=====Passando por filtros===== Chamamos de $\dot{G}$ o {{entry>nome}} $$ \dot{G} = \{(\check{a},a) : a \in \mathcal{A}\} $$ onde $\mathcal{A}$ é nossa álgebra de Boole completa fixada. Com isso podemos perceber que $[\![ \check{a} \in \dot{G} ]\!]= a$, pois: $$[\![ \check{a} \in \dot{G} ]\!]= \sup_{t \in dom(\dot{G})} \dot{G}(t)[\![ \check{a} \in t ]\!]$$ pela própria definição, $\dot{G}(\check{a}) = a$, como queríamos. Seja $(P, \leq)$ uma pré-ordem. Dizemos que $F \subset P$ é um filtro se $F \neq \emptyset$ e: *$F \neq P$ (condição de não trivialidade); * se $p, q \in F$, então existe $r \leq p, q$ tal que $r \in F$; *se $p \in F$ e $q \in P$ é tal que $p \leq q$, então $q \in F$. ===Proposição=== $[\![ \dot{G} \text{ é filtro sobre } \check{\mathcal{A}} ]\!]= 1$.[[solufiltroexpuni|Solução]] Dizemos que $X\subseteq \mathcal{A}$ é {{entry>denso}} se $0 \notin X$ e para todo $a\in \mathcal{A}$, $a \neq 0$, existe $x \in X$ tal que $x\leq a$. ===Proposição=== Se $D$ é denso em $\mathcal{A}$, então $[\![ \dot{G} \cap \check{D} \not= \emptyset ]\!]=1$. [[soludensoexpuni|Solução]] Vamos agora mostrar alguns resultados interessantes: *Se $a$ é um conjunto tal que $[\![ \check{a}\subseteq\dot{G} ]\!]=1$, então $\check{a}=\{(\check{1},1) \}$.[[soluprop1uniexp|Solução]] *Se $a$ é um conjunto tal que $[\![ \dot{G}=\check{a} ]\!]=1$, então $\mathcal{A} = \{0,1\}$.[[soluprop2uniexp|Solução]] *Unindo os dois resultados acima temos que se $\mathcal{A} \not= \{0,1\}$, então não existe um conjunto $a$ tal que $[\![ \check{a}=\dot{G} ]\!]=1$.