Theorem 0.1. Given k > 2%, it is consistent with ZFC that there is a
Lindelof first countable Ty space of cardinality k.

Before we begin our construction, let us fix some sets. Fixed an infinite
cardinal s, let (A, : @ < k) be such that

e cach A, = {a2:n € w} C k;
o AyNAs=0if a# B;

o k=, Aa-

The sequence (B, : n € w) given by the next lemma will be used in our
construction:

Lemma 0.2. There is a sequence (B, : n € w) of infinite subsets of w such
that:

1. (B, :n € w) is almost disjoint;
2. For every s € 2<% and every n € w, there is an m > n such that

XB,, €[] A\Vi<n (B,NB;N(w\ |s]) = 0.

Note that, in particular, {xp, : n € w} is dense in the usual topology of 2*.

Proof. Let (s; : i < w) be an enumeration of 2<* such that each term is listed
infinitely many times. Suppose that (B; : j < i) is almost disjoint and w \
U ;i Bj is infinite. Let B; be an infinite set such that

® X5, € [si;
e B,NB;N(w)\ [si]) =0 for every j < i;
e w\ U, Bj is infinite.
Since every s; is repeated infitely many times, the sequence is as desired. [

Before the definition of the forcing, a last piece of notation: for each a € k
and n € w, define A,, = {af : j € B,}. Therefore, Ay, = |, ¢, Aan and,
given m,n € w, Ay n N Ay is finite it m # n.

Each condition of our forcing P will be of the form p = (I, A, F,U,{,r)
(as usual, when needed, we will add a p as an upper index, e.g., I?) such
that:



o [ € [r]*
d A = Uael Aa;
o F'={24, €2%: a€lAn € w} satisfying the following properties:

— Tan | Aa = X4, for every a € I and n € w;
— Zom | (A\ A) =Zan | (A\ A,) for every a € I and m,n € w;

— if o, § € I are distinct, then for every m,n € w, x;}m(l) NAg, is
finite;

— We are considering on F' the topology generated by sets of the
form {U, : a € A}, where U, = {z € F : () = 1}. Note that
this topology is properly contained in the usual topology of 27.
For s € [I]<¥, define U; = (,., U;. Note that the collection of all
Us is a base for the fixed topology.

e U is a countable family of countable open coverings of F' made by basic
open sets of the topology defined above;

e Given S C A and ¢ € A, we say £ requires S if, given z € F, x [ § =
1 = z(§) = 1. In this case, we will use the notation S F £ (in other
words, S F £ means that F'NUg C Ug).

e Given o € [ and n € w, let

rle,n) ={j € B,:38 € I\ {a} Im € w (z,),(1) N Agm) F af}.

a,n

We impose that r(a,n) is finite;

e Given z,, € F and £ = a”, € A such that 2,,(§) = 1 and 8 # «,
there must be an ¢(a,n,&) € w such that S?(ﬁn@ F ¢, where S =
{a§ :j€ B, Nj <k}

Given p,q € P, we define ¢ < pif, [9 D IP, UT D UP, (9D (P, r?1 D rP and
xd, | AP =2 for every xl , € F'? such that o € AP.

Suppose that V is a model for GCH. Let G be a P-generic over V. In
VIG], let A =J,cq AP (by density, we will have that A = £ - see Proposition
0.9). For each a € A and n € w, let opn = U cq b, (if a & AP, 2b = 0).
Note that if (o, n) # (8, m), then x4, # T5m. This together with the density
argument above imply that X = x in VI[G].

Our main theorem will follow from this:



Theorem 0.3. In V[G], X is a Lindeldf, first countable, T\ space of cardi-
nality K.

We will prove the previous theorem by a sequence of propositions. The
first one follows directly from the definition of P:

Proposition 0.4. P is countably closed.
Proposition 0.5. X is T} and first countable.

Proof. Note that the base made by sets of the form Ug generates a 17 topol-
ogy. Therefore, we only have to check the first countability. Fix z,, € X.
We will show that {Us : S € [A,]<"0} contains a local base for z,.,. Let
H C k be a finite set such that z,, € Ug. Let {&,...,&} = H \ An. By the
defnition of the forcing, for each 7, there is an £(«, n, &;) such that Sasnf ) F &
- recall that this means that U, Sar ey © Ue,. Since each Se(an ¢y C Aan is

finite,

S=(HnNA) UUS;‘(;‘MI

is finite and z,, € Us C Uy as required. O
Proposition 0.6. X is Lindelof.

Proof. Let p € P and C be a name such that p IF C is a covering for X,
Kokok O

Lemma 0.7. For every condition p € P such that 8 € I?, for any n' € w,

Bn’ N Unew T(ﬂ? n) = T(ﬁa n,)‘

Proof. Since r(5,n') C B, one of the inclusions is clear. For the other
one, let j € B,y Nr(B,n) for some n. Let v € IP \ {f} and m € w be
witnesses that j € r(8,n). Thus, by definition, x;i(l) NA,.,FE af . Since
xg;,(l)ﬂ/l%m = x5, (1)NA,, and since j € By, j € r(8,n') as desired. [

The following lemma will help us finding compatible conditions:
Lemma 0.8. Let p= (I, A, F,U,{,r) € P. There is an T € 24 such that:
1. 2 € JC for every C € U;

2. forallm e w and all « € I, T71(1) N Ay 18 finite;
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3. Suppose that for some n # v € I and some i,k,{ € w, Sg’k Fal. If
i1 S =1, then @(a)) = 1.

