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Introduction



A model is a simplification of reality
(and some are useful)

Observable quantities
(can be measured)

Unobservable quantities
(parameters and latent variables)

Approaches: classical and Bayesian

Data: the observed values of the observable quantities.
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The Frequentist approach to statistics

• Parameters are fixed and unknown.

• Probability interpreted as long run relative frequency.

• Probabilities assigned to observable variables given the
unknown parameters.

• Some procedures rely on the idea of an infinite number of
hypothetical repetitions of an experiment.

The Bayesian approach to statistics

• Parameters are random variables.

• Probabilities assigned to parameters as well as observations.

• Probabilities on parameters are interpreted as “degree of
belief” and can be subjective.

• Rules of probability are used to revise ‘degree of beliefs’ about
parameters given the observed data.
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Bayes Theorem

Consider an unknown quantity of interest θ (typically
unobservable).

• The information we have about θ is probabilistically
summarised in p(θ).

• This information can be updated by observing a random
quantity X related to θ through p(x |θ).

• The idea that after observing X = x the quantity of
information about θ increases is quite intuitive.

• The Bayes theorem is the updating rule used to quantify this
information increase.
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Bayes Theorem

p(θ|x) =
p(x , θ)

p(x)
=

p(x |θ) p(θ)

p(x)
=

p(x |θ) p(θ)∫
p(θ, x)dθ

. (1)

• Our goal is to infer about plausible value(s) of θ (or functions
of θ).

• This is naturally based on the updated probabilistic
information we have about θ, i.e. on p(θ|x).

• For a fixed value of x , p(x |θ) is the plausibility or likelihood of
each possible value of θ while p(θ) is called the prior
distribution of θ.

• p(θ|x) is called the posterior distribution of θ.
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Note that 1/p(x) does not depend on θ and plays the role of a
normalizing constant of p(θ|x). Then,

p(θ|x) ∝ p(x |θ)p(θ). (2)

This is the unscaled posterior distribution which gives information
on its shape.

The posterior mode can be obtained as,

arg max
θ

p(x |θ)p(θ),

or equivalently,

arg max
θ

[log p(x |θ) + log p(θ)],
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Note also that,

p(x) =

∫
p(x , θ)dθ =

∫
p(x |θ)p(θ)dθ = Eθ[p(X |θ)]

which is called the predictive distribution.

This is the expected distribution for x given θ. So,

• Before observing X we can check the adequacy of the prior
making predictions using p(x).

• If X is observed and it received low predictive probability then
we should question the model.
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In many applications (e.g. time series and geostatistics) we are
interested in predicting a process in time or space.

Suppose that after observing X = x we are interested in predicitng
Y , which is also related to θ, and probabilistically described byr
p(y |x , θ).

The predictive distribution of Y given x is obtained by integration
as,

p(y |x) =

∫
p(y , θ|x)dθ =

∫
p(y |θ, x)p(θ|x)dθ

= Eθ|x [p(y |θ, x)]
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In many applications we can assume conditional independence
between X e Y given θ and the predictive distribution simplifies to,

p(y |x) =

∫
p(y |θ)p(θ|x)dθ = Eθ|x [p(y |θ)].

Note that predictions are always verifiable since Y is observable.
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Example. (Migon & Gamerman, 1999) John claims some
discomfort and goes to the doctor. The doctor believes John may
have a certain disease. Based on his expertise about this disease
and information given by the patient, the doctor assigns a
probability 0.7 that John has the disease.

The (unknown) quantity of interest here is the disease indicator,

θ =

{
1, se o paciente tem a doença
0, se o paciente não tem a doença.

To increase the evidence about the disease, the doctor asks John
to undertake an examination X related to θ through the following
probability distribution,

P(X = 1 | θ = 0) = 0.4, positive result given no disease

P(X = 1 | θ = 1) = 0.95, positive result given disease
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Suppose that the exam resulted positive (X = 1).

• Intuitively, the disease probability must have increased after
this result.

• We want to quantify this increase.

