topologia:exemplo:ventenum


Definição: Considere \begin{equation} V = \{\infty\}\cup\{a_{m,n} : (m,n) \in \mathbb{N} \times \mathbb{N}\} \end{equation} com a topologia satisfazendo:

  • Todo ponto $a_{m,n}$ é isolado;
  • $\mathcal{B} = \{B_f \;|\; f: \mathbb{N} \rightarrow \mathbb{N}\}$ é uma base local para $\infty$, onde $B_f = \{\infty\}\cup\{a_{m,n} : m \in \mathbb{N},\;n > f(m)\}$.

Tal espaço é chamado Espaço do Ventilador.

Abaixo iremos apresentar uma definição alternativa e, também, uma intuição para o problema.

Definição alternativa: Considere \begin{equation} X = \{(n,\frac{1}{k}) : n \in \mathbb{N}, k \in \mathbb{N}_{>0}\}\cup\{(n,0):n \in \mathbb{N}\} \end{equation} com a topologia usual de $\mathbb{R}^2$. Considere, também, a seguinte relação de equivalência sobre $X$: \begin{equation} x \sim y \Leftrightarrow x = y \quad ou \quad (x = (n,0) \quad e \quad y = (m,0)) \end{equation} para algum $m,n \in \mathbb{N}$. Seja $V$ o espaço $X/\sim$ com a topologia quociente. Tal espaço é chamado Espaço do Ventilador.

Intuição: Seja $\Omega$ uma coleção de espaços de sequência convergente de forma que cada espaço não possua nenhum ponto de outro. Em termos da primeira definição basta notar que, para todo $m \in \mathbb{N}$, $(a_{m,n})_{n \in \mathbb{N}}$ converge para $\infty$. No desenho abaixo os pontos maiores são os pontos limites de cada espaço e os menores a sequência convergente.

Agora, suponha que quocientemos esses espaços, de forma que todos os pontos limites sejam relacionados, isto é, sejam o mesmo ponto x. Note que no espaço quociente, obteremos diversas sequências distintas e sem pontos em comum convergindo para x, formando a ideia de um ventilador.


Axiomas de separação

Axiomas de enumerabilidade

Propriedades de cobertura

Propriedades de conexidade

Outras Propriedades

  • topologia/exemplo/ventenum.txt
  • Última modificação: 2021/07/13 16:25
  • por lfmessis