Proof. Fix f € I . Define 7 [ (A\ Ag) = x50 [ (A\ Ap).
So it only remains to define 2 [ Ag. By assumption,

r(B,k) ={j € By : Iy € I’ \ {B} Im € w (x53,(1) N A,,n) E a}

is finite for every k € w. Let U? = {C : k € w}. Let Sy be such that
Us, € Cy and x5y € Uy,. By the definition of x50, Sy N Ag C Agpy. Let
to=4j € By : af € Sp} and t, = to Ur(B,0). Note that t; C By is finite.
Let ng = 0.

By Lemma 0.2, there is an ny > ng such that B, N (maxty+ 1) = t, and
By, N By, N (w\ (maxt) + 1)) = 0.

Let S; be such that Us, € C; and z3,, € Us,. Then, by the definition
of TB.mnys S1 N AB C Aﬁ,nr Let t; = {j S Bn1 : af € Sl} Let tll =
t1UUg<n, 7(B, k). Note that ) is finite and ¢} N By C ;N By - to see this, note
that ;N By C t; by the definition of ¢, and ByNU,,, 7(8,k) C 7(B,0) C t;
by the previous lemma. N

In general, suppose that for some k > 1, we have sequences (n, : v < k)
and (S, : v < k) such that ng < n; <--- < ny and, for each v < k:

° USU € Cv, TBn, € USU;

e t,={j€B,,: af €S, NAg} t =t,U Uygnv r(8,y).

Also, suppose that, for each v < k,
t,N B, Ct,NB, (1)

for all p < v and y < ny,.
By Lemma 0.2, there is an ngyy > ng such that B, . N
and B, ,, N (w\ (maxt’ +1)N By, = 0 for every y < ny.
Let Si11 be such that Us,,, € Ck+1 and g, ,, € Us,,,. Let tyg ={j €
By, : af € Sk} Let ), =t UU r(8,y). We only need to check
(1) for v = k + 1, which means

(maxt, +1) =t

y<ngt1

tenU |J r(8.2) | nB, Ct,NB,

z2<Np41



for each p < k and y < n,. By the previous lemma, note that B, N
Uzgnk+1 r(8,2) C r(B,y). Since r(B3,y) C t,, it only remains to check that
tey1 N B, C T, N By, For this, it is enough to prove

By, N B, Ct,NB,.

Nk+1

Note that By,,,, N B, C B,,., N (maxt, + 1) N B, = t; N B,. We have two
cases. If k = p, we are done. Otherwise, if u < k, then, by the induction
hypothesis, t; N B, C t, N B, and we are done as well.

Let T = Uye, 1), and T = {af 1 j € T}. Finally, define & [ Ag = x1;.
Let us now check that = satisfies all requirements.

1. 2 € |JC for every C € U. Indeed, let k € w such that C = C,. By
construction, Ug, € C;. So it is enough to show that z € Us,. Since
Tl (A\Ag) = Tgn, i (A\AB) and T8, € Usk, T (Sk\A5> =1. On
the other hand, S, N Ag = {af 1 j € tr}. Thus Sy N Ag C T which
means that z [ (Sy N Ag) = 1 as well.

2. let m € w and « € IP. We need to show that 7'(1) N A, is finite. If
« = (3, this is the same as showing that T'N B,, is finite. Let & > m.
Then, for every k' > k, t}, N B,, C t;, N B, which is finite.

Now, if o # 3, then note that | Ay, = 250 | Aam- S0, by hypothe-
sis, 271(1) N Ay is finite.

3. suppose that for some 1 # v € I and some i, k,{ € w, SZ’k Fal. If
T Sg’k = 1, we need to prove that Z(a]) = 1. First, suppose that
v = [ . Let j be such that ¢ € B;. Note that Sg’k C A,k Also,
z [ A, =uxp; [ A, Therefore z4; | Sg’k = 1 and then xg,j(af) = 1.
Therefore i € r(3,j) C t;. Thus Zg(a’) =1 as required.
If B # ~ and B # n, then it is enough to note that = | (A \ A
250 | (A\ Ag). Finally, suppose that n = 3. Since x5, | SP*
zgx(a;]) = 1. Therefore, Z(a;) = 1, since & [ A, = xgy | A,.

n <
=l

U

Proposition 0.9. For every a € k, the set {p € P: a € IP} is dense.

Proof. Let p € P and suppose that a ¢ IP. Define 17 = I? U {a}, U? = UP.
We need to define the elements of F'9. For each :Blg’n € FP, we extend it to
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A, doing 7%, | Ay = 0. Define zo,, [ Ay = X4, and 2o, [ [P = 75, where
Zg is given by the previous lemma applied to a fixed x5 € FP.
Now, let us take care of the £’s. Since x,; [ Ay = 0 for every v # «,
Ty k f S?(ﬁ,n,g) =1= ili'%k(f) =1

is satisfied trivially, by noting that S?(’;L’n’g) C A,. In particular, {(a,n,&) =0
works for every & = a}* with v # a. On the other hand, let v € I” and let
&= a? with 17 # . By the third condition of the previous lemma, the same
£(7y,n,§) that worked in p works in ¢. Finally, let v € I? and let § = af.
Note that, since z.,,(£) = 0, there is need to verify ¢(v,n, §).

Finally, let us check the condition about r’s. Fixed v € I” and n € w,
since ., [ Ay = 0, the same r(y,n) that worked in p works in ¢. By the
same reason, all elements of p cannot require anything about a$. Therefore,
r(a, n) is finite since (B, : n € w) is almost disjoint.

O



