t =

n∑
i=1

xi .

The likelihood kernel is of the form θae−bθ which characterizes the
Gamma family of distributions.

This family is closed under multiplication (check this!).

The natural conjugate prior for θ is Gamma with positive
parameters α and β, i.e.

p(θ) =
βα

Γ(α)
θα−1e−βθ, α > 0, β > 0, θ > 0.
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The posterior density is then given by,

p(θ|x) ∝ θα+t−1 exp {−(β + n)θ} ,

which corresponds (up to a constant) to the density of a
Gamma(α + t, β + n) distribution, i.e.

θ|x ∼ Gamma(α + t, β + n).

The posterior mean can be rewritten as,

E (θ|x) =
α + t

β + n
=

(
α

β

)
β

β + n
+

(
t

n

)
n

β + n
,

= E (θ)
β

β + n
+ x

n

β + n
.

which is a compromise between prior and sample means.
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Note that,

• When n→∞,
E (θ|x)→ x

• When α→ 0 and β → 0 also,

E (θ|x)→ x

but this would imply a limiting prior p(θ) ∝ θ−1 which is
improper.
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Gamma(1,2) prior, posterior and normalized likelihood for n = 5 and
t = 10.
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Gamma(1,2) prior, posterior and normalized likelihood for n = 50 and
t = 91.
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The predictive distribution is also easily obtained as,

p(x) =

[
n∏

i=1

1

xi !

]
βα

Γ(α)

∫ ∞
0

θα+t−1e−(β+n)θdθ

=

[
n∏

i=1

1

xi !

]
βα

Γ(α)

Γ(α + t)

(β + n)α+t
.
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For a single observation x and α integer valued it follows that,

p(x) =
1

x!

βα Γ(α + x)

Γ(α) (β + 1)α+x

=
1

x!

(
β

β + 1

)α( 1

β + 1

)x (α + x − 1)!

(α− 1)!

=

(
α + x − 1

x

)(
β

β + 1

)α( 1

β + 1

)x

.

This is the probability function of a Negative-Binomial distribution
with parameters α and β.

Mean and variance are easily obtained as,

E (X ) = E [E (X |θ)] = E (θ) = α/β

Var(X ) = E [Var(X |θ)] + Var [E (X |θ)]

= E (θ) + Var(θ) =
α(β + 1)

β2
.
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Therefore, a future observation X (after observing x1, . . . , xn) has
a Negative-Binomial distribution with parameters α + t and β + n.

p(x |x1, . . . , xn) =

(
α + t + x − 1

x

)(
β + n

β + n + 1

)α+t ( 1

β + n + 1

)x

.
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Multinomial Distribution

In this model we denote the number of ocurrences in each of p
categories in n independent trials by X = (X1, . . . ,Xp) and the
associated unknown probabilities by θ = (θ1, . . . , θp).

There are p − 1 parameters since
∑p

i=1 θi = 1.

The restriction
∑p

i=1 Xi = n also applies.

Definition

We say that X has a multinomial distribution with parameters n
and θ and the joint probability function of X is given by,

p(x|θ) =
n!∏p

i=1 xi !

p∏
i=1

θxii , xi = 0, . . . , n,

p∑
i=1

xi = n

for 0 < θi < 1 and
∑p

i=1 θi = 1.
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• This is clearly a generalization of the Binomial model which
has only 2 categories.

• The marginal distribution of each Xi is Binomial with
parameters n and θi , with

E (Xi ) = nθi , V (Xi ) = nθi (1−θi ), and Cov(Xi ,Xj) = −nθiθj .
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Definition

The random vector θ = (θ1, . . . , θp) follows a Dirichlet distribution
with parameters α1, . . . , αp, if its joint density function is given by,

p(θ|α1, . . . , αp) =
Γ(α0)

Γ(α1), . . . , Γ(αp)
θα1−1

1 . . . θ
αp−1
p ,

p∑
i=1

θi = 1,

for α1, . . . , αpk > 0 and α0 =
∑p

i=1 αi .

