Bayesian Inference

Ricardo Ehlers
ehlers@icmc.usp.br
Departamento de Matemática Aplicada e Estatística
Universidade de São Paulo

Estimation

Introduction to Decision Theory

A decision problem is completely specified by the description of the following spaces:

- Parameter space or state of nature, Θ.
- Space of possible results of an experiment, Ω.
- Space of possible actions, A.

A decision rule δ is a function defined in Ω which assumes values in A, i.e. $\delta: \Omega \rightarrow A$.

For each decision δ and each possible value of the parameter θ we can associate a loss $L(\delta, \theta)$ assuming positive values.

This is supposed to measure the penalty associated with a decision δ when the parameter takes the value θ.

Definition

The risk of a decision rule, denoted $R(\delta)$, is the posterior expected loss, i.e.

$$
\begin{aligned}
R(\delta) & =E_{\theta \mid \mathbf{x}}[L(\delta, \theta)] \\
& =\int_{\Theta} L(\delta, \theta) p(\theta \mid \mathbf{x}) d \theta
\end{aligned}
$$

Definition

A decision rule δ^{*} is optimal if its risk is minimum, i.e.

$$
R\left(\delta^{*}\right)<R(\delta), \forall \delta
$$

- This rule is called the Bayes rule and its risk is the Bayes risk.
- Then,

$$
\delta^{*}=\arg \min R(\delta),
$$

is the Bayes estimator.

- Bayes risks can be used to compare estimators. A decision rule δ_{1} is preferred to a rule δ_{2} if

$$
R\left(\delta_{1}\right)<R\left(\delta_{2}\right)
$$

Loss Functions

Definition

The quadratic loss function is defined as,

$$
L(\delta, \theta)=(\delta-\theta)^{2},
$$

and the associated risk is,

$$
\begin{aligned}
R(\delta) & =E_{\theta \mid \mathbf{x}}\left[(\delta-\theta)^{2}\right] \\
& =\int_{\Theta}(\delta-\theta)^{2} p(\theta \mid \mathbf{x}) d \theta
\end{aligned}
$$

Lemma

If $L(\delta, \theta)=(\delta-\theta)^{2}$ the Bayes estimator of θ is $E(\theta \mid \mathbf{x})$.
The Bayes risk is,

$$
E[E(\theta \mid \mathbf{x})-\theta]^{2}=\operatorname{Var}(\theta \mid \mathbf{x})
$$

Definition

The absolute loss function is defined as,

$$
L(\delta, \theta)=|\delta-\theta|
$$

Lemma

If $L(\delta, \theta)=|\delta-\theta|$ the Bayes estimator of θ is the median of the posterior distribution.

Definition

The 0-1 loss function is defined as,

$$
L(\delta, \theta)=1-I(|\theta-\delta|<\epsilon)
$$

where $I(\cdot)$ is an indicator function.

Lemma

Let $\delta(\epsilon)$ be the Bayes rule for this loss function and δ^{*} the mode of the posterior distribution. Then,

$$
\lim _{\epsilon \rightarrow 0} \delta(\epsilon)=\delta^{*}
$$

So, the Bayes estimator for a 0-1 loss function is the mode of the posterior distribution.

Consequently, for a $0-1$ loss function and θ continuous the Bayes estimate is,

$$
\begin{aligned}
\theta^{*} & =\arg \max _{\theta} p(\theta \mid \mathbf{x}) \\
& =\arg \max _{\theta} p(\mathbf{x} \mid \theta) p(\theta) \\
& =\arg \max _{\theta}[\log p(\mathbf{x} \mid \theta)+\log p(\theta)]
\end{aligned}
$$

This is also referred to as the generalized maximum likelihood estimator (GMLE).

