Mostrar páginaRevisões anterioresLinks reversosVoltar ao topo Essa página está em modo somente de leitura. Você pode visualizar a fonte, mas não alterá-la. Informe-se com o administrador do Wiki, caso você ache que isso está incorreto. Vamos supor conjuntos $a,b$ tal que $[\![ x = \check{a} ]\!] = 1 = [\![ x = \check{b} ]\!]$: * Sabemos que $1 = [\![ x = \check{a} ]\!][\![ x = \check{b} ]\!]\leq [\![ \check{b} = \check{a} ]\!]$ * Assim vamos supor que $a \neq b$, portanto $a \not\subseteq b$ ou $b \not\subseteq a$: * Se $a \not\subseteq b \rightarrow [\![ \check{a} \subseteq \check{b} ]\!]=0 \rightarrow [\![ \check{a} = \check{b} ]\!] = 0$, um absurdo * Se $b \not\subseteq a \rightarrow [\![ \check{b} \subseteq \check{a} ]\!]=0 \rightarrow [\![ \check{b} = \check{a} ]\!] = 0$, um absurdo * Portanto $a=b$ <wrap right>$\square$</wrap> dica/respresuluni4.txt Última modificação: 2021/08/02 16:29por maugsia