This can be accomplished using the Bayes theorem,

P(θ = 1 | X = 1) ∝ P(X = 1|θ = 1) P(θ = 1) = (0.95)(0.7) = 0.665

P(θ = 0 | X = 1) ∝ P(X = 1|θ = 0) P(θ = 0) = (0.4)(0.3) = 0.12.
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The normalizing constant k is easily obtained since
0.665k + 0.12k = 1 and then k = 1/0.785.

The posterior distribution of θ is given by,

P(θ = 1 | X = 1) = 0.665/0.785 = 0.847

P(θ = 0 | X = 1) = 0.12/0.785 = 0.153

The information X = 1 increases the disease probability from 0.70
to 0.847.
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Now John undertakes a second test Y which relates to θ as follows,

P(Y = 1 | θ = 0) = 0.04 and P(Y = 1 | θ = 1) = 0.99.

Before observing Y it is interesting to obtain its predictive
distribution.

Since θ is discrete, it follows that,

p(y |x) =
1∑
θ=0

p(y |x , θ)p(θ|x)

and note that p(θ|x) is a prior probability with respect to Y .

Now, assuming that X and Y are conditionally independent given
θ,

p(y |x) =
1∑
θ=0

p(y |θ)p(θ|x)
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The discrete predicitve distribution of Y is then given by,

P(Y = 1 | X = 1) = P(Y = 1 | θ = 0) P(θ = 0 | X = 1)

+ P(Y = 1 | θ = 1) P(θ = 1 | X = 1)

= (0.04)(0.153) + (0.99)(0.847) = 0.845

P(Y = 0 | X = 1) = 1− P(Y = 1 | X = 1) = 0.155.
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Suppose the second test resulted negative Y = 0.

This value had little predicitve probability (0.155) which might lead
the doctor to rethink the model in the first place.

• Was P(θ = 1) = 0.7 a reasonable prior?

• Is test X really so unreliable? Is test Y that powerful?

• Have the tests been carried out properly?

14



Anyway, it is intuitive that the disease probability must have
decreased and this can be quantified with a second application of
Bayes theorem,

P(θ = 1 | X = 1,Y = 0) ∝ l(θ = 1;Y = 0)P(θ = 1 | X = 1)

∝ (0.01)(0.847) = 0.0085

P(θ = 0 | X = 1,Y = 0) ∝ l(θ = 0;Y = 0)P(θ = 0 | X = 1)

∝ (0.96)(0.153) = 0.1469.

The normalizing constant is 1/(0.0085+0.1469)=1/0.1554 so that
the posterior distribution of θ is given by,

P(θ = 1 | X = 1,Y = 0) = 0.0085/0.1554 = 0.055

P(θ = 0 | X = 1,Y = 0) = 0.1469/0.1554 = 0.945.
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So, disease probability evolves along time like,

P(θ = 1) =


0.7, before the tests,
0.847, after test X ,
0.055, after X and Y .
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Example. Suppose we want to estimate the proportion θ of
defective itens in a large shipment. Which probability distribution
can be assigned to probabilistically encode our knowledge about
θ ∈ (0, 1)?

We can assume that θ ∼ N(µ, σ2) truncated to θ ∈ (0, 1)

Denoting by fN(·|µ, σ2) the density function of a N(µ, σ2)
distribution it follows that the prior density of θ is given by,

p(θ) =
fN(θ|µ, σ2)∫ 1

0
fN(θ|µ, σ2)dθ

=
(2πσ2)−1/2 exp(−0.5(θ − µ)2/σ2)

Φ

(
1− µ
σ

)
− Φ

(
−µ
σ

) .
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Truncated normal prior densities for θ.
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Another possibility is to find a map from (0,1) to the real line and
assign a prior on R.

Assume that δ ∼ N(µ, σ2) and consider the transformation,

θ =
exp(δ)

1 + exp(δ)
.

The inverse transformation is simply,

δ = log

(
θ

1− θ

)
and the prior density of θ becomes,

p(θ) = fN(δ(θ)|µ, σ2)

∣∣∣∣dδdθ
∣∣∣∣

= (2πσ2)−1/2 exp

{
− 1

2σ2

(
log

(
θ

1− θ

)
− µ

)2
}

1

θ(1− θ)
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Logistic-type prior densities for θ.
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Finally, we can assign the prior θ ∼ Beta(a, b)

p(θ) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1, a > 0, b > 0, θ ∈ (0, 1).