Example. Let X_{1}, \ldots, X_{n} a random sample from a Bernoulli distribution with parameter θ. For a $\operatorname{Beta}(\alpha, \beta)$ conjugate prior it follows that the posterior distribution is,

$$
\theta \mid \mathbf{x} \sim \operatorname{Beta}(\alpha+t, \beta+n-t)
$$

where $t=\sum_{i=1}^{n} x_{i}$.
Under quadratic loss the Bayes estimate is given by,

$$
E(\theta \mid \mathbf{x})=\frac{\alpha+\sum_{i=1}^{n} x_{i}}{\alpha+\beta+n}
$$

Example. In the previous example suppose that $n=100$ and $t=10$ so that the Bayes estimate under quadratic loss is,

$$
E(\theta \mid \mathbf{x})=\frac{\alpha+10}{\alpha+\beta+100}
$$

For a Beta(1,1) prior the estimate is 0.108 while for quite a different $\operatorname{Beta}(1,2)$ prior the estimate is 0.107 .

Both estimates are close to the maximum likelihood estimate 0.1.
Under 0-1 loss with a Beta(1,1) prior the Bayes estimate is then 0.1.

Example. Bayesian estimates of θ under quadratic loss with a $\operatorname{Beta}(a, b)$ prior, varying n and keeping $\bar{x}=0.1$.

	Prior Parameters				
n	$(1,1)$	$(1,2)$	$(2,1)$	$(0.001,0.001)$	$(7,1.5)$
10	$0.167(0.067)$	$0.154(0.063)$	$0.231(0.061)$	$0.1(0.082)$	$0.432(0.039)$
20	$0.136(0.038)$	$0.13(0.037)$	$0.174(0.035)$	$0.1(0.043)$	$0.316(0.025)$
50	$0.115(0.016)$	$0.113(0.016)$	$0.132(0.016)$	$0.1(0.018)$	$0.205(0.013)$
100	$0.108(0.008)$	$0.107(0.008)$	$0.117(0.008)$	$0.1(0.009)$	$0.157(0.007)$
200	$0.104(0.004)$	$0.103(0.004)$	$0.108(0.004)$	$0.1(0.004)$	$0.129(0.004)$

Example. Let X_{1}, \ldots, X_{n} a random sample from a Poisson distribution with parameter θ. Using a conjugate prior it follows that,

$$
\begin{aligned}
X_{1}, \ldots, X_{n} & \sim \operatorname{Poisson}(\theta) \\
\theta & \sim \operatorname{Gamma}(\alpha, \beta) \\
\theta \mid \mathbf{x} & \sim \operatorname{Gamma}(\alpha+t, \beta+n)
\end{aligned}
$$

where $t=\sum_{i=1}^{n} x_{i}$.
The Bayes estimate under quadratic loss is,

$$
E[\theta \mid \mathbf{x}]=\frac{\alpha+\sum_{i=1}^{n} x_{i}}{\beta+n}=\frac{\alpha+n \bar{x}}{\beta+n}
$$

while the Bayes risk is,

$$
\operatorname{Var}(\theta \mid \mathbf{x})=\frac{\alpha+n \bar{x}}{(\beta+n)^{2}}=\frac{E[\theta \mid \mathbf{x}]}{\beta+n}
$$

If $\alpha \rightarrow 0$ and $\beta \rightarrow 0$ then, $E[\theta \mid \mathbf{x}] \rightarrow \bar{x}$ and $\operatorname{Var}(\theta \mid \mathbf{x}) \rightarrow \bar{x} / n$.
If $n \rightarrow \infty$ then $E[\theta \mid \mathbf{x}] \rightarrow \bar{x}$.

Bayes estimates of θ under quadratic loss using a $\operatorname{Gamma}(a, b)$ prior, varying n and keeping $\bar{x}=10$.

