Notas de Aula

Leandro F. Aurichi $^{\rm 1}$

25 de abril de 2017

 $^{^1 \}mathrm{Instituto}$ de Ciências Matemáticas e de Computação - USP

Sumário

1	Espaços topológicos 5						
	1.1	Definições básicas	5				
		Alguns exemplos de espaços topológicos	9				
			11				
		Fecho, interior e fronteiras	11				
			13				
		Alongamentos	16				
		Exercícios	18				
	1.2	Axiomas de Separação	20				
			25				
		Exercícios	26				
	1.3	Axiomas de Enumerabilidade	27				
			31				
		Exercícios	32				
2	Funções 35						
	2.1						
		Funções contínuas	35				
		3	35 39				
		Alongamentos					
		Alongamentos	39				
		Alongamentos	39 40				
	2.2	Alongamentos	39 40 41				
	2.2	Alongamentos	39 40 41 41				
	2.2	Alongamentos	39 40 41 41				
	2.2	Alongamentos 3 Exercícios 4 Alongamentos 4 Exercícios 4 Extensão de funções 4 Alongamentos 4 Exercícios 4 Exercícios 4	39 40 41 41 41 45				
		Alongamentos 3 Exercícios 4 Alongamentos 4 Exercícios 4 Extensão de funções 4 Alongamentos 4 Exercícios 4 Algumas aplicações 4	39 40 41 41 41 45 45				
		Alongamentos 3 Exercícios 4 Alongamentos 4 Exercícios 4 Extensão de funções 4 Alongamentos 4 Exercícios 4 Algumas aplicações 4 Exercícios 4 Exercícios 4 Exercícios 4	39 40 41 41 41 45 45				
	2.3	Alongamentos 3 Exercícios 4 Alongamentos 4 Exercícios 4 Extensão de funções 4 Alongamentos 4 Exercícios 4 Algumas aplicações 4 Exercícios 4 Homeomorfismos 4	39 40 41 41 41 45 45 45				

4	$SUM\'ARIO$
4	SUMARIO

3	Produto				
	3.1	Definição e conceitos básicos	53		
		Alongamentos	56		
		Exercícios	57		
		Exercícios extras	57		
	3.2	Algumas propriedades sobre produtos	58		
		Alongamentos	62		
		Exercícios	62		
	3.3	Exercícios extras	63		
Ín	dices	5	74		
	Nota	ação	74		
	Índi	ce Remissivo	75		

Capítulo 1

Espaços topológicos

1.1 Definições básicas

Um espaço topológico é um espaço dotado de uma noção de proximidade. Uma maneira de dar uma noção de proximidade é de modo quantitativo, como no caso de espaços métricos:

Definição 1.1.1. Seja X um conjunto. Dizemos que (X, d) é um **espaço métrico**, se $d: X \times X \to \mathbb{R}$ é uma função que satisfaz:

- (a) $\forall x, y \in X, d(x, y) \ge 0 \text{ e } d(x, y) = 0 \Leftrightarrow x = y;$
- (b) $\forall x, y \in X, d(x, y) = d(y, x);$
- (c) $\forall x, y, z \in X$, $d(x, y) \le d(x, z) + d(z, y)$.

Desta maneira, temos uma maneira de medir o quanto um ponto está próximo do outro - simplesmente vemos o valor de d neste dois pontos. Um ponto está mais próximo de outro o quanto menor for o valor de d calculado nestes dois pontos.

Exemplo 1.1.2. Uma métrica sobre o conjunto dos reais \mathbb{R} é a função d(x,y) = |x-y|. Esta é a métrica usual sobre \mathbb{R} .

Para muitos casos, essa noção de proximidade é suficiente. Mas ela não Para espaços de funções cobre uma gama grande (e importante) de noções em matemática.

O seguinte exemplo é um caso simples onde o conceito não é aplicável: finir métricas. considere um rio com uma correntenza razoavelmente forte. Para simplificar, pensemos que esta correnteza anda para a direita e seja tão forte que não seja possível andar rio acima (ou seja, andar para esquerda). Podemos

em geral não é possível de-

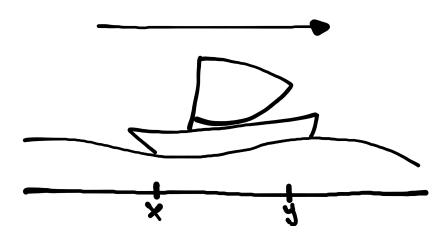


Figura 1.1: Uma correnteza forte

representar este rio usando a reta real, mas precisamos de uma noção de proximidade diferente da usual: ao tomarmos dois pontos x, y com x < yqueremos que y esteja perto de x mas não que x esteja perto de y (pois a correntenza não permite sair de y e chegar em x). Note que isso não é possível ao usar uma métrica, uma vez que teríamos d(x,y) = d(y,x).

Uma maneira de contornar isso é simplesmente abandonar o conceito quantitativo de proximidade dado pela métrica e usarmos um conceito qualitativo. Para isso, vamos precisar de um conceito diferente:

Definição 1.1.3. Seja X um conjunto. Dizemos que uma família não vazia \mathcal{F} de subconjuntos de X é um filtro sobre X se:

- (a) $\emptyset \notin \mathcal{F}$;
- (b) se $A, B \in \mathcal{F}$, então $A \cap B \in \mathcal{F}$;
- (c) se $A \in \mathcal{F}$ e $A \subset B$, então $B \in \mathcal{F}$.