Marginal moments,

E (θi ) =
αi

α0
, Var(θi ) =

(α0 − αi )αi

α2
0(α0 + 1)

,

Cov(θi , θj) = −
αiαj

α2
0(α0 + 1)
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The Dirichlet family with parameters α1, . . . , αp is the natural
conjugate prior for the multinomial model.

p(θ) =
Γ(α0)

Γ(α1), . . . , Γ(αp)
θα1−1

1 . . . θ
αp−1
p ,

p∑
i=1

θi = 1,

with α1, . . . , αp > 0 and α0 =
∑p

i=1 αi .

The posterior density is given by,

p(θ|x) ∝
p∏

i=1

θxii

p∏
i=1

θαi−1
i =

p∏
i=1

θxi+αi−1
i .

which is the density of a Dirichlet distribution with parameters
xi + αi , i = 1, . . . , p
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• The Dirichlet distribution is a generalization of the Beta
distribution.

• The Beta distribution is obtained as a particular case for
p = 2.

• So, we are extending the conjugate analysis for binomial
samples with Beta prior.

The marginal posterior means are,

E (θi |xi ) =
αi + xi
α0 + n

=
α0

α0 + n
E (θi ) +

n

α0 + n
xi .
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Normal Model with Unknown Variance

Let X1, . . . ,Xn a random sample from a N(θ, σ2) distribution with
θ known and φ = σ−2 unknown.

In this case,

p(x|θ, φ) ∝ φn/2 exp

{
−φ

2

n∑
i=1

(xi − θ)2

}
.

The kernel has the same form as that of a Gamma distribution.

Since the Gamma family is closed under multiplication this is our
natural conjugate prior for φ,

φ ∼ Gamma

(
n0

2
,
n0σ

2
0

2

)
.
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Define ns2
0 =

∑n
i=1(xi − θ)2 and apply Bayes theorem to obtain,

p(φ|x) ∝ φn/2 exp

{
−φ

2
ns2

0

}
φn0/2−1 exp

{
−φ

2
n0σ

2
0

}
= φ(n0+n)/2−1 exp

{
−φ

2
(n0σ

2
0 + ns2

0 )

}
.

Then,

φ|x ∼ Gamma

(
n0 + n

2
,
n0σ

2
0 + ns2

0

2

)
.
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Equivalently,

n0σ
2
0φ ∼ χ2

n0

(n0σ
2
0 + ns2

0 )φ | x ∼ χ2
n0+n

Also, the posterior mean,

n0 + n

n0σ2
0 + ns2

0

→ 1

s2
0

=

[
1

n

n∑
i=1

(xi − θ)2

]−1

when n→∞.
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Definition

A continuous random variable X follows an Inverse Gamma
distribution with parameters α > 0 and β > 0, if its density
function is given by,

p(x |α, β) =
βα

Γ(α)
x−(α+1) e−β/x , x > 0.

Mean and variance are given by,

E (X ) =
β

α− 1
, α > 1

V (X ) =
β2

(α− 1)2(α− 2)
, α > 2.

• This is the distribution of 1/X when X ∼ Ga(α, β).

• Check that this is the natural conjugate prior distribution for
σ2 in the previous problem.
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Mixtures of conjugate priors

Let φ a discrete random variable assuming values φ1, . . . , φk and
suppose that we can assign a conjugate distribution for θ given
each value of φ, i.e. we can specify p(θ|φi ), i = 1, . . . , k.

Then, the prior distribution of θ is a mixture of distributions,

p(θ) =
k∑

i=1

p(θ|φi )p(φi ).

It can be verified that the posterior distribution is still a mixture of
distributions.
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Applying the Bayes theorem we obtain,

p(θ|x) =
p(θ)p(x |θ)∫
p(θ)p(x |θ)dθ

=

k∑
i=1

p(x |θ)p(θ|φi )p(φi )

k∑
i=1

p(φi )

∫
p(x |θ)p(θ|φi )dθ

.