	Prior Parameters				
n	$(1,0.01)$	$(1,2)$	$(2,1)$	$(0.001,0.001)$	$(7,1.5)$
10	$10.09(1.008)$	$8.417(0.701)$	$9.273(0.843)$	$9.999(1)$	$9.304(0.809)$
20	$10.045(0.502)$	$9.136(0.415)$	$9.619(0.458)$	$10(0.5)$	$9.628(0.448)$
50	$10.018(0.2)$	$9.635(0.185)$	$9.843(0.193)$	$10(0.2)$	$9.845(0.191)$
100	$10.009(0.1)$	$9.814(0.096)$	$9.921(0.098)$	$10(0.1)$	$9.921(0.098)$
200	$10.004(0.05)$	$9.906(0.049)$	$9.96(0.05)$	$10(0.05)$	$9.96(0.049)$

Example. If X_{1}, \ldots, X_{n} is a random sample from a $N\left(\theta, \sigma^{2}\right)$ with σ^{2} known and using the conjugate prior, i.e. $\theta \sim N\left(\mu_{0}, \tau_{0}^{2}\right)$ then the posterior is also normal in which case mean, median and mode coincide.

The Bayes estimate of θ is then given by,

$$
\frac{\tau_{0}^{-2} \mu_{0}+n \sigma^{-2} \overline{\mathbf{x}}}{\tau_{0}^{-2}+n \sigma^{-2}}
$$

Under a Jeffreys prior for θ the Bayes estimate is simply \bar{x}.

Example. Let X_{1}, \ldots, X_{n} a random sample from a $N\left(\theta, \sigma^{2}\right)$ distribution with θ known and $\phi=\sigma^{-2}$ unknown.

$$
\begin{aligned}
\phi & \sim \operatorname{Gamma}\left(\frac{n_{0}}{2}, \frac{n_{0} \sigma_{0}^{2}}{2}\right) \\
\phi \mid \mathbf{x} & \sim \operatorname{Gamma}\left(\frac{n_{0}+n}{2}, \frac{n_{0} \sigma_{0}^{2}+n s_{0}^{2}}{2}\right) .
\end{aligned}
$$

where $n s_{0}^{2}=\sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}$. Then,

$$
E(\phi \mid \mathbf{x})=\frac{n_{0}+n}{n_{0} \sigma_{0}^{2}+n s_{0}^{2}}
$$

is the Bayes estimate under quadratic loss.

- The quadratic loss can be extended to the multivariate case,

$$
L(\boldsymbol{\delta}, \boldsymbol{\theta})=(\boldsymbol{\delta}-\boldsymbol{\theta})^{\prime}(\boldsymbol{\delta}-\boldsymbol{\theta})
$$

and the Bayes estimate is $E(\boldsymbol{\theta} \mid \mathbf{x})$.

- Likewise, the 0-1 loss can also be extended,

$$
L(\boldsymbol{\delta}, \boldsymbol{\theta})=\lim _{\operatorname{vol}(A) \rightarrow 0} I(|\boldsymbol{\theta}-\boldsymbol{\delta}| \in A)
$$

and the Bayes estimate is the joint mode of the posterior distribution.

- However, the absolute loss has no clear extension.

Example. Suppose $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$ has a multinomial distribution with parameters n and $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right)$. If we adopt a Dirichlet prior with parameters $\alpha_{1}, \ldots, \alpha_{p}$ the posterior distribution is Dirichlet with parameters $x_{i}+\alpha_{i}, i=1, \ldots, p$.
Under quadratic loss, the Bayes estimate of $\boldsymbol{\theta}$ is $E(\boldsymbol{\theta} \mid \mathbf{x})$ where,

$$
E\left(\theta_{i} \mid \mathbf{x}\right)=E\left(\theta_{i} \mid x_{i}\right)=\frac{x_{i}+\alpha_{i}}{n+\sum_{j=1}^{p} \alpha_{j}}
$$

Definition

A quantile loss function is defined as,

$$
L(\delta, \theta)=c_{1}(\delta-\theta) I_{(-\infty, \delta)}(\theta)+c_{2}(\theta-\delta) I_{(\delta, \infty)}(\theta)
$$

where $c_{1}>0$ and $c_{2}>0$.
It can be shown that the Bayes estimate of θ is a value θ^{*} such that,

$$
P\left(\theta \leq \theta^{*}\right)=\frac{c_{2}}{c_{1}+c_{2}}
$$

So the Bayes estimate is the quantile of order $c_{2} /\left(c_{1}+c_{2}\right)$ of the posterior distribution.