Agora, em vez de usarmos uma função distância, "atribuimos" a cada ponto um filtro:

Vamos adotar o * aqui **Definição 1.1.4.** Seja X um conjunto e $x \in X$. Dizemos que uma coleção para não confundir com o \mathcal{V} de subconjuntos de X é um sistema de vizinhanças* para x se \mathcal{V} é um conceito de vizinhança que filtro sobre X e cada elemento $V \in \mathcal{V}$ é tal que $x \in V$. Chamamos cada será apresentado na De- $V \in \mathcal{V}$ de vizinhança* de x.

Veja também o Exercício 1.1.69.

finição 1.1.13. Faremos o análogo em mais algumas definições abaixo.

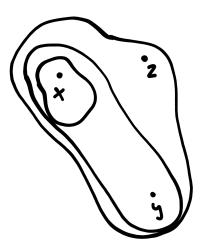


Figura 1.2: O ponto y é o mais próximo de x

A intuição por trás desta definição é que cada elemento de $\mathcal V$ representa uma coleção de pontos "próximos" de x. Você pode pensar que um ponto y fixado está mais próximo de x quanto maior for o conjunto

$$\{V \in \mathcal{V} : y \in V\}$$

Desta maneira, na situação representada pela figura, o ponto mais próximo de x é y (e não z).

O próximo exemplo dá uma maneira de traduzirmos para a ideia de Sim, parece estranho agora vizinhanças o conceito de proximidade dado pela métrica usual em \mathbb{R} . que isso seja realmente

Exemplo 1.1.5. Fixado $x \in \mathbb{R}$, temos que $\mathcal{V} = \{V : \text{existem } a < x < b \text{ tais que }]a, b[\subset V\}$ é um sistema de vizinhanças* para x.

Ao mudarmos o último exemplo ligeiramente, obtemos a ideia do exemplo do rio:

Exemplo 1.1.6. Fixado $x \in \mathbb{R}$, temos que $\mathcal{V} = \{V : \text{existe } a > x \text{ tal que } [x, a] \subset V\}$ é um sistema de vizinhanças* de x. Ao conjunto dos reais munido com tal conceito de vizinhanças* damos o nome de **reta de Sorgenfrey**.

Para tentarmos ver que algo da nossa intuição está sendo capturado neste exemplo, vamos analisar um caso específico. Considere as vizinhanças* de 0 como definidas acima. Note que números positivos estão muito mais

Sim, parece estranho agora que isso seja realmente uma tradução. Mas veremos isso mais formalmente no Alongamento 1.1.55.

próximos de 0 do que os números negativos. Note também que isso não ocorre no caso mais simétrico do exemplo anterior.

Com todo esse material, podemos finalmente definir um espaço topológico. Intuitivamente, um espaço topológico nada mais é que um conjunto tal que todos os pontos possuem uma medida qualitativa de proximidade, mais uma condição mais técnica, que garante uma certa compatibilidade entre as noções de proximidade de diferentes pontos. Esta condição será dada em termos de certas vizinhanças* especiais:

Veja o Alongamento 1.1.54 para ver tal condição é necessária.

> **Definição 1.1.7.** Seja X um conjunto e seja $(\mathcal{V}_x)_{x\in X}$ de forma que cada \mathcal{V}_x é um filtro para x. Dizemos que $A \subset X$ é um **aberto*** (com relação a $(\mathcal{V}_x)_{x\in X}$) se, para todo $a\in A,\ A\in\mathcal{V}_a$. Ou seja, A é uma vizinhança* de todos os seus pontos.

finição 1.1.12.

Veja a definição "defini- **Definição 1.1.8.** Dizemos que $(X, (\mathcal{V})_{x \in X})$ é um **espaço topológico*** se, tiva" e mais usual na De- para cada $x \in X$, \mathcal{V}_x é um sistema de vizinhanças* para x. Além disso, para qualquer $x \in X$ e qualquer $V \in \mathcal{V}_x$, existe $A \in \mathcal{V}_x$ aberto* tal que $x \in A \subset V$.

> Esta não é a definição que iremos trabalhar. Optamos por apresentar esta versão por entendermos que a intuição por trás dela é mais aparente do que na definição "definitiva".

Vejamos alguns exemplos de espacos topológicos*.

Exemplo 1.1.9. Consider \mathbb{R} como no Exemplo 1.1.5 e sejam $a, b \in \mathbb{R}$ com a < b. Note que um intervalo a, b é aberto*. De fato, dado qualquer $x \in]a, b[$, o próprio conjunto]a, b[atesta que]a, b[é uma vizinhança* de x. Por outro lado, o conjunto [a, b] não é aberto* pois [a, b] não é vizinhança* de a. De qualquer forma, isso é um exemplo de um espaço topológico*, pois, para cada $x \in X$, dado $V \in \mathcal{V}_x$, pela própria definição de \mathcal{V}_x , existem $a, b \in \mathbb{R}$ tais que $x \in]a, b[\subset V$ e, como vimos acima,]a, b[é aberto*.

Exemplo 1.1.10. Se considerarmos a reta de Sorgenfrey (como no Exemplo 1.1.6) e tomamos $a, b \in \mathbb{R}$ com a < b, temos que $a, b \in \mathbb{R}$ com a < b, temos que $a, b \in \mathbb{R}$ cada $x \in]a, b[$, temos que [x, b[atesta que]a, b[é uma vizinhança* de x. De maneira análoga, podemos mostrar que [a, b] também é aberto*.

Os abertos* tem algumas propriedades a se destacar:

Proposição 1.1.11. Seja X um espaço topológico*. Temos:

(a) ∅ e X são abertos*;

para espaços topológicos. $\wp(X)$ é a coleção de todos

os subconjuntos de X.

