=====Pontos de Acumulação===== Seja $(X,\tau)$ um espaço topológico, dizemos que $x \in X$ é um ponto de acumulação de $A \subset X$ se $x \in \overline{A \setminus \{x\}}$. Outra forma de se enxergar, é : * $x$ é um ponto de acumulação de $A$ se $x$ não é um [[topologia:pontoisolado:)|ponto isolado]] em $A$. ===Proposição:=== Seja $(X,\tau)$ um espaço topológico [[topologia:espacoT1|\(T_1\)]], então $x \in X$ é um ponto de acumulação de $A \subset X$ se, e somente se, para todo $V$ aberto tal que $x \in V$ temos que $V \cap A$ é infinito [[solucao:solprop1PtoAcumulu|Solução]]. ===Proposição:=== Seja $(X,\tau)$ um espaço topológico [[topologia:defcompacto| compacto]], então todo subconjunto infinito admite ponto de acumulação[[solucao:solprop2PtoAcumulu|Solução]]. =====Ponto de acumulação Completo===== Seja $(X,\tau)$ um espaço topológico, dizemos que $x \in X$ é um ponto de acumulação completo de $A \subset X$ se, para todo $V$ aberto tal que $x \in V$, temos que $|V\cap A|=|A|$. Dizemos que uma ordem $\leq$ é uma boa ordem se todo subconjunto não vazio admite mínimo.\ * Todo conjunto admite uma boa ordem. * Todo conjunto admite uma boa ordem $\leq$ tal que, para todo $x \in X$, $|\{y\in X:y ===Proposição:=== Seja $(X,\tau)$ um espaço topológico [[topologia:defcompacto| compacto]], então todo subconjunto infinito de $X$ admite um ponto de acumulação completo[[solucao:solprop3PtoAcumulu|Solução]]. ===Proposição:=== Seja $(X,\tau)$ um espaço topológico tal que todo subconjunto infinito admite ponto de acumulação completo, então $X$ é [[topologia:defcompacto| compacto]][[solucao:solprop4PtoAcumulu|Solução]]. ===Exemplos e curisidades:=== * Chamamos de derivado de um conjunto $X$, o conjunto de seus pontos de acumulação, denotado por $X'$ * $X$ é um conjunto fechado se, e somente se, $X' \subset X$ [[solucao:solcurioptoacu|Solução]]. * Um ponto de acumulação de um conjunto não necessariamente pertence a ele, tomando $(0,2)$, um intervalo aberto nos reais, é fácil visualizar que o 2 é um ponto de acumulação, porém não pertence ao conjunto.