Definition

The Linex (Linear Exponential) loss function is defined as,

$$
L(\delta, \theta)=\exp [c(\delta-\theta)]-c(\delta-\theta)-1
$$

It can be shown that the Bayes estimator is,

$$
\delta^{*}=\frac{1}{c} \log E\left[e^{c \theta} \mid \mathbf{x}\right], c \neq 0 .
$$

Linex function with $c<0$ reflecting small losses for overestimation and large losses for underestimation.

Credible Sets

- Point estimates simplify the posterior distribution into single figures.
- How precise are point estimates?
- We seek a compromise between reporting a single number representing the posterior distribution or report the distribution itself.

Definition

A set $C \in \Theta$ is a $100(1-\alpha) \%$ credible set for θ if,

$$
P(\boldsymbol{\theta} \in C) \geq 1-\alpha
$$

- The inequality is useful when $\boldsymbol{\theta}$ has a discrete distribution, otherwise an equality is used in practice.
- This definition differs fundamentally from the classical confidence region.

Invariance under Transformation

Credible sets are invariant under 1 to 1 parameter transformations.
Let $\boldsymbol{\theta}^{*}=g(\boldsymbol{\theta})$ and C^{*} denotes the image of $\boldsymbol{\theta}$ under g. Then,

$$
P\left(\boldsymbol{\theta}^{*} \in C^{*}\right)=1-\alpha .
$$

In the univariate case, if $C=[a, b]$ is a $100(1-\alpha) \%$ credible interval for θ then $[g(a), g(b)]$ is a $100(1-\alpha) \%$ credible interval for θ^{*}.

- Credible sets are not unique in general.
- For any $\alpha>0$ there are infinitely many solutions to

$$
P(\boldsymbol{\theta} \in C)=1-\alpha .
$$

90% credible intervals for a Poisson parameter θ when the posterior is Gamma(4,0.5).

90% credible intervals for Binomial parameter $\theta \mid \mathbf{x} \sim \operatorname{Beta}(2,1.5)$.

90% credible intervals for $\theta \mid \mathbf{x} \sim \operatorname{Normal}(2,1)$.

Definition

A 100(1- α)\% highest probability density (HPD) credible set for $\boldsymbol{\theta}$ is a $100(1-\alpha) \%$ credible set for $\boldsymbol{\theta}$ with the property

$$
p\left(\boldsymbol{\theta}_{1} \mid \mathbf{x}\right) \geq p\left(\boldsymbol{\theta}_{2} \mid \mathbf{x}\right)
$$

$\forall \boldsymbol{\theta}_{1} \in C$ and all $\boldsymbol{\theta}_{2} \notin C$.

- For symmetric distributions HPD credible sets are obtained by fixing the same probability for the tails.
- HPD credible sets are not invariant under transformation.
- In the univariate case, if $C=[a, b]$ is a $100(1-\alpha) \%$ HPD interval for θ then $[g(a), g(b)]$ is a $100(1-\alpha) \%$ interval for $g(\theta)$ but not necessarily HPD.

Example. Let X_{1}, \cdots, X_{n} a random sample from a $N\left(\theta, \sigma^{2}\right)$ with σ^{2} known. If $\theta \sim N\left(\mu_{0}, \tau_{0}^{2}\right)$ then $\theta \mid \mathbf{x} \sim N\left(\mu_{1}, \tau_{1}^{2}\right)$ and,

$$
\left.Z=\frac{\theta-\mu_{1}}{\tau_{1}} \right\rvert\, \mathbf{x} \sim N(0,1)
$$

Define $z_{\alpha / 2}$ as the value of Z such that,

$$
P\left(Z \leq z_{\alpha / 2}\right)=1-\alpha / 2
$$

We can find the percentile $z_{\alpha / 2}$ such that,

$$
P\left(-z_{\alpha / 2} \leq \frac{\theta-\mu_{1}}{\tau_{1}} \leq z_{\alpha / 2}\right)=1-\alpha
$$

or, equivalently

$$
P\left(\mu_{1}-z_{\alpha / 2} \tau_{1} \leq \theta \leq \mu_{1}+z_{\alpha / 2} \tau_{1}\right)=1-\alpha
$$

Then, $\left(\mu_{1}-z_{\alpha / 2} \tau_{1} ; \mu_{1}+z_{\alpha / 2} \tau_{1}\right)$ is the $100(1-\alpha) \%$ HPD interval for θ.