- (b) se A e B são abertos*, então $A \cap B$ também é;
- (c) se A é uma família de abertos*, então $\bigcup_{A \in A} A$ é um aberto*.

Demonstração. Veja o Alongamento 1.1.51.

Essas propriedades da última proposição na verdade motivam a definição usual de espaço topológico:

Definição 1.1.12. Dizemos que (X, τ) é um **espaço topológico** se X é Esta é a definição oficial um conjunto e $\tau \subset \wp(X)$ é uma família que satisfaz: para espaços topológicos.

- (a) $X, \emptyset \in \tau$;
- (b) se $A, B \in \tau$, então $A \cap B \in \tau$;
- (c) se $A \subset \tau$, então $\bigcup_{A \in A} A \in \tau$.

Cada elemento de τ é chamado de **aberto** e a própria família τ é chamada de **topologia**.

Temos que a definição de espaço topológico e a definição de espaço topológico* aqui apresentadas são equivalentes. Começando com um espaço topológico*, note que o conjunto dos abertos* forma uma topologia (basicamente, isso é a Proposição 1.1.11). Mas como recuperar o conceito de vizinhança*? Para isso, basta fazer a seguinte definição:

Definição 1.1.13. Seja (X, τ) um espaço topológico. Dado $x \in X$, dizemos que $V \subset X$ é uma **vizinhança** de X se existe A aberto tal que $x \in A \subset V$.

A coleção das vizinhanças de um ponto, de fato, forma um filtro (ver o Alongamento 1.1.52). Desta maneira, se começamos com um espaço topológico*, temos como definir um espaço topológico e vice e versa. Além disso, essas construções comutam (veja os Alongamentos 1.1.52 e 1.1.53).

Alguns exemplos de espaços topológicos

Vejamos alguns exemplos de espaços topológicos. Outros exemplos serão dados no decorrer do texto.

Exemplo 1.1.14. Seja X um conjunto qualquer. Então $\tau = \{\emptyset, X\}$ é uma topologia sobre X (chamada **topologia caótica**).

Exemplo 1.1.15. Seja X um conjunto qualquer. Então $\tau = \wp(X)$ é uma topologia sobre X (chamada **topologia discreta**).

A topologia discreta tem uma caracterização útil:

Proposição 1.1.16. Seja X um conjunto qualquer $e \sigma$ uma topologia sobre X. Então, σ é a topologia discreta se, e somente se, para todo $x \in X$, $\{x\} \in \sigma$.

Demonstração. Se σ é a topologia discreta, segue da definição que para todo $x \in X, \{x\} \in \sigma.$

Reciprocamente, dado um conjunto qualquer $A \subset X$, ele pode ser escrito da forma $A = \bigcup_{x \in A} \{x\}$. Logo, pela definição de topologia, $A \in \sigma$ e, portanto, σ é a topologia discreta.

maneiras definir a topologia nos reais chegam ao mesmo lugar.

Veja o Alongamento 1.1.55 **Exemplo 1.1.17.** O conjunto \mathbb{R} é um espaço topológico, com a topologia para notar que diversas $\tau = \{A \subset \mathbb{R} : \forall x \in A, \exists \varepsilon > 0, | x - \varepsilon, x + \varepsilon | \subset A \}$. Esta é chamada de topologia usual em \mathbb{R} .

> **Exemplo 1.1.18.** Seja X um conjunto qualquer. Considere $\tau = \{A \subset X : A \subset X$ $X \setminus A$ é finito $\} \cup \{\emptyset\}$. Temos que τ é uma topologia sobre X (chamada topologia cofinita - veja também o Exercício 1.1.67).

> De fato, note que $X, \emptyset \in \tau$. Seja \mathcal{A} uma família de elementos de τ . Temos que

$$X \setminus \bigcup_{A \in \mathcal{A}} A = \bigcap_{A \in \mathcal{A}} (X \setminus A)$$

Note que o lado direito da equação é finito pois é interseção de conjuntos finitos. Logo, $\bigcup_{A \in \mathcal{A}} A \in \tau$. Agora, sejam $A_1, A_2 \in \tau$. Note que

$$X \setminus (A_1 \cap A_2) = (X \setminus A_1) \cup (X \setminus A_2)$$

Novamente o lado direito é finito, pois é união finita de conjuntos finitos. Portanto, $A_1 \cap A_2 \in \tau$ e τ é uma topologia sobre X.

Também podemos definir um espaço "menor" que um já fixado:

Veja Alongamento 1.1.57.

Definição 1.1.19. Seja (X,τ) um espaço topológico e seja $Y\subset X$. A topologia de subespaço sobre Y induzida por (X, τ) é dada por $\tau_Y =$ ${A \cap Y : A \in \tau}.$

A menos de menção contrária, sempre que tomarmos $Y \subset X$, onde (X, τ) é um espaço topológico, Y será considerado com a topologia de subespaço. Finalmente, associada a uma métrica, sempre existe uma topologia.

com folga" - ou seja, não só os pontos estão dentro, como uma pequena bola em volta deles também está.

Intuitivamente, um aberto **Proposição 1.1.20.** Seja (X,d) um espaço métrico. Então, $\tau = \{A \subset X : A \subset X : A$ aqui é um conjunto que to- $\forall x \in A, \exists r > 0, B_r(x) \subset A$, onde $B_r(x) = \{y \in X : d(x,y) < r\}$, é uma dos os seus pontos "cabem topologia sobre X, chamada topologia induzida pela métrica d.

