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Abstract

Completely automated data analysis techniques often fail
to meet their requirements, due to their inability to exploit
peripheral knowledge associated with the data. Human
beings are very good at interpreting data represented in
graphical format, and usually have the wisdom to
recognize the associated knowledge. This paper addresses
this dichotomy through a data visualization tool which
displays, in a graphical manner, data stored in database
relations, without requiring any native spatial data
distribution, thus involving human beings in the main
stream of KDD processes. It develops the conceptual
framework which supports the data transformations
enabling the visualization of data composed by attributes
of many data types (numbers, dates and texts). This is
achieved through the mapping of the attributes taken as
multidimensional data into a 3-dimensional space,
applying a user-defined distance function. Experimental
evaluation shows that this tool is scalable to any database
size, regarding number of tuples and attributes.
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1. Introduction

Searching for a better position in the market, companies
have been trying to obtain more benefits from the data
they have collected during years of processing. The
volume of data to be analyzed is huge, and in most cases
no one knows where or how to start an information
retrieval process. In other words, the effort and cost spent
to collect and store data over the years, only to keep the
information regarding products and clients, are no more
enough to keep the companies in business. Moreover, all
the data stored can be much more valuable if we can
retrieve innovative information from that data, new facts
not yet known and advantageous for the information’s
owner.

Recently, many works have been done in order to
develop techniques and algorithms for Knowledge
Discovery in Databases — KDD. According to [1], KDD
is “the process of identifying structures that represent
valid, novel, potentially useful, and ultimately

understandable information, in a mass of data”.

An important problem faced by the KDD process is
the volume of data to be mined can be very large.
Techniques and algorithms for data searching that are
adequate for small datasets may not be adequate when the
volume of data grows, considering both the number of
attributes (dimensions) involved, and the number of items
treated. When the number of attributes grows to more than
a hundred, these algorithms become inappropriate, as time
spent goes to weeks of processing. Nevertheless, the
number of applications demanding this number of
attributes is growing, such as systems of handling images
and other complex data, as genetic structures or temporal
sequences.

It is also important to note that the searching goal is
not always clearly defined. For example, the search for
some pattern in a relationship among several attributes, or
the search for clusters, are frequent, but what attributes or
what pattern would match this searching is not known
beforehand [2]. This also brings to the problem of
identifying how useful a discovered relation is, and how to
interpret its results.

This work assumes that human beings are not
“efficient” when interpreting large volumes of data in
numerical or textual formats, specially when the data
involve a high number of variables, or dimensions.
However, they have very good perception of data
presented as graphics. On the other hand, techniques fully
automated for pattern detection, classification, clustering,
among others, are frequently distorted by their inability to
take advantage of other knowledge that humans easily
recognize [3] [4].

This work explores the visualization of data stored in
databases as a first step of analysis, where the user
exploits his/her capacity of visual perception to interpret
data. In general, the existing techniques of visualization
represent statistic information about the data, such as the
representation of aggregates (count, sum, minimum,
maximum, average) through bar charts, pie charts, line
charts, etc. In some cases where the data present an
inherent spatial distribution, there are techniques of spatial
visualization for it [5]. In this work, we present a
technique which allows the creation of spatial
visualizations of data, even when the data has no inherent
spatial distribution. Moreover, this visualization does not



rely on statistical summarizations.

This visualization approach turned out to be an
expressive tool in data interpretation, mainly when
statistical information may mask the existence of
unexpected distributions on the data, outliers, etc. In this
paper we show it is possible to build spatial
representations from almost any mass of data, considering
itis possible to calculate a grade of similarity between any
pair of elements in it. In the process of visualization,
categorical data can be used to classify the data, helping
on the interpretation process of data classification.