Also, by Bayes theorem,

p(θ|x , φi ) =
p(x |θ)p(θ|φi )∫
p(x |θ)p(θ|φi )dθ

=
p(x |θ)p(θ|φi )

m(x |φi )

or equivalently, p(x |θ)p(θ|φi )=p(θ|x , φi )m(x |φi )

Again by Bayes theorem, the posterior distribution of φi is
obtained as,

p(φi |x) =
m(x |φi )p(φi )

p(x)
.
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Finally, we can write the posterior distribution of θ as,

p(θ |x) =

k∑
i=1

p(θ|x , φi )m(x |φi )p(φi )

k∑
i=1

m(x |φi )p(φi )

=
k∑

i=1

p(θ|x , φi )p(φi |x)

As a consequence, the predictive distribution is also a mixture of
conditional predictive distributions,

p(x) =
k∑

i=1

m(x |φi )p(φi ).
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Example. If θ ∈ (0, 1), the family of Beta(a, b) prior distributions
is convenient but these are unimodal and left or right skewed (if
a 6= b). Other interesting forms which might be more suitable to
our prior information can be obtained by mixing 2 or 3 elements
from this family.
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Suppose that

θ ∼ 0.25Beta(3, 8) + 0.75Beta(8, 3)

. Then,

• θ ∈ (0.5, 0.95) with high probability (0.714).

• θ ∈ (0.1, 0.4) with moderate probability (0.2).

• The modes are 0.23 and 0.78.

On the other hand,

θ ∼ 0, 33Beta(4, 10) + 0, 33Beta(15, 28) + 0, 33Beta(50, 70)

tells us that θ > 0.6 with negligible probabbility and E (θ) = 0.35.
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Normal Model with Unknown Mean and

Variance

Let X1, . . . ,Xn a random sample from a N(θ, σ2) distribution with
θ and φ = σ−2 unknown.

Suppose we assume the following prior distribution for (θ, φ),

θ|φ ∼ N(µ0, τ
2
0φ
−1)

φ ∼ Gamma

(
n0

2
,
n0σ

2
0

2

)
.

What is the marginal prior distribution of θ?
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p(θ) =

∫
p(θ|φ)p(φ)dφ

∝
∫ ∞

0
φ(n0+1)/2−1 exp

{
−φ

2
[n0σ

2
0 + τ−2

0 (θ − µ0)2]

}
dφ

∝

[
n0σ

2
0 + τ−2

0 (θ − µ0)2

2

]− n0+1
2

∝

[
1 +

τ−2
0 (θ − µ0)2

n0σ2
0

]− n0+1
2

,

Then,
θ ∼ tn0(µ0, σ

2
0τ

2
0 ).
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Also, combining likelihood function with priors we obtain,

θ|φ, x ∼ N(µ1, τ
2
1φ
−1)

φ|x ∼ Gamma

(
n1

2
,
n1σ

2
1

2

)
.

where,

µ1 =
τ−2

0 φµ0 + nφx

τ−2
0 φ+ nφ

=
τ−2

0 µ0 + nx

τ−2
0 + n

τ−2
1 = τ−2

0 + n

n1 = n0 + n

n1σ
2
1 = n0σ

2
0 +

∑
(xi − x)2 + τ−2

0 n(µ0 − x)2/(τ−2
0 + n).

Then,
θ ∼ tn1(µ1, σ

2
1τ

2
1 ).
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Hierachical Priors

Suppose now that φ is a continuous random vector which contains
the parameters in the prior distribution of θ (the hyperparameters).

Then we specify p(θ|φ) and p(φ) to obtain the joint prior
distribution p(θ, φ).

The marginal prior is obtained as,

p(θ) =

∫
p(θ|φ)p(φ)dφ.

Applying Bayes theorem, we obtain the joint posterior distribution
as,

p(θ, φ|x) ∝ p(x|θ, φ) p(θ|φ) p(φ)

∝ p(x|θ) p(θ|φ) p(φ)
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The marginal posterior distribution of θ is obtained by integration,

p(θ|x) =

∫
p(θ, φ|x)dφ.

• The prior specification was split in stages.

• Instead of fixing the value of φ we assign a prior distribution
completing the second stage in the hierarchy.

• There is no theoretical limit for the number of stages, but in
practice 2 or 3 stages are employed in general.
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Example. Let X1, . . . ,Xn such that Xi ∼ N(θi , σ
2) with σ2 known

and we need to specify a prior distribution for θ = (θ1, . . . , θn).

In the first stage we can set θi ∼ N(µ, τ2), i = 1, . . . , n. Fixing the
value τ2 = τ2

0 and assuming that µ is normaly distributed then θ
follows a multivariate normal distribution.