Demonstração. Note que $X \in \tau$ trivialmente e que $\emptyset \in \tau$ por vacuidade. Agora, sejam $A_1, A_2 \in \tau$. Se $A_1 \cap A_2 = \emptyset$, nada há a provar. Caso contrário, seja $x \in A_1 \cap A_2$. Sejam $\varepsilon_1, \varepsilon_2 > 0$ tais que $B_{\varepsilon_1}(x) \subset A_1$ e $B_{\varepsilon_2}(x) \subset A_2$. Seja $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$. Note que $B_{\varepsilon}(x) \subset A_1 \cap A_2$. Finalmente, seja $A \subset \tau$. Novamente, podemos supor que $\bigcup_{A \in \mathcal{A}} A \neq \emptyset$ pois caso contrário nada há a provar. Seja $x \in \bigcup_{A \in \mathcal{A}} A$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$. Seja $A \in \mathcal{A}$ tal que $A \in \mathcal{A}$ ta

Fechados

Um importante conceito é o de conjunto fechado:

Definição 1.1.21. Seja (X, τ) um espaço topológico. Dizemos que $F \subset X$ clara com o conceito de é um **conjunto fechado** se $X \setminus F$ é aberto.

Exemplo 1.1.22. Em qualquer espaço topológico (X, τ) , X e \emptyset são fechados, pois seus complementares são abertos (em particular, X e \emptyset são abertos e fechados).

Exemplo 1.1.23. Em \mathbb{R} , [0,1] é fechado já que $\mathbb{R} \setminus [0,1] =]-\infty$, $0[\cup]1, +\infty[$.

Exemplo 1.1.24. Na topologia discreta, qualquer conjunto é fechado. Para isso, basta notar que o complementar de qualquer conjunto é ainda um membro de $\wp(X)$ e, portanto, é aberto.

Exemplo 1.1.25. Na reta de Sorgenfrey, [a,b[é fechado, onde a < b. Vamos mostrar que $\mathbb{R} \setminus [a,b[$ é aberto. Se $x \in \mathbb{R} \setminus [a,b[$, então há dois casos a considerar:

- $x \geq b$: basta tomar o aberto [x, x+1[, cuja interseção com [a, b[é vazia:
- x < a: podemos considerar o aberto [x, a[, que também está contido no complementar de [a, b[.

Portanto, o complementar de [a, b[é aberto, como queríamos.

Fecho, interior e fronteiras

Algo muito comum de se fazer é tomar o menor fechado contendo um determinado conjunto:

A intuição sobre o que é um fechado ficará mais clara com o conceito de ponto aderente, que veremos a seguir. **Definição 1.1.26.** Sejam (X, τ) um espaço topológico e $A \subset X$. Definimos $\overline{A} = \bigcap_{F \in \mathcal{F}} F$ onde $\mathcal{F} = \{F \subset X : F \text{ \'e fechado e } A \subset F\}$ (**fecho** de A, também denotado por Cl(A)).

Definimos $\overset{\circ}{A} = \bigcup \{V \subset X : V \text{ \'e aberto e } V \subset A\}$ (interior de A, também denotado por Int(A)).

Proposição 1.1.27. Sejam (X,τ) um espaço topológico e $A \subset X$. Então \overline{A} é fechado e $\overset{\circ}{A}$ é aberto.

Demonstração. Decorre diretamente da definição e das propriedades de conjuntos abertos e fechados.

Pensando que os abertos que contém um ponto são as possíveis noções de "perto do ponto", podemos definir a noção de um ponto estar perto de um conjunto se toda vez que olhamos para "perto do ponto", interceptamos o conjunto:

remos para ponto de acu- valer $V \cap A \neq \emptyset$. mulação.

Note que esta definição di- **Definição 1.1.28.** Sejam (X,τ) um espaço topológico e $A\subset X$. Dizemos fere da definição que da- que $x \in X$ é **ponto aderente** a A se para todo aberto V tal que $x \in V$

> Vamos mostrar que o fecho de um conjunto basicamente é a coleção de todos os pontos próximos do conjunto:

> **Proposição 1.1.29.** Sejam (X,τ) um espaço topológico e $A \subset X$. Então $\overline{A} = \{x \in X : x \text{ \'e ponto aderente de } A\}.$

> Demonstração. Chame de D o conjunto dos pontos aderentes a A. Vamos provar que $\overline{A} \subset D$. Seja $x \in \overline{A}$. Seja V aberto tal que $x \in V$ e suponha $V \cap A = \emptyset$. Logo, $A \subset X \setminus V$ que é fechado. Assim, pela definição de \overline{A} , segue que $\overline{A} \subset X \setminus V$, contradição com o fato que $x \in \overline{A}$ e $x \in V$.

> Provemos que $D \subset \overline{A}$. Seja $x \in D$ e suponha $x \notin \overline{A}$. Logo, $x \in X \setminus \overline{A}$ que é aberto. Como $x \in D$, temos que $(X \setminus \overline{A}) \cap A \neq \emptyset$. Contradição, pois $A \subset \overline{A}$.

para o interior de um conjunto A. Em particular, A é aberto se, e somente se, $\check{A} = A$ (ver Alongamento 1.1.61).

Vale um resultado análogo **Proposição 1.1.30.** Sejam (X, τ) espaço topológico e $A, B \subset X$. Temos

- (a) Se $A \subset B$, então $\overline{A} \subset \overline{B}$;
- $(b) \ \overline{\overline{A}} = \overline{A};$
- (c) $\overline{A} = A$ se, e somente se, A é fechado.

Demonstração. Dado $x \in \overline{A}$, segue que $U \cap A \neq \emptyset$ para todo aberto U que contém x. Como $A \subset B$, segue em particular que $U \cap B \neq \emptyset$. Isto prova (a).

