
Theorem 0.1. Given κ > 2ℵ0, it is consistent with ZFC that there is a
Lindelöf first countable T1 space of cardinality κ.

Before we begin our construction, let us fix some sets. Fixed an infinite
cardinal κ, let ⟨Aα : α < κ⟩ be such that

� each Aα = {aαn : n ∈ ω} ⊂ κ;

� Aα ∩ Aβ = ∅ if α ̸= β;

� κ =
⋃

α<κAα.

The sequence ⟨Bn : n ∈ ω⟩ given by the next lemma will be used in our
construction:

Lemma 0.2. There is a sequence ⟨Bn : n ∈ ω⟩ of infinite subsets of ω such
that:

1. ⟨Bn : n ∈ ω⟩ is almost disjoint;

2. For every s ∈ 2<ω and every n ∈ ω, there is an m > n such that

χBm ∈ [s] ∧ ∀i ≤ n (Bm ∩Bi ∩ (ω \ |s|)) = ∅.

Note that, in particular, {χBn : n ∈ ω} is dense in the usual topology of 2ω.

Proof. Let ⟨si : i < ω⟩ be an enumeration of 2<ω such that each term is listed
infinitely many times. Suppose that ⟨Bj : j < i⟩ is almost disjoint and ω \⋃

j<iBj is infinite. Let Bi be an infinite set such that

� χBi
∈ [si];

� Bi ∩Bj ∩ (ω \ |si|) = ∅ for every j < i;

� ω \
⋃

j≤i Bj is infinite.

Since every si is repeated infitely many times, the sequence is as desired.

Before the definition of the forcing, a last piece of notation: for each α ∈ κ
and n ∈ ω, define Aα,n = {aαj : j ∈ Bn}. Therefore, Aα =

⋃
n∈ω Aα,n and,

given m,n ∈ ω, Aα,n ∩ Aα,m is finite if m ̸= n.
Each condition of our forcing P will be of the form p = ⟨I, A, F,U , ℓ, r⟩

(as usual, when needed, we will add a p as an upper index, e.g., Ip) such
that:
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� I ∈ [κ]ω;

� A =
⋃

α∈I Aα;

� F = {xα,n ∈ 2A : α ∈ I ∧ n ∈ ω} satisfying the following properties:

– xα,n ↾ Aα = χAα,n for every α ∈ I and n ∈ ω;

– xα,m ↾ (A \ Aα) = xα,n ↾ (A \ Aα) for every α ∈ I and m,n ∈ ω;

– if α, β ∈ I are distinct, then for every m,n ∈ ω, x−1
α,m(1) ∩ Aβ,n is

finite;

– We are considering on F the topology generated by sets of the
form {Uα : α ∈ A}, where Uα = {x ∈ F : x(ξ) = 1}. Note that
this topology is properly contained in the usual topology of 2I .
For s ∈ [I]<ω, define Us =

⋂
i∈s Ui. Note that the collection of all

Us is a base for the fixed topology.

� U is a countable family of countable open coverings of F made by basic
open sets of the topology defined above;

� Given S ⊂ A and ξ ∈ A, we say ξ requires S if, given x ∈ F , x ↾ S ≡
1 ⇒ x(ξ) = 1. In this case, we will use the notation S ⊨ ξ (in other
words, S ⊨ ξ means that F ∩ US ⊂ Uξ).

� Given α ∈ I and n ∈ ω, let

r(α, n) = {j ∈ Bn : ∃β ∈ I \ {α} ∃m ∈ ω (x−1
α,n(1) ∩ Aβ,m) ⊨ aαj }.

We impose that r(α, n) is finite;

� Given xα,n ∈ F and ξ = aβm ∈ A such that xα,n(ξ) = 1 and β ̸= α,
there must be an ℓ(α, n, ξ) ∈ ω such that Sα,n

ℓ(α,n,ξ) ⊨ ξ, where Sα,n
k =

{aαj : j ∈ Bn ∧ j ≤ k}.

Given p, q ∈ P, we define q ≤ p if, Iq ⊃ Ip, U q ⊃ Up, ℓq ⊃ ℓp, rq ⊃ rp and
xq
α,n ↾ Ap = xp

α,n for every xq
α,n ∈ F q such that α ∈ Ap.

Suppose that V is a model for GCH. Let G be a P-generic over V . In
V [G], let A =

⋃
p∈G Ap (by density, we will have that A = κ - see Proposition

0.9). For each α ∈ A and n ∈ ω, let xα,n =
⋃

p∈G xp
α,n (if α /∈ Ap, xp

α,n = ∅).
Note that if ⟨α, n⟩ ≠ ⟨β,m⟩, then xα,n ̸= xβ,m. This together with the density
argument above imply that X = κ in V [G].

Our main theorem will follow from this:
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Theorem 0.3. In V [G], X is a Lindelöf, first countable, T1 space of cardi-
nality κ.

We will prove the previous theorem by a sequence of propositions. The
first one follows directly from the definition of P:

Proposition 0.4. P is countably closed.

Proposition 0.5. X is T1 and first countable.