Briefly, the technique adopted in this paper considers
that data are represented in one relation of the database,
and each attribute represents a numeric value (i.e.,
measures, monetary value, etc.), a date, or a short text
(usually names). For each attribute is assigned a procedure
to calculate differences from a pair of values, such as the
absolute value of the difference between two numeric
values, the number of days between two dates, etc. The
individual differences are then combined to define the
distance between each tuple of the relation, allowing one
tuple of N attributes to be interpreted as a dot in a N-
dimensional space. After that, an algorithm for
dimensionality reduction is applied, which maps the
original space to a 3-dimensional one, enabling the
visualization of the relative distribution of the tuples of the
relation. Categorical attributes can be used to color or
visually modify the representation of each dot.

The rest of the paper is organized as follows. Section
2 discusses the concepts involved, and the main related
work. Section 3 describes how to create distance functions
for data stored in relational databases, taking into account
different data types and domain properties, so it can be
used to generate the data visualization. Section 4 presents
the FastMapDB tool, created to demonstrate the concepts
proposed here, and shows performance measurements of
this tool for large datasets, and some results of applying it
to visualize both well-known datasets of the literature and
real application data. Section 5 presents the conclusions of
this work.

2. Related works

Human beings have the capacity of absorbing and
understanding information represented as graphics very
quickly. Thus, when it is necessary to summarize huge
amounts of numeric data, usually histograms, graphs or
any other visual synthesis mechanisms are used. However,
when the information to be presented is in some high
dimensional space, or even in a non-dimensional space
(e.g., words set), traditional visualization techniques are
not suitable.

Existing visualization tools for data mining allow
navigation through complex data structures, creating initial
views, which are modified as the user navigates through
data. In [6] it is presented a summary of the techniques
used on visual data mining. Among them are the geometric
projection, icon-based, pixel-oriented, hierarchical, and
combinations of them.

According to [6] it’s important to note that in order to
obtain an effective data exploration it’s necessary the use
of interaction and distortion techniques in addition to
visualization techniques. Interaction techniques let the user

interact with the visualization realizing manipulations such
as mapping, projection, filtering, zooming, etc. The
distortion techniques help in the process of interactive
exploration of the visualization, such as focusing regions
while preserving a general view of the dataset.

The data visualization process also helps in clustering
certification and identification of the dataset in analysis
[7]. Among the most representative works about clustering
is Clarans [8], which uses partitioning algorithms and
BIRCH [9]. For spatial data domains, there are several
studies and techniques already developed [10] [11]. For
metric data domains, where only objects and distances
among them are considered, [12] is one of the most
divulged.

Data treatment in high dimensional data domains is
expensive for any kind of processing that one may be
interested. Thus, dimensionality reduction techniques have
been developed. One of the landmarks among these
techniques is the FastMap [13], which maps data in high
or non-dimensional spaces to any dimensional space. The
FastMap receives as input the dimensionality £ of the
target space, a set of objects and a distance function
defined over the elements of this set, and produces a
mapping of each element in a 3-dimensional space. In the
mapping process, the FastMap algorithm uses the cosine
law and the distances between the objects in the original
space to generate the coordinates of each element in the
target space preserving as much as possible the original
distances between them.

3. Creating distance functions over relations

Besides being developed as a technique aiming
dimensionality reduction of datasets, the FastMap
algorithm can also be used to create spatial visualizations
of the dataset. To this intent, if the dataset has a distance
function defined, it is enough to set the target dimension
E to 3, and display the resulting mapping using an
interactive 3D visualization tool. However, to define a
distance function to visualize data stored in a database
relation, some considerations must be taken. First of all,
although the attributes in each tuple of the relation
describe one object in the real world, they relate to
different measurements and concepts, thus defining
different spaces where the attributes are correlated.
Therefore, the distance function must be defined in such
a way as to integrate these diverse conceptual structures.
Second, a tuple can consist of many attributes, each one
with different types, like numbers in continuous or discrete
domains, dates, currency and strings. Also, some numeric
or textual attributes are categorical (i.e., discrete, and
perhaps unordered), making the direct comparison of
values meaningless. There are many distance functions
that can be used, and each of them will lead to a different
visualization of the dataset, as the distance function is the
base for the mapped result.