Provemos (c). Naturalmente se $\overline{A} = A$, obtemos que A é fechado, pois seu fecho é fechado. Reciprocamente, se A é fechado, segue que $A = \bigcap \{F \subset X : F \text{ é fechado e } A \subset F\} = \overline{A}$. O item (b) segue então diretamente de (c), por \overline{A} ser fechado.

Exemplo 1.1.31. Considere um conjunto X com a topologia discreta. Como todo subconjunto A de X é fechado, segue que $\overline{A} = A$ (e também que $\stackrel{\circ}{A} = A$).

Exemplo 1.1.32. Em \mathbb{R} , $\overline{[a,b[}=[a,b]$. De fato, b é o único ponto fora de [a,b[que é aderente a [a,b[.

Exemplo 1.1.33. Na reta de Sorgenfrey, $\overline{[a,b[}=[a,b[$. Para isso, basta lembrar que [a,b[é fechado.

Exemplo 1.1.34. Em \mathbb{R} , $\overline{\mathbb{Q}} = \mathbb{R}$ e $\overset{\circ}{\mathbb{Q}} = \emptyset$. Ambas as igualdades se devem ao fato de que dado qualquer ponto $q \in \mathbb{Q}$ e $\varepsilon > 0$, $]x - \varepsilon, x + \varepsilon[$ contém pontos de \mathbb{Q} e de $\mathbb{R} \setminus \mathbb{Q}$. O mesmo vale na reta de Sorgenfrey.

Algumas vezes, um ponto pode estar próximo tanto de um conjunto, como de seu complementar:

Definição 1.1.35. Sejam (X, τ) um espaço topológico e $A \subset X$. Dizemos que $x \in X$ é um **ponto de fronteira** de A se para todo $V \subset X$ aberto tal que $x \in V$, temos $V \cap A \neq \emptyset$ e $V \cap (X \setminus A) \neq \emptyset$.

Notação 1.1.36. $\partial A = \{x \in X : x \text{ \'e ponto de fronteira de } A\}.$

Exemplo 1.1.37. Em \mathbb{R} , $\partial[a,b[=\{a,b\}]$. Enquanto que na reta de Sorgenfrey temos que $\partial[a,b[=\emptyset]$.

Observação 1.1.38. A igualdade acima vale de modo geral. Se A é um subconjunto aberto e fechado de um espaço topológico (X, τ) , então $\partial A = \emptyset$.

Exemplo 1.1.39. Em \mathbb{R} (ou na reta de Sorgenfrey), $\partial \mathbb{Q} = \mathbb{R}$.

Bases

Uma base nada mais é que uma subfamília de abertos que é suficiente para recuperarmos todos os abertos por meio de uniões:

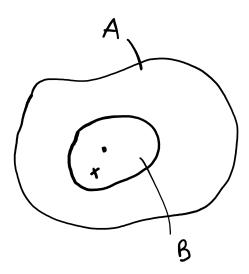


Figura 1.3: O desenho básico de uma base

Definição 1.1.40. Seja (X, τ) um espaço topológico. Dizemos que $\mathcal{B} \subset \tau$ é uma **base** para (X, τ) se para todo aberto não vazio $A \in \tau$, existe uma família $\mathcal{A} \subset \mathcal{B}$ de elementos da base tal que $A = \bigcup_{B \in \mathcal{A}} B$.

Uma importante caracterização para bases é o seguinte resultado:

Proposição 1.1.41. Uma família \mathcal{B} de subconjuntos de τ é uma base para (X,τ) se, e somente se, para todo aberto não vazio $A \in \tau$ e todo $x \in A$, existe $B \in \mathcal{B}$ de forma que $x \in B \subset A$.

Demonstração. Suponha que $\mathcal B$ seja uma família como no enunciado e seja $A \in \tau$. Para cada elemento $x \in A$, existe um conjunto $B_x \in \mathcal B$ tal que $x \in B_x \subset A$. Segue, então, que $A = \bigcup_{x \in A} B_x$. Reciprocamente, sejam $x \in X$ e $A \in \tau$. Como podemos escrever $A = \bigcup_{x \in A} B_x$.

Reciprocamente, sejam $x \in X$ e $A \in \tau$. Como podemos escrever $A = \bigcup \mathcal{B}'$ com $\mathcal{B}' \subset \mathcal{B}$, tomamos $B \in \mathcal{B}'$ tal que $x \in B$. Além disso, temos que $B \subset A$.

Exemplo 1.1.42. $\mathcal{B} = \{]a, b[: a, b \in \mathbb{Q} \}$ é uma base para a topologia usual de \mathbb{R} .

De fato, seja $x \in \mathbb{R}$ e $A \in \tau$. Pela definição de τ , existe $\varepsilon > 0$ tal que tal que $]x - \varepsilon, x + \varepsilon[\subset A]$. Note que existem $a, b \in \mathbb{Q}$ tais que

$$x - \varepsilon < a < x < b < x + \varepsilon$$

Logo, $B =]a, b \in \mathcal{B} \in \mathcal{A}$.

Veja a Figura 1.3.

Exemplo 1.1.43. Seja (X,d) um espaço métrico qualquer. Então, $\mathcal{B} =$ $\{B_{\underline{1}}(x): x \in X, n \in \mathbb{N}_{>0}\}$ é uma base para (X,d) (ver Alongamento 1.1.64).

Exemplo 1.1.44. Seja X um conjunto qualquer. $\mathcal{B} = \{\{x\} : x \in X\}$ é uma base para a topologia discreta sobre X (ver Alongamento 1.1.64).