Proof. Note that the base made by sets of the form US generates a T1 topol-
ogy. Therefore, we only have to check the first countability. Fix xα,n ∈ X.
We will show that {US : S ∈ [Aα]

<ℵ0} contains a local base for xα,n. Let
H ⊂ κ be a finite set such that xα,n ∈ UH . Let {ξ1, ..., ξk} = H \Aα. By the
defnition of the forcing, for each i, there is an ℓ(α, n, ξi) such that Sα,n

ℓ(α,n,ξi)
⊨ ξi

- recall that this means that USα,n
ℓ(α,n,ξi)

⊂ Uξi . Since each Sα,n
ℓ(α,n,ξi)

⊂ Aα,n is

finite,

S = (H ∩ Aα) ∪
k⋃

i=1

Sα,n
ℓ(α,n,ξi)

is finite and xα,n ∈ US ⊂ UH as required.

Proposition 0.6. X is Lindelöf.

Proof. Let p ∈ P and Ċ be a name such that p ⊩ Ċ is a covering for Ẋ.
***

Lemma 0.7. For every condition p ∈ P such that β ∈ Ip, for any n′ ∈ ω,
Bn′ ∩

⋃
n∈ω r(β, n) = r(β, n′).

Proof. Since r(β, n′) ⊂ Bn′ one of the inclusions is clear. For the other
one, let j ∈ Bn′ ∩ r(β, n) for some n. Let γ ∈ Ip \ {β} and m ∈ ω be
witnesses that j ∈ r(β, n). Thus, by definition, x−1

β,n(1) ∩ Aγ,m ⊨ aβj . Since

x−1
β,n′(1)∩Aγ,m = x−1

β,n(1)∩Aγ,m and since j ∈ Bn′ , j ∈ r(β, n′) as desired.

The following lemma will help us finding compatible conditions:

Lemma 0.8. Let p = ⟨I, A, F,U , ℓ, r⟩ ∈ P. There is an x̃ ∈ 2A such that:

1. x̃ ∈
⋃

C for every C ∈ U ;

2. for all m ∈ ω and all α ∈ I, x̃−1(1) ∩ Aα,m is finite;
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3. suppose that for some η ̸= γ ∈ I and some i, k, ℓ ∈ ω, Sη,k
ℓ ⊨ aγi . If

x̃ ↾ Sη,k
ℓ ≡ 1, then x̃(aγi ) = 1.

Proof. Fix β ∈ I . Define x̃ ↾ (A \ Aβ) = xβ,0 ↾ (A \ Aβ).
So it only remains to define x̃ ↾ Aβ. By assumption,

r(β, k) = {j ∈ Bk : ∃γ ∈ Ip \ {β} ∃m ∈ ω (x−1
β,k(1) ∩ Aγ,m) ⊨ aβj }

is finite for every k ∈ ω. Let Up = {Ck : k ∈ ω}. Let S0 be such that
US0 ∈ C0 and xβ,0 ∈ Us0 . By the definition of xβ,0, S0 ∩ Aβ ⊂ Aβ,0. Let

t0 = {j ∈ B0 : aβj ∈ S0} and t′0 = t0 ∪ r(β, 0). Note that t′0 ⊂ B0 is finite.
Let n0 = 0.

By Lemma 0.2, there is an n1 > n0 such that Bn1 ∩ (max t′0 +1) = t′0 and
Bn1 ∩Bn0 ∩ (ω \ (max t′0 + 1)) = ∅.

Let S1 be such that US1 ∈ C1 and xβ,n1 ∈ US1 . Then, by the definition

of xβ,n1 , S1 ∩ Aβ ⊂ Aβ,n1 . Let t1 = {j ∈ Bn1 : aβj ∈ S1}. Let t′1 =
t1∪

⋃
k≤n1

r(β, k). Note that t′1 is finite and t′1∩B0 ⊂ t′0∩B0 - to see this, note
that t1∩B0 ⊂ t′0 by the definition of t1 and B0∩

⋃
k≤n1

r(β, k) ⊂ r(β, 0) ⊂ t′0
by the previous lemma.

In general, suppose that for some k ≥ 1, we have sequences ⟨nv : v ≤ k⟩
and ⟨Sv : v ≤ k⟩ such that n0 < n1 < · · · < nk and, for each v ≤ k:

� USv ∈ Cv, xβ,nv ∈ USv ;

� tv = {j ∈ Bnv : aβj ∈ Sv ∩ Aβ}, t′v = tv ∪
⋃

y≤nv
r(β, y).

Also, suppose that, for each v ≤ k,

t′v ∩By ⊂ t′µ ∩By (1)

for all µ < v and y ≤ nµ.
By Lemma 0.2, there is an nk+1 > nk such that Bnk+1

∩ (max t′k +1) = t′k
and Bnk+1

∩ (ω \ (max t′k + 1) ∩By = ∅ for every y ≤ nk.
Let Sk+1 be such that USk+1

∈ Ck+1 and xβ,nk+1
∈ USk+1

. Let tk+1 = {j ∈
Bnk+1

: aβj ∈ Sk+1}. Let t′k+1 = tk+1 ∪
⋃

y≤nk+1
r(β, y). We only need to check

(1) for v = k + 1, which meanstk+1 ∪
⋃

z≤nk+1

r(β, z)

 ∩By ⊂ t′µ ∩By
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for each µ ≤ k and y ≤ nµ. By the previous lemma, note that By ∩⋃
z≤nk+1

r(β, z) ⊂ r(β, y). Since r(β, y) ⊂ t′µ, it only remains to check that

tk+1 ∩By ⊂ t′µ ∩By. For this, it is enough to prove

Bnk+1
∩By ⊂ t′µ ∩By.