Now, fixing the value µ = µ0 and assuming that τ−2 follows a
Gamma distribution will imply a multivariate Student-t distribution
for θ.
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Jeffreys Prior

Intuitively, thinking of all possible values of θ as equally likely
seems to be a natural choice to represent complete ignorance.

Bayes and Laplace used a uniform distribution for estimating
θ ∈ (0, 1), i.e. θ ∼ Beta(1, 1).

In general, if p(θ) ∝ k for θ ∈ Θ ⊂ R then no particular set of
values of θ is preferable.
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This choice brings some technical difficulties,

• If the parameter space Θ is unbounded the distribution is
improper, ∫

p(θ)dθ =∞.

• If φ = g(θ) is a nonlinear monotone reparameterization of θ
then p(φ) is non-uniform since,

p(φ) = pθ(g−1(φ))

∣∣∣∣ dθdφ
∣∣∣∣ ∝ ∣∣∣∣ dθdφ

∣∣∣∣ .
But clearly, if you are completely ignorant about θ you should be
completely ignorant about any function of θ.
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Jeffreys Prior

Harold Jeffreys’ idea to specify a prior was motivated by the desire
that inference should not depend on how a model is parameterized.

Jeffreys (1961) proposed a class of priors that is invariant to 1-1
transformations, although generally improper.
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Definition

For one observation X with probability (density) function p(x |θ),
the expected Fisher information measure of θ through X is defined
as,

I (θ) = E

[
−∂

2 log p(x |θ)

∂θ2

]
.

If θ is a vector the expected Fisher information matrix is defined as,

I(θ) = E

[
−∂

2 log p(x |θ)

∂θ∂θ′

]
.
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• The concept of informatios is associated to a kind of mean
curvature of the likelihood function (the more curvature the
more precise is the information).

• The mean curvature measured by the second derivative is in
most cases negative, therefore the minus sign.

• The expectation is with respect to the distribution of X |θ.
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Definition

If X has probability (density) function p(x |θ), the Jeffreys prior for
θ is given by,

p(θ) ∝ [I (θ)]1/2.

If θ is a vector of parameters then,

p(θ) ∝ | det I(θ)|1/2.
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Definition

X follows a location model if there exist a function f and a
quantity θ such that p(x |θ) = f (x − θ) and θ is called location
parameter.

The definition is also valid if θ is a vector of parameters.

Examples are the normal distribution with known variance and the
multivariate normal with variance-covariance matrix known

The Jeffreys prior for a location model is,

p(θ) ∝ constante.
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Definition

X follows a scale model if there exist a function f and a quantity σ
such that p(x |σ) = (1/σ)f (x/σ) and σ is called scale parameter.

Examples are the exponential distribution with parameter θ and
scale parameter σ = 1/θ and the N(θ, σ2) with known mean and
scale σ.

The Jeffreys prior for a scale parameter is,

p(θ) ∝ σ−1.
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Definition

X follow a location-scale model if there exist a function f and
quantities θ and σ such that,

p(x |θ, σ) =
1

σ
f

(
x − θ
σ

)
.

In this case θ is called location parameter and σ is the scale
parameter.

Examples are the uni and multivariate normal and the Cauchy
distributions.

The Jeffreys prior for a location-scale parameter usually assumes
independence between θ and σ, so that

p(θ, σ) = p(θ)p(σ) ∝ σ−1.
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Invariance of Jeffreys prior

For a 1 to 1 transformation φ = g(θ), a direct application of the
change of variables theorem shows that,

p(φ) = p(θ)

∣∣∣∣ dθdφ
∣∣∣∣ ∝ I (φ)1/2.
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Example. Let X1, . . . ,Xn ∼ N(µ, σ2) with µ and σ2 unknown. In
this case,

p(x |µ, σ2) ∝ 1

σ
exp

{
−1

2

(
x − µ
σ

)2
}
,

so (µ, σ) is the location-scale parameter and p(µ, σ) ∝ σ−1 is the
prior.