Exemplo 1.1.45. A família $\mathcal{B} = \{[x, y]: x < y\}$ é uma base para a reta de Sorgenfrey (ver Alongamento 1.1.64).

Em algum sentido, uma base é um conjunto suficiente para determinar todos os abertos. Podemos fazer o análogo para vizinhanças:

Definição 1.1.46. Sejam (X,τ) um espaço topológico e $x \in X$. Dizemos Veja o Exercício 1.1.78 que V é um sistema fundamental de vizinhanças de x se

- (a) Para todo $V \in \mathcal{V}$, V é vizinhança de x;
- (b) Para todo aberto $A \subset X$ tal que $x \in A$, existe $V \in \mathcal{V}$ tal que $x \in V \subset A$.

No caso em que os elementos de \mathcal{V} são abertos, chamamos \mathcal{V} de base local para x.

Exemplo 1.1.47. Em \mathbb{R} , $V_1 = \{|x - \frac{1}{n}, x + \frac{1}{n}[: n \in \mathbb{N}_{>0}\} \text{ \'e um sistema}\}$ fundamental de vizinhanças de \boldsymbol{x} (mais que isso, como todos os membros de \mathcal{V}_1 são abertos, \mathcal{V}_1 é uma base local de x).

 $\mathcal{V}_2 = \{[x - \frac{1}{n}, x + \frac{1}{n}] : n \in \mathbb{N}_{>0}\}$ é um sistema fundamental de vizinhanças

Exemplo 1.1.48. Na reta de Sorgenfrey, $\mathcal{V} = \{[x, x + \frac{1}{n}[: n \in \mathbb{N}_{>0}]\}$ é um sistema fundamental de vizinhanças de x.

Exemplo 1.1.49. Considere X com a topologia discreta. $V_1 = \{\{x\}\}\}$ é um sistema fundamental de vizinhanças de x, bem como $\mathcal{V}_2 = \{A \subset X : x \in A\}$.

O próximo resultado mostra como bases do espaço original se relacionam com as de um subespaço:

Proposição 1.1.50. Se \mathcal{B} é uma base para (X, τ) , então $\mathcal{B}' = \{B \cap Y : B \in \text{Podemos fazer o análogo}\}$ \mathcal{B} } é uma base para $Y \subset X$ com a topologia de subespaço.

com sistemas fundamentais de vizinhanças.

Demonstração. Sejam $A' \in \tau_Y$ e $x \in A'$. Pela definição de topologia de subespaço, existe $A \in \tau$ tal que $A' = A \cap Y$ e, assim, $x \in A$. Logo, pelo fato de \mathcal{B} ser base, existe $B \in \mathcal{B}$ tal que $x \in B \subset A$. Logo, $x \in B \cap Y \subset A \cap Y$ e, portanto, \mathcal{B}' é uma base para (Y, τ_Y) .

Alongamentos

Alongamento 1.1.51. Mostre a Proposição 1.1.11.

Alongamento 1.1.52. Fixe um espaço topológico (X, τ) . Considere para cada $x \in X$, \mathcal{V}_x a coleção de todas as vizinhanças de x.

- (a) Mostre que cada V_x é um filtro.
- (b) Mostre que $(X, (\mathcal{V}_x)_{x \in X})$ é um espaço topológico*.
- (c) Mostre que $\{A \subset X : A \text{ \'e aberto}^*\} = \tau$.

Alongamento 1.1.53. Fixe um espaço topológico* $(X, (\mathcal{V}_x)_{x \in X})$. Seja $\tau = \{A \subset X : A \text{ \'e aberto*}\}.$

- (a) Mostre que τ é uma topologia sobre X.
- (b) Para cada $x \in X$, seja $\mathcal{W}_x = \{V \subset X : V \text{ \'e vizinhança de } x \text{ em } (X, \tau)\}$. Mostre que, para cada $x \in X$, $\mathcal{W}_x = V_x$.

Alongamento 1.1.54. Este é um exercício para mostrar que a hipótese de compatibilidade na definição de espaço topológico* é necessária. Considere $X = \mathbb{R}, \ \mathcal{F}_0 = \{A \subset \mathbb{R} : 0 \in A \in \mathbb{R} \setminus A \text{ é enumerável}\}\ e, para cada <math>x \neq 0, \ \mathcal{F}_x = \{\mathbb{R}\}.$

- (a) Note que, de fato, cada \mathcal{F}_x é um filtro.
- (b) Considere $\tau = \{A \subset X : \forall a \in A \ A \in \mathcal{F}_a\}.$
- (c) Mostre que τ é uma topologia sobre \mathbb{R} .
- (d) Seja V_0 a coleção de todas as vizinhanças de 0 na topologia τ . Mostre que $V_0 \subsetneq \mathcal{F}_0$.

Alongamento 1.1.55. Vejamos que os abertos em \mathbb{R} podem ser obtidos de várias maneiras. Mostre que os abertos são os mesmos se:

- (a) fizermos como no Exemplo 1.1.17;
- (b) usamos as vizinhanças como em 1.1.5
- (c) usamos a métrica de 1.1.2 e depois a Proposição 1.1.20.

Alongamento 1.1.56. Mostre que todo aberto usual nos reais é um aberto na reta de Sorgenfrey.

Alongamento 1.1.57. Mostre que, de fato, a topologia de subespaço é uma topologia.

Alongamento 1.1.58. Considere [0,1] com a topologia de subespaço de \mathbb{R} . Mostre que $[0,\frac{1}{2}[$ é aberto em [0,1] mas não é aberto em \mathbb{R} .