To be able to use the FastMap algorithm to map sets
of tuples in relations, we propose a generic distance
function that handles each attribute individually, so the
difference of each attribute value from a pair of tuples are
collected, and all of them are composed to create the final
distance function. In this way, the set of tuples are viewed
as a set of points in an £-dimensional space, where [ is the



cardinality of each tuple. Many distance functions have
been used in different applications, including machine
learning, neural networks and statistics [ 14]. When applied
to multi-dimensional spaces, many of these distance
functions are based on the differences between the values
of each attribute. That is, let X=<x,, x,,... x> and
Y=<y,, y,, ... = be tuples from the dataset. Therefore,
the distance function isd(X,Y)= f(d(x;,»;)), where
Ax,,y,) is adifference function between the values of each
attribute. The most common of such distance functions are
the Minkowsky distance functions, also known as the L,
norm:

N
d,,(X.Y)= 2 H(x - y)"
i=1

The value p, usually an integer number, enables the
representation of several common distance functions, such
as p=2 gives the Euclidean distance, p=1 comes to the
Manhattan distance, and p=w is the Chebychev, or L.,
distance function.

The L, norm is usually applied over numeric
attributes in continuous domains. However, when applied
over attributes stored in a generic relation, the attributes
can be in discrete domains, or texts, dates, etc. Then, we
generalized the (x-y,) component into a J,(x;,¥;)
function, which is chosen depending on the data type of
each attribute in the relation. Note that a relation with
attributes of different data types will use different J)()
functions. Hence, we proposed a extended, weighted,
Minkowsky distance functions to be applied to selected
attributes of a database relation. As distance functions are
based on the difference of each attribute in pairs of tuples,
we represent the attributes used to calculate each
difference, proposing the following definition.
Definition 1 (difference function). Let 4, be an attribute of

a database relation,and let x,y;, be the values of

attribute 4; in tuples X and Y of that relation, getting

its values from the domain Dom,(A4;). Then

O [4; 1(x;,¥:)~R is a difference function that

calculates the difference between values x; and y,

using different procedures in the calculation,

depending on the type ¢ and Dom,(A4,) The following
forms a basis set of attribute domains supported:

Continuous numeric domain: dy[4;1(x;, ;) =|x; — v/,
where J4,[4,] calculates the absolute difference between
the attribute values. This function can also be used when
the attribute domain is ordered and discrete with equal
steps between values;

Date domain: dpl4;1(x;,¥;) = |days(x;) — days(y,)| ,
where J,[4,] calculates the number of days between dates,
plus the fraction of time if x; or y, have time values
specified;

Currency domain: 2c[4,1(x;.y,) =|x; —;|, where
JA4;] calculates the absolute difference between the
attributes values;

String domain: J;[4;1(x;,¥;) = Lgg; (x;,¥;) , where
g,[A4,] calculates the Levenshtein distance function
between two strings (the number of characters that should
be inserted, removed or replaced to transform one text into
the other);

Categorical (numeric or textual) domain:
Onl4)(x;, )= Miy ;- where Mi is a matrix
representing the distance function in the domain of attrib-
ute A4;,. This matrix must meet the requirements of a metric
distance function (thatis, Mi; = Miy;, Miy =0, Miy 20

al’ld Mljk < Mljl + Mi]k . ijl € Dom(A,) )

The categorical difference function J,( ) stands for
any difference function that can be expressed by the set of
differences between every possible pair of instances from
the domain Dom(A4,). Examples of the usage of this
difference function are the difference of terms based on
the meaning of a set of terms (semantic difference),
physical distance of the objects represented by its names
(e.g the distance of cities identified by its names), etc.
Being able to calculate the difference between values of
any attribute of a relation, a function to calculate a
distance between any pair of tuples can be created, using
the following definition.

Definition 2 (Distance Function). Given a relation of the
form R={4,, ... A\}, a relation distance function is a

N
metric depu(R):Zp,lwi»mi((ﬁt’[A,-])p)—»]R that,
i=1

applied to the attributes of the relation returns a real

positive number. Parameter w, is the weight asso-

ciated to the 4, attribute, and 7;, (4; ) is a difference
function that varies with both the data type of attribute

A,, and with modifiers associated individually to each

attribute A4,.