Example. In the previous example, if $\tau_{0}^{2} \rightarrow \infty$ it follows that $\tau_{1}^{-2} \rightarrow n \sigma^{-2}$ and $\mu_{1} \rightarrow \bar{x}$. Then,

$$
\left.Z=\frac{\sqrt{n}(\theta-\bar{x})}{\sigma} \right\rvert\, \mathbf{x} \sim N(0,1)
$$

The $100(1-\alpha) \%$ HPD credible interval is given by,

$$
\left(\overline{\mathbf{x}}-z_{\alpha / 2} \sigma / \sqrt{n} ; \overline{\mathbf{x}}+z_{\alpha / 2} \sigma / \sqrt{n}\right)
$$

which concides numerically wit the classical confidence interval.
The interpretation however is completely different.

Example. In the previous example, the classical approach would base inference on,

$$
\bar{X} \sim N\left(\theta, \frac{\sigma^{2}}{n}\right)
$$

or equivalently,

$$
U=\frac{\sqrt{n}(\bar{X}-\theta)}{\sigma} \sim N(0,1) .
$$

U (called a pivot) is a function of the sample and of θ but its distribution does not depend on θ.

Again we can find the percentile $z_{\alpha / 2}$ such that,

$$
P\left(-z_{\alpha / 2} \leq U \leq z_{\alpha / 2}\right)=1-\alpha
$$

or, equivalently

$$
P\left(\bar{X}-z_{\alpha / 2} \sigma / \sqrt{n} \leq \theta \leq \bar{X}+z_{\alpha / 2} \sigma / \sqrt{n}\right)=1-\alpha .
$$

However, this is a probabilistic statement about the limits of the interval, and not about θ.

The classical interpretation

If the same experiment were to be repeated infinitely many times, in $100(1-\alpha) \%$ of them the random limits of the interval would include θ.

Useless in practice since it is based on unobserved samples.

In the example, when $\bar{X}=\bar{x}$ is observed it is said that there is a $100(1-\alpha) \%$ confidence (not probability) that the interval $\left(\bar{x}-z_{\alpha / 2} \sigma / \sqrt{n} ; \bar{x}+z_{\alpha / 2} \sigma / \sqrt{n}\right)$ contains θ.
95% confidence intervals for the mean of 100 samples of size 20 simulated from a $N(0,100)$. Arrows indicate interval that do not contain zero.

Normal Approximation

If the posterior distribution is unimodal and approximately symmetric it can be approximated by a normal distribution centered about the posterior mode.
Consider the Taylor expansion of $\log p(\theta \mid \mathbf{x})$ about the mode θ^{*},

$$
\begin{aligned}
\log p(\theta \mid \mathbf{x})=\log p\left(\theta^{*} \mid \mathbf{x}\right) & +\left(\theta-\theta^{*}\right)\left[\frac{d}{d \theta} \log p(\theta \mid \mathbf{x})\right]_{\theta=\theta^{*}} \\
& +\frac{1}{2}\left(\theta-\theta^{*}\right)^{2}\left[\frac{d^{2}}{d \theta^{2}} \log p(\theta \mid \mathbf{x})\right]_{\theta=\theta^{*}}+\ldots
\end{aligned}
$$

By definition,

$$
\left[\frac{d}{d \theta} \log p(\theta \mid \mathbf{x})\right]_{\theta=\theta^{*}}=0
$$