By the invariance property, the prior for (µ, σ2) in the normal
model is p(µ, σ2) ∝ σ−2.
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Example. Let X1, . . . ,Xn ∼ Poisson(θ). Then,

log p(x|θ) = −nθ +
n∑

i=1

xi log θ − log
n∏

i=1

xi !

and taking the second derivative it follows that,

∂2 log p(x |θ)

∂θ2
=

∂

∂θ

[
−n +

∑n
i=1 xi
θ

]
= −

∑n
i=1 xi
θ2

and then,

I (θ) =
1

θ2
E

[
n∑

i=1

xi

]
=

n

θ
∝ θ−1.

So, the Jeffreys prior for θ in the Poisson model is,

p(θ) ∝ θ−1/2.
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• This is also obtained taking the natural conjugate
Gamma(α, β) and setting α = 1/2 and β → 0.

• Is this proper?
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Example. Let X1, . . . ,Xn ∼ Exponential(λ). The Fisher
information is given by,

I (λ) =
n

λ2

so that the Jeffreys prior is,

p(λ) ∝ λ−1.

This prior is improper (why?)
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Example. Let X1, . . . ,Xn ∼ Bernoulli(θ). Then,

log p(x|θ) =
n∑

i=1

xi log(θ) + (n −
n∑

i=1

xi ) log(1− θ)

and taking the second derivative,

∂2 log p(x |θ)

∂θ2
=

∂

∂θ

[∑n
i=1 xi
θ

−
(n −

∑n
i=1 xi )

1− θ

]
= −

∑n
i=1 xi
θ2

−
(n −

∑n
i=1 xi )

(1− θ)2
.

Then,

I (θ) =
1

θ2
E

[
n∑

i=1

Xi

]
+

1

(1− θ)2

(
n − E

[
n∑

i=1

Xi

])
=

n

θ(1− θ)
∝ θ−1(1− θ)−1.
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The Jeffreys prior for θ in the Bernoulli model is,

p(θ) ∝ θ−1/2(1− θ)−1/2.

This is also obtained taking the natural conjugate Beta(α, β) and
setting α = 1/2 and β = 1/2.
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Example. Multinomial model. The number of ocurrences in each
of p categories in n independent trials is denoted by
X = (X1, . . . ,Xp) and the associated unknown probabilities by
θ = (θ1, . . . , θp).

The joint probability function of X is,

p(x|θ) =
n!∏p

i=1 xi !

p∏
i=1

θxii , xi = 0, . . . , n,

p∑
i=1

xi = n

for 0 < θi < 1 and
∑p

i=1 θi = 1.

The parameter space is given by,

Θ = {θ : 0 < θi < 1, i = 1, . . . , p,

p∑
i=1

θi = 1}
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A natural noninformative prior for θ is to take α1 = . . . , αp = 1 in
the Dirichlet conjugate prior,

p(θ) ∝ 1, θ ∈ Θ.

What would be the Jeffreys prior in this case?
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Recall that,

p(x|θ) =
n!∏p

i=1 xi !

p∏
i=1

θxii , xi = 0, . . . , n,

p∑
i=1

xi = n

so that,

log p(x|θ) =

p∑
i=1

xi log θi + C

∂ log p(x|θ)

∂θi
=

xi
θi

∂2 log p(x|θ)

∂θi∂θj
= −xi/θ2

i ,

for i = j and zero otherwise.
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The Fisher information matrix is thus diagonal with diagonal
elements,

1

θ2
i

E (Xi ) =
nθi
θ2
i

=
n

θi
.

Then,
|I (θ)| = nθ−1

1 . . . θ−1
p ,

and the Jeffreys prior is,

p(θ) ∝ θ−1/2
1 . . . θ

−1/2
p .

This is proportional to a Dirichlet density with
α1 = · · · = αp = 1/2, which is a proper prior.
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To sum up

• Jeffreys prior violates the likelihood principle since the Fisher
information depends on the sampling distribution.

• Jeffreys prior is widely accepted for single parameter models,
but somewhat more controversial and often subject to
modification, in multiparameter models.

• Jeffreys priors are usually improper.

• In a few models, the use of improper priors can result in
improper posteriors.

• Use of improper priors makes model selection and hypothesis
testing difficult.

• General purpose packages WinBUGS and JAGS do not allow
the use of improper priors.
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