topologia:fechados_e_fechos

Definição: Conjunto fechado

Seja $(X, \tau)$ um espaço topológico. Dizemos que $F \subset X$ é um conjunto fechado se $X \backslash F$ é aberto.

  • Mostre que em qualquer espaço topológico $(X, \tau)$, $X$ e $\emptyset$ são fechados. Desta forma, em particular, $X$ e $\emptyset$ são simultaneamente abertos e fechados.
  • Mostre que em $\mathbb R$, o intervalo $[0,1]$ é fechado.
  • Mostre que na topologia discreta qualquer conjunto é fechado.
  • Mostre que na reta de Sorgenfrey, o intervalo $[0,1[$ é fechado, onde $a<b$.

Definição: Fecho e interior

Sejam $(X, \tau)$ um espaço topológico e $A \subset X$. O fecho de $A$ é definido como $\bar{A}=\bigcap_{F \in \mathcal F} F$, onde $\mathcal F = \{F \subset X : F \textrm{ é fechado e } A \subset F \}$.
O interior de $A$ é definido como $Int(A)=\bigcup_{V \in \mathcal V} V$ onde $\mathcal V = \{ V \subset X : V \textrm{ é aberto e } V \subset A \}$.

  • Sejam $(X, \tau)$ um espaço topológico e $A \subset X$. Mostre que $\bar{A}$ é fechado e $Int(A)$ é aberto.

Definição: Ponto aderente

Sejam $(X, \tau)$ um espaço topológico e $A \subset X$. Dizemos que $x \in X$ é ponto aderente a $A$ se para todo aberto $V$ tal que $x \in V$ valer $V \cap A = \emptyset$.

  • Sejam $(X, \tau)$ um espaço topológico e $A \subset X$. Mostre que $\bar{A} = \{x \in X : x \textrm{ é ponto aderente de } A \}$.
  • Sejam $(X, \tau)$ um espaço topológico e $A,B \subset X$. Mostre que:
    • Se $A \subset B$, então $\overline{A} \subset \overline{B}$
    • $\overline{\overline{A}}=\overline{A}$
    • $\overline{A}=A$ se, e somente se, $A$ é fechado.
  • Considere um conjunto $X$ com a topologia discreta.
    • Mostre que se todo subconjunto $A$ de $X$ é fechado, então $\overline{A}=A$
    • Mostre também que $Int(A)=A$
  • Mostre que, em $\mathbb{R}$, $\overline{[a,b[}=[a,b]$
  • Mostre que, na reta de Sorgenfrey, $\overline{[a,b[}=[a,b[$
  • Mostre que, em $\mathbb{R}$, $\overline{\mathbb{Q}}=\mathbb{R}$ e $Int(\mathbb{Q})=\emptyset$
    • Mostre que o mesmo vale para a reta de Sorgenfrey

Definição: Ponto de Fronteira

Sejam $(X, \tau)$ um espaço topológico e $A \subset X$. Dizemos que $x \in X$ é um ponto de fronteira de $A$ se para todo $V \subset X$ aberto tal que $x \in V$, temos $V \cap A \neq \emptyset$ e $V \cap (X \ A) \neq \emptyset$

Notação

$\partial A = \{ \in X:x$é um ponto de fronteira de $A\}$

  • Mostre que, em $\mathbb{R}$, $\partial [a,b[={a,b}$
    • E mostre quem na reta de Sorgenfrey $\partial [a,b] =\emptyset$
    • Mostre também que a igualdade acima vale de modo geral.
  • Mostre que, em $\mathbb{R}$, $\partial \mathbb{Q}=\mathbb{R}$
    • Mostre que o mesmo vale para a reta de Sorgenfrey
  • Seja $(X, \tau)$ um espaço topológico. Mostre que são verdadeiras:
    • $X,\emptyset$ são fechados
    • Se $F,G \subset X$ são fechados, então $F \cup U$ é fechado
    • Se $\mathcal{F}$ e uma família não vazia de fecahdos, então $\bigcap_{F\in\mathcal{F}}F$ é um fechado
  • Seja $(X, \tau)$ um espaço topológico e $A \subset X$. Dizemos que $x \in X$ é um ponto interior de $A$ se existe $V$ aberto tal que $x \in V \subset A$. Mostre que $Int(A)=\{x\in X: x$ é um ponto interior de $A\}$
  • Mostre o caso análogo para o interior para a seguinte Proposição:
    • Sejam $(X, \tau)$ um espaço topológico e $A,B \subset X$. Temos
      • Se $A \subset B$, então $\overline{A} \subset \overline{B}$
      • $\overline{\overline{A}}=\overline{A}$
      • $\overline{A}=A$ se, e somente se, $A$ é fechado.
  • Sejam $(X, \tau)$ um espaço topológico e $A \subset X$. Mostre as seguintes afirmações:
    • $\partial A = \overline{A} \cap \overline{X\backslash A}$
    • $Int(A) \cap \partial A = \emptyset$
    • $\partial A = \overline{A} \backslash Int(A)$
    • $\overline{A} = A \cup \partial A$
  • Mostre que a fronteira de um conjunto sempre é fechada.
  • Sejam $(X, \tau)$ um espaço topológico e $Y \subset X$ subespaço. Mostre que $F \subset Y$ é fechado em $Y$ se, e somente se, existe $F' \subset X$ fechado em $X$ tal que $F = F' \cap Y$
  • Sejam $(X, \tau)$ um espaço topológico e $Y \subset X$ subespaço fechado. Mostre que $F \subset Y$ é fechado em $Y$ se, e somente se, $F$ é fechado em $X$
  • Sejam $(X, \tau)$ um espaço topológico e $Y \subset X$ subespaço aberto. Mostre que $F \subset Y$ é aberto em $Y$ se, e somente se, $F$ é aberto em $X$
  • topologia/fechados_e_fechos.txt
  • Última modificação: 2022/03/27 11:59
  • por 127.0.0.1