The weight w;, is used to deal with variations in the
magnitude of the values stored at each attribute. It can be
both a constant or calculated as the span of the values of
this attribute in the database, providing a way to normalize

the space. The modifiers m,( ) associated to each 7y, (4; )

difference function are the logarithm (/), no modifier (null)
and exponential (e) functions. Using them, different
behavior regarding the scale of values at each single
attribute can be accommodated. Notice there are many
different distance functions that can be specified to each
relation, changing weights, modifiers, power, the use of
categorical or continuous difference functions, or distinct
definitions for the categorical attributes. The usability of
each of them have definite implications in the
visualizations obtained, but the description of them are
beyond the scope of this paper.

4. The FastMapDB tool

Using the proposed extended weighted Minkowsky
distance functions and the FastMap algorithm [13], we
built the visual analyzer tool called FastMapDB (Figure
1). It aims to assist, through visual resources, the data
analysis step in the KDD process using data stored in
relational databases. The purpose of the tool is to allow the
user to “see” the object distribution in a 3D space. It
allows, for example, to verify the existence of outliers, to
assist on tasks of cleaning and data preparation, to help the
user to choose reduced sets of attributes to submit to data
mining operations, and to verify the adequacy or not of a



chosen distance function or the answer generated by an
automatic process.
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Fig. 1. The FastMapDB main screen.

Describing briefly, the FastMapDB tool might be used
in a sequence of 6 steps:

1 - to select the database;

2 - to select the relation R to be visualized;

3 - to select the attributes A'={A; € R} that are going

to compose the visualization, and each respective

difference function J[4,];

4 - to define the distance function d,,,[R];

5 - to define visualization parameters;

6 - to generate and interact with the visualization.

These steps are executed sequentially by the user. It is
possible to return to any previous step, however, when
steps 1 or 2 are executed, the data of subsequent steps are
discarded. The tool presents a graphical interface and the
options of attribute selection are displayed. For example,
to choose a relation to be visualized, the user might select
the desired one among the list of all database relations
shown. In the same way, once the relation R is chosen, its
attributes are displayed. Then, the user selects the desired
attributes to compose the set 4°.

Once the set 4 is defined, the user may proceed to
define the distance function d,,,,( ). The options include:
defining the respective weights of each attribute used with
each attribute; choosing each difference function JJ4,]
including its modifiers to determine if it will be used in
linear, exponential or logarithm scales; the distance matrix
for categorical attributes; and the power p.

The user can also choose some filters to select only
part of the tuples in the relation, or he/she can select the
full relation. The selection is done by the conjunction of
one or more selection conditions over the original
attributes of the relation R. In this step, it is also possible
to choose a categorical attribute to be used as a classifier
attribute, allowing tuples of different classes to be
represented in different shapes and colors. After the
distance function and the selection criteria were defined,
the program performs the mapping algorithm and
generates the visualization. Finally, the user can explore
the generated visualization, and interactively manipulate
it through operations as rotation, zoom and translation.

4.1. Performance Measures and Examples

In this section we present the results of applying
FastMapDB tool on synthetic and real datasets. The results
highlight two aspects: the scalability of the tool regarding
the number of attributes and the number of tuples, and
how visualization resources assist the understanding of
datasets.

Scalability

In these experiments, we have used 5 tables with 10, 20,
40 and 80 thousand tuples. Each table has 10 floating-
point attributes generated randomly, and a classifier
categorical attribute with 3 possible values, also generated
randomly. The first experiment was performed measuring
the time spent by the tool to map the 10 numeric attributes
for each table. The results of this experiment are shown in
Figure 2. Figure 3 shows the results of another experiment,
that evaluated the time spent by the tool, considering only
the table with 20 thousand tuples, varying the number of
attributes from 5 to 10.
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Fig. 2. Scalability graphic of FastMapDB. Regarding
number of tuples.

