[Resolução] III.6.12

Disciplina de Cálculo IV do ICMC
Locked
pingu
Posts: 4
Joined: 24 Aug 2022 17:03
Has thanked: 12 times
Been thanked: 14 times

[Resolução] III.6.12

Post by pingu »

Enunciado:
Seja a série de Fourier da função \(2\pi\) periódica \(f(x) = x^2\) para \(x \in [-\pi, \pi]\). Mostre que \(\sum_{n=1}^\infty\ \frac{1}{n^4} = \frac{\pi^4}{90}\)

Solução:
Sabendo que \(f(x) = x^2 = S_f(x) = \frac{\pi^2}{3} + \sum_{n=1}^\infty\ (-1)^n\frac{4 cos(nx)}{n^2}\) para \(x \in [-\pi, \pi]\)

\(a_0 = \frac{2\pi^2}{3}\)
\(a_n = \frac{4 (-1)^n}{n^2}\)

Pela Identidade de Parseval sabemos que:

\(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 \,dx = \frac{a_0^2}{2} + \sum_{n=1}^\infty (a_n^2 + b_n^2)\)

\(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 \,dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^4 \,dx = \frac{1}{\pi} \frac{x^5}{5}|_{-\pi}^{\pi} = \frac{1}{\pi} (\frac{2\pi^5}{5}) = \frac{2\pi^4}{5}\)

\(\frac{2\pi^4}{5} = \frac{\frac{4\pi^4}{9}}{2} + \sum_{n=1}^\infty [\frac{4(-1)^n}{n^2}]^2\)

\(\frac{2\pi^4}{5} = \frac{2\pi^4}{9} + \sum_{n=1}^\infty \frac{16}{n^4}\)

\(\frac{2\pi^4}{5} - \frac{2\pi^4}{9} = 16 \sum_{n=1}^\infty \frac{1}{n^4}\)

\(\frac{8\pi^4}{45} = 16 \sum_{n=1}^\infty \frac{1}{n^4}\)

\(\frac{8\pi^4}{45 \cdot 16} = \sum_{n=1}^\infty \frac{1}{n^4}\)

\(\frac{\pi^4}{90} = \sum_{n=1}^\infty \frac{1}{n^4}\)
otavio12
Posts: 10
Joined: 20 Aug 2022 17:55
Has thanked: 10 times
Been thanked: 11 times

Re: [Resolução] III.6.12

Post by otavio12 »

Valeu por colocar o passo a passo da identidade de perseval, me ajudou a encontrar oque tinha errado :mrgreen:
Aracy
Posts: 6
Joined: 07 Sep 2022 19:34
Has thanked: 7 times
Been thanked: 2 times

Re: [Resolução] III.6.12

Post by Aracy »

Boa resolução, deu pra acompanhar direitinho :idea:
Locked