The Beta distribution is symmetric about 1/2 when a = b and
skewed when a 6= b.

Varying a and b we can define a rich family of distributions for θ,
including the Uniform (0,1) when a = b = 1.
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Beta prior densities for θ.
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Suppose now that,

X |θ ∼ N(θ, σ2)

θ ∼ N(µ0, τ
2
0 )

where σ2, µ0 and τ2
0 are known.

What is the posterior distribution of θ?
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We have that,

p(x |θ) ∝ exp{−σ−2(x − θ)2/2}, and

p(θ) ∝ exp{−τ−2
0 (θ − µ0)/2}

Then,

p(θ|x) ∝ exp

{
−1

2
[σ−2(θ2 − 2xθ) + τ−2

0 (θ2 − 2µ0θ)]

}
∝ exp

{
−1

2
[θ2(σ−2 + τ−2

0 )− 2θ(σ−2x + τ−2
0 µ0)]

}
.

The terms that do not depend on θ were incorporated into the
proportionality constant.
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Defining the following quantities,

τ−2
1 = σ−2 + τ−2

0

τ−2
1 µ1 = σ−2x − τ−2

0 µ0

it follows that,

p(θ|x) ∝ exp

{
−
τ−2

1

2
(θ2 − 2θµ1)

}

∝ exp

{
−
τ−2

1

2
(θ − µ1)2

}
since µ1 does not depend on θ.

Then, the posterior density function has the same form (up to a
constant) of a normal density with mean µ1 and variance τ2

1 , i.e.

θ|x ∼ N(µ1, τ
2
1 ).
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• Note that defining precision as the inverse of variance, the
posterior precision is the sum of prior and likelihood precisions
and does not depend on x .

• We can interpret precision as a measure of information.

• Defining
w = τ−2

0 /(τ−2
0 + σ−2) ∈ (0, 1)

then w measures the relative information contained in the
prior with respect to the total information.

• We can write,
µ1 = wµ0 + (1− w)x ,

i.e. µ1 is a convex linear combination of µ0 and x so that,

min{µ0, x} ≤ µ1 ≤ max{µ0, x}.
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The predictive distribution of X is easily obtained by noting that,

X = θ + ε, ε ∼ N(0, σ2)

θ = µ0 + w , w ∼ N(0, τ2
0 )

such that Cov(θ, ε) = Cov(µ0,w) = 0.

The unconditional distribution of X is then normal as it results of a
sum of two normal random variables.

Also,

E (X ) = E (θ) + E (ε) = µ0

Var(X ) = Var(θ) + Var(ε) = τ2
0 + σ2

so that, X ∼ N(µ0, τ
2
0 + σ2).
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Example. (Box & Tiao, 1992) Two physicists A and B wish to
determine a physical constant θ. They specify the following prior
distributions,

Physicist A (more experienced): θ ∼ N(900, 202),
Physicist B (not so experienced): θ ∼ N(800, 802).

It is not difficult to obtain for example that,

for Physicist A: P(860 < θ < 940) ≈ 0.95

for Physicist B: P(640 < θ < 960) ≈ 0.95.
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Using a calibrated device in a laboratory a measurement X of θ is
made. The device has a sampling distribution X |θ ∼ N(θ, 402) and
X = 850 was observed.

Therefore, applying our previous results it follows that,

(θ|X = 850) ∼ N(µ1A, τ
2
1A) for Physicist A

(θ|X = 850) ∼ N(µ1B , τ
2
1B) for Physicist B.

where

τ−2
1A = τ−2

0A + σ−2 = 0.003125

wA = τ−2
0A /τ

−2
1A = 0.8

µ1A = wµ0A + (1− w)x = 890

τ−2
1B = τ−2

0B + σ−2 = 0.00078125

wB = τ−2
0B /τ

−2
1B = 0.2

µ1B = wµ0B + (1− w)x = 840
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Note how the posterior precisions increased with respect to prior
precisions.

• For Physicist A: precision(θ) went up from τ−2
0 = 0.0025 to

τ−2
1 = 0.00312 (25% increase).

