Diferenças
Aqui você vê as diferenças entre duas revisões dessa página.
| Ambos lados da revisão anterior Revisão anterior | |||
| topologia:cldemo1 [2021/07/01 17:22] – dory | topologia:cldemo1 [2021/07/01 17:22] (atual) – dory | ||
|---|---|---|---|
| Linha 13: | Linha 13: | ||
| Seja $y\in X\backslash C$. Como $X$ é localmente conexo por caminhos, existe $A$ aberto conexo por caminhos tal que $y\in A$. Suponha que $A\cap C\neq\emptyset$ e seja $b\in C\cap A$. Como $b\in C$, existe um caminho de $x$ para $b$, e como $b\in A$, existe um caminho de $b$ para $y$. Então existe um caminho de $x$ para $y$. Mas isso contradiz $y\not\in C$. Logo, $A\cap C =\emptyset$ e $X\backslash C$ é aberto ($C$ é fechado). | Seja $y\in X\backslash C$. Como $X$ é localmente conexo por caminhos, existe $A$ aberto conexo por caminhos tal que $y\in A$. Suponha que $A\cap C\neq\emptyset$ e seja $b\in C\cap A$. Como $b\in C$, existe um caminho de $x$ para $b$, e como $b\in A$, existe um caminho de $b$ para $y$. Então existe um caminho de $x$ para $y$. Mas isso contradiz $y\not\in C$. Logo, $A\cap C =\emptyset$ e $X\backslash C$ é aberto ($C$ é fechado). | ||
| - | Com isso, segue da conexidade de $X$ que $C=X$, | + | Com isso, segue da conexidade de $X$ que $C=X$, |