Defining,

$$
h(\theta)=-\left[\frac{d^{2}}{d \theta^{2}} \log p(\theta \mid \mathbf{x})\right]
$$

it follows that,

$$
p(\theta \mid \mathbf{x}) \approx \text { constant } \times \exp \left\{-\frac{h\left(\theta^{*}\right)}{2}\left(\theta-\theta^{*}\right)^{2}\right\}
$$

Then, for large n, we have the following approximation,

$$
\theta \mid \mathbf{x} \sim N\left(\theta^{*}, h\left(\theta^{*}\right)^{-1}\right)
$$

These results can be extended to the multivariate case.
Since,

$$
\left[\frac{\partial \log p(\boldsymbol{\theta} \mid \mathbf{x})}{\partial \boldsymbol{\theta}}\right]_{\boldsymbol{\theta}=\boldsymbol{\theta}^{*}}=\mathbf{0}
$$

defining the matrix,

$$
H(\theta)=-\left[\frac{\partial^{2} \log p(\boldsymbol{\theta} \mid \mathbf{x})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right],
$$

then, for large n, we have the following approximation,

$$
\boldsymbol{\theta} \mid \mathbf{x} \sim N\left(\boldsymbol{\theta}^{*}, H\left(\boldsymbol{\theta}^{*}\right)^{-1}\right)
$$

In particular, it is possible to construct approximate credibility regions based on the above results.

Definition

Let $\boldsymbol{\theta} \in \Theta$. A region $\mathbf{C} \subset \Theta$ is an asymptotic $100(1-\alpha) \%$ credibility region if

$$
\lim _{n \rightarrow \infty} P(\boldsymbol{\theta} \in \mathbf{C} \mid \mathbf{x}) \geq 1-\alpha
$$

Posterior Gamma density and its normal approximation with simulated data $(n=10)$.

Posterior Gamma density and its normal approximation with simulated data $(n=100)$.

Example. Consider the model,

$$
\begin{aligned}
X_{1}, \ldots, X_{n} & \sim \operatorname{Poisson}(\theta) \\
\theta & \sim \operatorname{Gamma}(\alpha, \beta) .
\end{aligned}
$$

The posterior distribution is given by,

$$
\theta \mid \mathbf{x} \sim \operatorname{Gama}\left(\alpha+\sum x_{i}, \beta+n\right)
$$

portanto,

$$
p(\theta \mid \mathbf{x}) \propto \theta^{\alpha+\sum x_{i}-1} \exp \{-\theta(\beta+n)\}
$$

ou equivalentemente,

$$
\log p(\theta \mid \mathbf{x})=\left(\alpha+\sum x_{i}-1\right) \log \theta-\theta(\beta+n)+\text { constant. }
$$

First and second derivatives,

$$
\begin{aligned}
\frac{d}{d \theta} \log p(\theta \mid \mathbf{x}) & =-(\beta+n)+\frac{\alpha+\sum x_{i}-1}{\theta} \\
\frac{d^{2}}{d \theta^{2}} \log p(\theta \mid \mathbf{x}) & =-\frac{\alpha+\sum x_{i}-1}{\theta^{2}}
\end{aligned}
$$

It then follows that,

$$
\begin{gathered}
\theta^{*}=\frac{\alpha+\sum x_{i}-1}{\beta+n}, \quad h(\theta)=\frac{\alpha+\sum x_{i}-1}{\theta^{2}} \\
h\left(\theta^{*}\right)=\frac{(\beta+n)^{2}}{\alpha+\sum x_{i}-1} .
\end{gathered}
$$

The approximate posterior distribution is,

$$
\theta \left\lvert\, \mathbf{x} \sim N\left(\frac{\alpha+\sum x_{i}-1}{\beta+n}, \frac{\alpha+\sum x_{i}-1}{(\beta+n)^{2}}\right) .\right.
$$

An approximate $100(1-\alpha) \%$ credible interval for θ,

$$
\theta^{*}-z_{\alpha / 2} h\left(\theta^{*}\right)^{-1 / 2}<\theta<\theta^{*}+z_{\alpha / 2} h\left(\theta^{*}\right)^{-1 / 2}
$$

20 simulated Poisson data with $\theta=2$, prior $\operatorname{Gamma}(1,2), \sum x_{i}=35$.