• For Physicist B: precision(θ) went up from τ−2
0 = 0.000156 to

τ−2
1 = 0.000781 (400% increase).
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Example. Suppose again that X |θ ∼ N(θ, σ2), with σ2 known,
but now p(θ) ∝ 1.

This is not even a density function since,∫ ∞
−∞

p(θ)dθ =∞.

and p(θ) is called an improper prior.
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Even so we have that,

p(θ|x) ∝ exp{−(θ − x)2/2σ2}

and it can be verified that θ|x ∼ N(x , σ2) which is a proper
posterior density function.

This is the limiting case of the previous result when τ−2
0 → 0

which implies that µ1 → x and τ2
1 → σ2.
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Example. Suppose that P(obtain head after tossing a coin) = θ
and the possible values of θ are 0.5 and 0.95 with probabilities,

P(θ = 0.5) = w

P(θ = 0.95) = 1− w

Suppose that we assign probabilities w = 1− w = 1/2. Defining,

X =

{
1, if the result is head
0, otherwise,

Then,
P(X = x |θ) = θx(1− θ)1−x , x ∈ {0, 1}.
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The predictive distribution of X is given by,

P(X = x) = w 0.5x(1− 0.5)1−x + (1− w) 0.95x(1− 0.95)1−x

= 0.5
[
0.5x(1− 0.5)1−x + 0.95x(1− 0.95)1−x] .

so that,

P(X = 0) = 0.275 and P(X = 1) = 0.725.
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Example. In the previous example suppose we now have
θ ∈ {0.2, 0.4, 0.6, 0.8, 1} with equal probabilities 1/5.

The predictive distribution of X is given by,

P(X = x) =
1

5

∑
θ

θx(1− θ)1−x ,

so that,
P(X = 0) = 0.4 and P(X = 1) = 0.6.

In general, if θ ∈ {θ1, . . . , θk} with probabilities w1, . . . ,wk then,

P(X = x) =
k∑

i=1

θxi (1− θi )1−xwi

P(X = 1) =
k∑

i=1

θiwi

P(X = 0) =
k∑

i=1

(1− θi )wi .
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Sequential Bayes

Let x1, . . . , xn be the observed values of X1, . . . ,Xn which are
independent given θ and are related to θ through pi (xi |θ). Then,

p(θ|xn, xn−1, · · · , x1) ∝ p(θ)p1(x1|θ) · · · pn(xn|θ)

∝ p(θ|x1)p2(x2|θ) · · · pn(xn|θ)

∝ p(θ|x1, x2)p3(x3|θ) · · · pn(xn|θ)
...

∝ p(θ|x1, . . . , xn−1)pn(xn|θ)
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• The concepts of prior and posterior are relative to the
observation that is being considered.

• p(θ|x1) is the posterior distribution of θ with respect to x1 but,

• It is the prior distribution of θ with respect to x2, . . . , xn
(before they are observed).
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The Likelihood Principle

The following example (DeGroot, 1970, pages 165–166) illustrates
this property.

Imagine that each item from a population of manufactured items is
classified into either defective or nondefective. The proportion θ of
defective items in the population is unknown and a sample of items
will be selected according to one of the following methods.

• n items will be selected at random.

• Items will be selected at random until y defective are obtained.

• Items will selected at random until the inspector is called to
solve another problem.

• Items will be selected at random until the inspector decides
that enough information about θ has been gathered.
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Whatever sampling scheme is chosen, if n items x1, · · · , xn are
inspected y of which are defective, then

p(x |θ) ∝ θy (1− θ)n−y .

The Likelihood Principle postulates that in order to make
inferences about a parameter θ it only matters what was really
observed and not what could have occured but has not.
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To sum up

• Bayesian statistics follows the rules of probability.

• Bayesian statistics is based on a single tool, the Bayes
theorem.

• Finding the posterior distribution using Bayes theorem is easy
in theory, but generally hard in practice.
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Model Uncertainty

Suppose there are different competing models which can be
enumerated and represented by a set M = {M1,M2, . . . }. We
assume that the true model is in M.

• a priori we assign probabilities p(Mi ) to each model.