The times shown in these figures refer to the total time
since the user requested the mapping, including the
reading of all data from the database, the mapping process,
until the data visualization. As we can see in Figure 2 the
tool presents linear performance, either varying the
number of attributes or the number of tuples in the
relation. All tests were realized on a Pentium I11 800 MHz,
with 512 Mbytes of memory, running MS Windows 2000
operating system and accessing an Oracle 8i database.
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Fig. 3. Scalability graphic of FastMapDB. Regarding
number of attributes.

Data Visualization
The next experiment was done to illustrate the data
visualization resources of our proposed tool. The data used
for this experiment is the “Congressional Voting Records”
set of 1984, from the UCI Machine Learning Archive [15].
This dataset is constituted by the register of the votes
of the congressmen, where each tuple corresponds to the
vote of one congressman in sixteen congressional matters.
The attributes have the value 1 (approved), -1 (not



approved) or zero (neutral or abstention). Each tuple has
also a categorical attribute, indicating which party the
correspondent congressman belongs, Republican (168
tuples) or Democrat (267 tuples). This experiment
illustrates the non-continuous data visualization. It is
known this set presents a good separability between
democrats and republicans, and Figure 4 presents it,
showing how these two classes are polarized with little
overlapping. The visualization shown in Figure 4 presents
the results of the mapping on all 16 attributes.
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Fig. 4. The Votes set visualization.

4.2. Applications

This section describes some real applications where
FastMapDB is being used. In the first one, customer data
came from a financial institution, containing fraudulent
households and a random sample of non-fraudulent
households®. For each household were provided 90 fields,
containing information such as the amount of accounts of
a certain type (e.g. savings, credit lines), the balance in
each of these accounts and the days between transactions
at accounts of a given type. Using the available data it’s
possible to visualize how fraudulent households are mixed
with non-fraudulent households, according to some
selected fields, and detect the most probable ones to

. non-frandulent househnld
@ fraudulent household

Fig. 5. The customer dataset visualization.

*Due to confidentially requirements we are not allowed to
publish the institution’s name and any other related information.

capture frauds. An example of visualization obtained from
this dataset is shown in Figure 5. Other application where
FastMapDB is being used is in analyzing data from a
radiology image center of an hospital. In this application,
factors that affect the quality of image production are
being analyzed.

5. Conclusions

There are many tools to visualize information extracted
from databases, but most of them allow the visualization
of statistic information about data, as totals, averages, etc.,
in resembling pie charts, histograms, x-y graphics, etc.
The few tools that allow spacial visualization of how data
are distributed, use an inherent distribution, in other
words, data must have a natural spacial distribution in a
subset of its attributes. FastMapDB, on the other hand,
creates spatial distributions for any kind of data stored in
a relational database, and presents a rich pallette of tools
to allow exploring many inter-relationships in the data to
generate the visualizations.

Its data visualization concept allows using the human
capacity of graphic data understanding, to effectively
including the user as an important link in data analysis
process of knowledge discovery in huge databases. An
additional achievement is its suitability to validate either
the data or the data analysis algorithms. This enables, for
example, to verify if a data mining process such as
classification or clustering has a good result, and if not, it
may provide visual clues of the reason of the problem.

The main contributions of this work are:

» the development of a technique for incremental data
visualization from relations built on attributes of any
kind;

* the development of an algorithm for visualization,
which is fast and scalable for huge datasets,
presenting linear computational complexity
concerning the number of tuples and the number of
attributes in a relation;

» the implementation of a tool for use in real databases,
stored in commercial DBMS;

Future developments expected involves academic
activities and practical extensions. Among the academic
activities are the possibility of using the concepts for
classification and visual clustering discovery, and the
possibility of analyzing more than one relation
simultaneously, orienting the tool for Data Warehousing
and On Line Analytical Processing (OLAP). Among the
practical extensions are the inclusion of different manners
of data manipulation and other tools to help the creation of
distance functions, and to help compare changes in the
settings of different visualizations.
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