Mostrar páginaRevisões anterioresLinks reversosVoltar ao topo Essa página está em modo somente de leitura. Você pode visualizar a fonte, mas não alterá-la. Informe-se com o administrador do Wiki, caso você ache que isso está incorreto. =====Conjunto fechado===== Seja $(X,\tau)$ um espaço topológico. Dizemos que $F \subset X$ é um conjunto fechado se $X \setminus F$ é aberto. ===Exemplos:=== Considerando o espaço topológico $(\mathbb{R},\tau)$ *$\mathbb{N}$, tomemos $\mathbb{N}^c = \mathbb{R} \setminus \mathbb{N}$, tomando qualquer intervalo $]a,b[$, com $a,b \in \mathbb{N}$, temos um conjunto aberto, e já que união enumerável de abertos é aberto, temos que $\mathbb{N}^c$ é aberto; * O mesmo vale para $\mathbb{Z}$. ===Veja também:=== [[topologia:pontoaderente|Ponto aderente]] [[topologia:fecho|Fecho]] [[topologia:fronteira|Fronteira]] topologia/fechado.txt Última modificação: 2021/04/21 16:41por maugsia