Note that Bnk+1
∩ By ⊂ Bnk+1

∩ (max t′k + 1) ∩ By = t′k ∩ By. We have two
cases. If k = µ, we are done. Otherwise, if µ < k, then, by the induction
hypothesis, t′k ∩By ⊂ t′µ ∩By and we are done as well.

Let T =
⋃

k∈ω t
′
k and Tβ = {aβj : j ∈ T}. Finally, define x̃ ↾ Aβ = χTβ

.
Let us now check that x̃ satisfies all requirements.

1. x̃ ∈
⋃

C for every C ∈ U . Indeed, let k ∈ ω such that C = Ck. By
construction, USk

∈ Ck. So it is enough to show that x̃ ∈ USk
. Since

x̃ ↾ (A \Aβ) = xβ,nk
↾ (A \Aβ) and xβ,nk

∈ USk
, x̃ ↾ (Sk \Aβ) ≡ 1. On

the other hand, Sk ∩ Aβ = {aβj : j ∈ tk}. Thus Sk ∩ Aβ ⊂ Tβ which
means that x̃ ↾ (Sk ∩ Aβ) ≡ 1 as well.

2. let m ∈ ω and α ∈ Ip. We need to show that x̃−1(1)∩Aα,m is finite. If
α = β, this is the same as showing that T ∩ Bm is finite. Let k ≥ m.
Then, for every k′ > k, t′k′ ∩Bm ⊂ t′k ∩Bm, which is finite.

Now, if α ̸= β, then note that x̃ ↾ Aα,m = xβ,0 ↾ Aα,m. So, by hypothe-
sis, x̃−1(1) ∩ Aα,m is finite.

3. suppose that for some η ̸= γ ∈ I and some i, k, ℓ ∈ ω, Sη,k
ℓ ⊨ aγi . If

x̃ ↾ Sη,k
ℓ ≡ 1, we need to prove that x̃(aγi ) = 1. First, suppose that

γ = β . Let j be such that i ∈ Bj. Note that Sη,k
ℓ ⊂ Aη,k. Also,

x̃ ↾ Aη = xβ,j ↾ Aη. Therefore xβ,j ↾ Sη,k
ℓ ≡ 1 and then xβ,j(a

β
i ) = 1.

Therefore i ∈ r(β, j) ⊂ t′j. Thus x̃β(a
β
i ) = 1 as required.

If β ̸= γ and β ̸= η, then it is enough to note that x̃ ↾ (A \ Aβ) =

xβ,0 ↾ (A \ Aβ). Finally, suppose that η = β. Since xβ,k ↾ Sβ,k
ℓ ≡ 1,

xβ,k(a
γ
i ) = 1. Therefore, x̃(aγi ) = 1, since x̃ ↾ Aγ = xβ,k ↾ Aγ.

Proposition 0.9. For every α ∈ κ, the set {p ∈ P : α ∈ Ip} is dense.

Proof. Let p ∈ P and suppose that α /∈ Ip. Define Iq = Ip ∪ {α}, U q = Up.
We need to define the elements of F q. For each xp

β,n ∈ F p, we extend it to
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Aα doing xq
β,n ↾ Aα ≡ 0. Define xα,n ↾ Aα = χAα,n and xα,n ↾ Ip = x̃β, where

x̃β is given by the previous lemma applied to a fixed xβ,0 ∈ F p.
Now, let us take care of the ℓ’s. Since xγ,k ↾ Aα ≡ 0 for every γ ̸= α,

xγ,k ↾ S
α,n
ℓ(α,n,ξ) ≡ 1 ⇒ xγ,k(ξ) = 1

is satisfied trivially, by noting that Sα,n
ℓ(α,n,ξ) ⊂ Aα. In particular, ℓ(α, n, ξ) = 0

works for every ξ = aγj with γ ̸= α. On the other hand, let γ ∈ Ip and let
ξ = aηj with η ̸= γ. By the third condition of the previous lemma, the same
ℓ(γ, n, ξ) that worked in p works in q. Finally, let γ ∈ Ip and let ξ = aαj .
Note that, since xγ,n(ξ) = 0, there is need to verify ℓ(γ, n, ξ).

Finally, let us check the condition about r’s. Fixed γ ∈ Ip and n ∈ ω,
since xγ,n ↾ Aα ≡ 0, the same r(γ, n) that worked in p works in q. By the
same reason, all elements of p cannot require anything about aαj . Therefore,
r(α, n) is finite since ⟨Bn : n ∈ ω⟩ is almost disjoint.
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