• For each model there is a vector of parameters θi ∈ Rni with,

a prior distribution p(θi |Mi ), and
a likelihood function given the observations x, p(y|θi ,Mi ).
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Applications of Bayes theorem

• Within-model posterior,

p(θi |x ,Mi ) =
p(x |θi ,Mi )p(θi |Mi )

p(x|Mi )

• Within-model marginal likelihood,

p(x|Mi ) =

∫
p(x|θi ,Mi )p(θi |Mi )dθi
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• Joint posterior distribution,

π(Mi ,θi ) =
p(x |θi ,Mi ) p(θi |Mi ) p(Mi )∑

Mi∈M

∫
p(x |θi ,Mi ) p(θi |Mi ) p(Mi )dθi

• Posterior model probabilities,

p(Mi |x) =
p(x|Mi )p(Mi )∑

Mj∈M
p(x|Mj) p(Mj)

• Overall prior predictive distribution,

p(x) =
∑

Mj∈M
p(x|Mj) p(Mj)
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Pairwise comparison of models

The posterior odds of model Mi relative to Mj is given by,

p(Mi |x)

p(Mj |x)︸ ︷︷ ︸
Posterior Odds

=
p(x|Mi )

p(x|Mj)︸ ︷︷ ︸
Bayes Factor

× p(Mi )

p(Mj)︸ ︷︷ ︸
Prior Odds

Posterior model probabilities can be obtained as,

p(Mi |x) =

 K∑
j=1

Bji
p(Mj)

p(Mi )

−1

where Bji =
p(x|Mj)

p(x|Mi )
.
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Searching for the “Best”Model(s)

• How to compare competing models?

• What if the number of alternative models is quite large? E.g.
linear model with 19 possible covariates: 219 = 524288
alternative models (with no interations).

• Enumerate, estimate and associate a measure of fit and
parsimony to each possible model may not be the best
strategy.

• How to make average inference using the competing models
(or a subset of this)?
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Bayes factor to compare models

Some rules of thumb to decide between models j and k based on
Bayes factors.

Jeffreys (1961) recommendations.

log10 Bjk Bjk Evidence against k

0.0 to 0.5 1.0 to 3.2 Not worth more than a bare mention
0.5 to 1.0 3.2 to 10 Substantial
1.0 to 2.0 10 to 100 Strong

> 2 > 100 Decisive
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Kass and Raftery (1995) recommendation.

2 lnBjk Bjk Evidence against k

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Substantial

6 to 10 20 to 150 Strong
> 10 > 150 Decisive

Rationale: 2 lnBjk is on the same scale as the deviance and
likelihood ratio test statistics.
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The Marginal Likelihood

For a model M, recall that the predictive distribution of x is given
by,

p(x |M) =

∫
p(x |θ,M)p(θ|M)dθ

= Eθ[p(x |θ,M)]

which is the normalizing constant in the posterior distribution.

This predictive density can now be viewed as the likelihood of
model M (or marginal likelihood) and is a basic ingredient for
model assessment.
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Bayesian Computation

After observing the data, p(θ|x) summarizes all we know about θ.

Most features of the posterior distribution have the form of an
expectation,

E [g(θ)|x] =

∫
g(θ)p(θ|x)dθ.

Also, if θ = (θ1,θ2) then,

p(θ1|x) =

∫
p(θ|x)dθ2.
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Some examples,

• Normalizing constant. g(θ) = 1 and p(θ|x) = kq(θ), it follows
that,

k =

[∫
q(θ)dθ

]−1

.

• If g(θ) = θ, then µ = E (θ|x) is the posterior mean.

• When g(θ) = (θ − µ)2, then σ2 = E ((θ − µ)2|x) is the
posterior variance.

• If g(θ) = IA(θ), where IA(x) = 1 if x ∈ A and zero otherwise,
then

P(A | x) =

∫
A
p(θ|x)dθ.

• If g(θ) = p(y |θ), where y ⊥ x|θ we obtain E [p(y |x)], the
predictive distribution of a future observation y .
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• In most interesting applications E [g(θ)|x] cannot be worked
out analytically.

• Unless otherwise noted, we assume that E [g(θ)|x] exists.

• Exceptions which do fall in this framework are: the marginal
likelihood and quantiles of the posterior distribution.
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