Muitas vezes, tomar a topologia da ordem induzida de um subespaço não coincide com descer para tal subespaço de um espaço com a topologia de ordem, isto é, inverter estes processos pode resultar em topologias (abertos) diferentes. Por exemplo, considere o conjunto $X = [0,1[\cup[2,3[$.

(a) Considerando $X$ como subespaço de $\mathbb{R}$ (com a topologia da ordem usual), note que $2\notin \overline{[0,1[}$, pois existe um aberto $A=]1,3[$ de $\mathbb{R}$ tal que $2 \in A$ e $A \cap [0,1[=\emptyset$, isto é, $2$ não é ponto aderente de $[0,1[$.

(b) Vamos mostrar que, se considerarmos $X$ com a topologia da ordem induzida (usando a sua ordem usual), teremos que $2\in\overline{[0,1[}$. Seja $A$ um aberto qualquer da topologia da ordem de $X$ tal que $2\in A$. Devemos mostrar que $A \cap [0,1[ \neq \emptyset$. Note que $\mathcal B = \{]-\infty,b[ : b\in X\} \cup \{]a,b[:a,b \in X\} \cup \{]a,+\infty[:a\in X\}$ é base para $X$ com a topologia da ordem. Portanto, ocorre algum dos seguintes três casos:

  1. Existem $a,b\in X$ tal que $2\in]a,b[\subset A$, ou ainda, $a<2$. Desta forma, perceba que, como $a \in X$ e $a<2$, obtemos que $a \in [0,1[$ e, portanto, $]a,b[\cap[0,1[ \neq \emptyset$, pois $\frac{a+1}{2} \in ]a,b[\cap [0,1[$. Em particular, como $]a,b[\subset A$, conclui-se que $A \cap [0,1[\neq \emptyset$.
  2. Existe $a\in X$ tal que $2\in]a,+\infty[\subset A$, ou ainda, $a<2$. Analogamente ao item anterior, concluímos que $a \in [0,1[$ e, portanto, $]a,+\infty[\cap[0,1[ \neq \emptyset$, pois $\frac{a+1}{2} \in ]a,+\infty[\cap [0,1[$. Em particular, como $]a,+\infty[\subset A$, conclui-se que $A \cap [0,1[\neq \emptyset$.
  3. Existe $b \in X$ tal que $2 \in ]-\infty,b[ \subset A$, ou ainda, $b>2>1$. Note que $[0,1[\subset ]-\infty,b[ \subset A$, ou seja, $A \cap [0,1[ =[0,1[ \neq \emptyset$.

Como em todos os casos, mostramos que $A \cap [0,1[\neq \emptyset$, então $2\in\overline{[0,1[}$.

Portanto, perceba que os fatos de “descer para subespaço” e “tomar a topologia da ordem induzida” não comutam, pois, no item (a), tomamos a topologia de ordem induzida dos reais e depois descemos para o subespaço $X$ e obtemos que $2\notin\overline{[0,1[}$. Já no item (b), fizemos o caminho inverso, consideramos o subespaço $X$ dos reais e depois tomamos a topologia de ordem induzida de $X$ e obtemos, diferentemente do outro caso, que $2\in\overline{[0,1[}$.

  • topologia/descersubespacotopordem.txt
  • Última modificação: 2021/05/18 20:53
  • por aires