Alongamento 1.1.59. Seja (X,τ) um espaço topológico. Mostre que são verdadeiras:

- (a) X, \emptyset são fechados;
- (b) Se $F, G \subset X$ são fechados, então $F \cup G$ é fechado;
- (c) Se \mathcal{F} é uma família não vazia de fechados, então $\bigcap_{F \in \mathcal{F}} F$ é um fechado.

Alongamento 1.1.60. Sejam (X, τ) um espaço topológico e $A \subset X$. Dizemos que $x \in X$ é **ponto interior** de A se existe V aberto tal que $x \in V \subset A$. Mostre que $A = \{x \in X : x \text{ é ponto interior de } A\}$.

Alongamento 1.1.61. Mostre o análogo à Proposição 1.1.30 para o interior.

Alongamento 1.1.62. Sejam (X, τ) espaço topológico e $A \subset X$. Mostre as seguintes afirmações:

- (a) $\partial A = \overline{A} \cap \overline{X \setminus A}$
- (b) $\overset{\circ}{A} \cap \partial A = \emptyset$
- (c) $\partial A = \overline{A} \setminus \overset{\circ}{A}$
- (d) $\overline{A} = A \cup \partial A$

Alongamento 1.1.63. Mostre que a fronteira de um conjunto sempre é fechada.

Alongamento 1.1.64. Mostre as afirmações dos Exemplos 1.1.43, 1.1.44 e 1.1.45.

Alongamento 1.1.65. Seja (X,τ) espaço topológico. Sejam $x\in X$ e V aberto tal que $x\in V$. Mostre que $\{A\in \tau:x\in A\subset V\}$ é um sistema fundamental de vizinhanças para x.

Alongamento 1.1.66. Sejam (X, τ) espaço topológico, $x \in X$, \mathcal{V} sistema fundamental de vizinhanças de x e $W \subset X$ vizinhança de x. Mostre que $\{V \cap W : V \in \mathcal{V}\}$ é um sistema fundamental de vizinhanças de x.

Exercícios

Exercício 1.1.67. Na definição da topologia cofinita (Exemplo 1.1.18), poderíamos pedir, em vez que os abertos tivessem complementar finito, que os abertos simplesmente fossem infinitos?

Exercício 1.1.68. Dizemos que duas métricas sobre um mesmo espaço X são métricas equivalentes se elas induzem a mesma topologia. Mostre que se (X,d) é um espaço métrico qualquer, então existe uma outra métrica d' sobre X equivalente a d e que é limitada (isto é, existe L > 0 tal que $d'(x,y) \le L$ para todo $x,y \in X$).

Exercício 1.1.69. Seja X um conjunto. Chamamos de **assimétrica** (na maioria dos livros, **quasi-métrica**), uma função $d: X \times X \longrightarrow \mathbb{R}$ satisfazendo:

- (i) $\forall x, y \in X, d(x, y) \ge 0 \text{ e } d(x, y) = 0 \Leftrightarrow x = y;$
- (ii) $\forall x, y, z \in X, d(x, y) \le d(x, z) + d(z, y).$
- (a) Mostre que $\tau = \{A \subset X : \forall x \in A, \exists r > 0, B_r(x) \subset A\}$, onde $B_r(x) = \{y \in X : d(x,y) < r\}$ é uma topologia sobre X (como fizemos com uma métrica);
- (b) Considere seguinte função sobre \mathbb{R} :

$$d(x,y) = \begin{cases} y - x & \text{se } y \ge x \\ 1 & \text{caso contrário} \end{cases}$$

para $x, y \in \mathbb{R}$. Mostre que d é uma assimétrica sobre \mathbb{R} . Mostre que a topologia induzida por ela é a mesma da reta de Sorgenfrey.

Exercício 1.1.70. Sejam (X, d) um espaço métrico e $Y \subset X$. Note que a restrição de d a Y induz uma métrica sobre Y. Mostre que a topologia induzida por tal métrica e a topologia induzida de subespaço de X coincidem.

Exercício 1.1.71. Sejam (X, τ) um espaço topológico e $Y \subset X$ subespaço. Mostre que $F \subset Y$ é fechado em Y se, e somente se, existe $F' \subset X$ fechado em X tal que $F = F' \cap Y$.

Exercício 1.1.72. Sejam (X, τ) um espaço topológico e $Y \subset X$ subespaço fechado. Mostre que $F \subset Y$ é fechado em Y se, e somente se, F é fechado em X.

Exercício 1.1.73. Encontre o análogo do Exercício 1.1.72 para abertos.

Exercício 1.1.74. Seja (X,d) um espaço métrico. Dados $A \subset X$ não vazio e $x \in X$, definimos d(x,A) (**distância de ponto a conjunto**) como $d(x,A) = \inf\{d(x,a) : a \in A\}$. Mostre que $x \in \overline{A}$ se, e somente se, d(x,A) = 0.

Exercício 1.1.75. Considere $\tau = \{A \subset \mathbb{Z} : \text{para todo } a \in A, \text{ existe } b \in \mathbb{N}_{>0} \text{ tal que } \{a + bz : z \in \mathbb{Z}\} \subset A\}.$

- (a) Mostre que τ é uma topologia sobre \mathbb{Z} .
- (b) Mostre que não existe um aberto não vazio que seja finito.
- (c) Mostre que, dados $a \in \mathbb{Z}$ e $b \in \mathbb{N}_{>0}$, o conjunto $S(a,b) = \{a+bz : z \in \mathbb{Z}\}$ é aberto e fechado.
- (d) Mostre que $\mathbb{Z} \setminus \{-1,1\} = \bigcup_{p \text{ \'e primo}} S(0,p).$
- (e) Mostre que existem infinitos primos.