Example. For the model $X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli}(\theta)$ with $\theta \sim \operatorname{Beta}(\alpha, \beta)$ the posterior is,

$$
\theta \mid \mathbf{x} \sim \operatorname{Beta}(\alpha+t, \beta+n-t), \quad t=\sum_{i=1}^{n} x_{i}
$$

Then,

$$
p(\theta \mid \mathbf{x}) \propto \theta^{\alpha+t-1}(1-\theta)^{\beta+n-t-1}
$$

$$
\begin{aligned}
\log p(\theta \mid \mathbf{x}) & =(\alpha+t-1) \log \theta+(\beta+n-t-1) \log (1-\theta) \\
\frac{d}{d \theta} \log p(\theta \mid \mathbf{x}) & =\frac{\alpha+t-1}{\theta}-\frac{\beta+n-t-1}{1-\theta}+\text { constant } \\
\frac{d^{2}}{d \theta^{2}} \log p(\theta \mid \mathbf{x}) & =-\frac{\alpha+t-1}{\theta^{2}}-\frac{\beta+n-t-1}{(1-\theta)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\theta^{*} & =\frac{\alpha+t-1}{\alpha+\beta+n-2} \\
h(\theta) & =\frac{\alpha+t-1}{\theta^{2}}+\frac{\beta+n-t-1}{(1-\theta)^{2}} \\
h\left(\theta^{*}\right) & =\frac{\alpha+\beta+n-2}{\theta^{*}\left(1-\theta^{*}\right)} .
\end{aligned}
$$

The approximate posterior distribution is,

$$
\theta \left\lvert\, \mathbf{x} \sim N\left(\theta^{*}, \frac{\theta^{*}\left(1-\theta^{*}\right)}{\alpha+\beta+n-2}\right) .\right.
$$

An approximate $100(1-\alpha) \%$ credible interval for θ,

$$
\left[\theta^{*}-z_{\alpha / 2} \sqrt{\frac{\theta^{*}\left(1-\theta^{*}\right)}{\alpha+\beta+n-2}} ; \theta^{*}+z_{\alpha / 2} \sqrt{\frac{\theta^{*}\left(1-\theta^{*}\right)}{\alpha+\beta+n-2}}\right]
$$

20 simulated Bernoulli observations, $\theta=0.2$, prior $\operatorname{Beta}(1,1)$, $\sum_{i=1}^{20} x_{i}=3$.

Example. If $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\theta)$ and $p(\theta) \propto 1$, it follows that,

$$
\begin{aligned}
p(\theta \mid \mathbf{x}) & \propto \theta^{n} e^{-\theta t}, t=\sum_{i=1}^{n} x_{i} \\
\pi(\theta) & =\log p(\theta \mid \mathbf{x})=n \log (\theta)-\theta t+c \\
\pi^{\prime}(\theta) & =\frac{n}{\theta}-t \\
\pi^{\prime \prime}(\theta) & =-\frac{n}{\theta^{2}}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{Mode}(\theta \mid \mathbf{x}) & =\theta^{*}=\frac{n}{t}=\frac{1}{\bar{x}} \\
h\left(\theta^{*}\right) & =\frac{n}{\left(\theta^{*}\right)^{2}}=n \bar{x}^{2}
\end{aligned}
$$

The approximate posterior distribution is,

$$
\theta \left\lvert\, \mathbf{x} \sim N\left(\frac{1}{\bar{x}}, \frac{1}{n \bar{x}^{2}}\right) .\right.
$$

An approximate $100(1-\alpha) \%$ credible interval for θ is,

$$
\left[\frac{1}{\overline{\bar{x}}}-z_{\alpha / 2} \sqrt{\frac{1}{n \bar{x}^{2}}} ; \frac{1}{\bar{x}}+z_{\alpha / 2} \sqrt{\frac{1}{n \bar{x}^{2}}} .\right]
$$