Exercício 1.1.76. Sejam (X,τ) um espaço topológico, $A\subset X,\ x\in X$ e $\mathcal V$ um sistema fundamental de vizinhanças para x. Mostre que $x\in \overline{A}$ se, e somente se, para todo $V\in \mathcal V,\ V\cap A\neq \emptyset$.

Exercício 1.1.77. Seja X um conjunto e sejam τ e σ topologias sobre X. Sejam \mathcal{B} e \mathcal{C} bases para (X,τ) e (X,σ) respectivamente.

- (a) Suponha que para todo $x \in X$ e todo $B \in \mathcal{B}$ e $C \in \mathcal{C}$ tais que $x \in B$ e $x \in C$ existam $C' \in \mathcal{C}$ e $B' \in \mathcal{B}$ tais que $x \in C' \subset B$ e $x \in B' \subset C$. Mostre que $\tau = \sigma$.
- (b) Suponha que para todo $x \in X$ e todo $B \in \mathcal{B}$ tal que $x \in B$ exista $C \in \mathcal{C}$ tal que $x \in C \subset B$. É verdade que $\sigma = \tau$? Se não for verdade, vale alguma das inclusões?

Exercício 1.1.78. Seja (X, τ) espaço topológico. Para cada $x \in X$, seja \mathcal{V}_x um sistema fundamental de vizinhanças para x. Mostre que, dado $A \subset X$, A é aberto se, e somente se, para todo $x \in A$ existe $V \in \mathcal{V}_x$ tal que $x \in V \subset A$.

Exercício 1.1.79. Dizemos que (X, τ) é um espaço zero-dimensional se ele possui uma base formada por abertos fechados.

(a) Mostre que a reta de Sorgenfrey é zero-dimensional.

- (b) Mostre que tanto $\mathbb{R} \setminus \mathbb{Q}$ quanto \mathbb{Q} são zero-dimensionais (considerados com a topologia de subsespaço).
- (c) Mostre que se Y é subsepaço de um espaço zero-dimensional, então Ytambém é zero-dimensional.

Exercício 1.1.80. Sejam (X, τ) um espaço topológico e \mathcal{B} base para (X, τ) . Mostre que τ é a menor topologia que contém \mathcal{B} . Isto é, mostre que $\tau =$ $\bigcap_{\sigma \in T} \sigma \text{ onde } T = \{ \sigma : \sigma \text{ \'e uma topologia para } X \text{ tal que } \mathcal{B} \subset \sigma \}.$

Exercício 1.1.81. Dado um conjunto X e uma família \mathcal{B} de subconjuntos de X, chamamos de **topologia gerada** por X o conjunto $[\mathcal{B}] = \bigcap_{\tau \in T} \tau$, onde $T = \{ \tau \subset \wp(X) : \tau \text{ \'e topologia sobre } X \in \mathcal{B} \subset \tau \}.$

- (a) Mostre que T definido acima é não vazio (e, portanto, podemos tomar a intersecção).
- (b) Mostre que $[\mathcal{B}]$ é uma topologia sobre X.
- (c) Mostre que, se \mathcal{B} satisfaz:
 - (i) $\forall x \in X, \exists B \in \mathcal{B} \text{ tal que } x \in B$:
 - (ii) $\forall A, B \in \mathcal{B}, \forall x \in A \cap B, \exists C \in \mathcal{B} \text{ tal que } x \in C \subset A \cap B.$

então \mathcal{B} é uma base para $(X, [\mathcal{B}])$.

1.2 Axiomas de Separação

Muitas vezes, só a definição de topologia é muito simples para que possamos trabalhar. Nesta seção veremos algumas hipóteses adicionais que podemos pedir num espaço topológico. As hipóteses desta seção tem como objetivo, por exemplo, exigir que a topologia sobre o espaco seja rica o suficiente para diferenciar os pontos do espaço, ou separar os pontos entre si ou até mesmo separar fechados. Apresentaremos as propriedades em ordem de "força" (veja o Exercício 1.2.27).

Num espaço T_0 , pelo menos um dos abertos da Figura 1.4 existe.

é, dados dois pontos dis- $(x \notin A \in y \in A)$. tintos, existe ao menos um aberto que os distingue.

Num espaço T_0 , os abertos **Definição 1.2.1.** Dizemos que um espaço topológico (X,τ) é T_0 se para "diferenciam" pontos, isto quaisquer $x, y \in X$ distintos existir um aberto A tal que $(x \in A \in y \notin A)$ ou

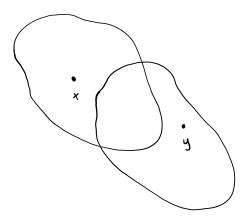


Figura 1.4: Abertos diferentes para pontos diferentes

Vejamos alguns exemplos de espaços que não são T_0 . Exemplos que satisfazem tal propriedade serão dados no decorrer do texto (veja também o Exercício 1.2.24).

Exemplo 1.2.2. Qualquer conjunto X com mais de dois pontos, munido da topologia caótica não é T_0 .

Exemplo 1.2.3. Seja X um conjunto qualquer com pelo menos dois elementos. Fixe $x, y \in X$ distintos e defina $\tau = \{A \subset X : x, y \in A \text{ ou } A = \emptyset\}$. É fácil ver que (X,τ) é um espaço topológico. Contudo, não existe aberto em X tal que $x \in A$ e $y \notin A$ ou $y \in A$ e $x \notin A$. Logo (X, τ) não é T_0 .

Proposição 1.2.4. Um espaço topológico (X, τ) é T_0 se, e somente se, para Esse resultado deixa claro quaisquer $x, y \in X$ distintos e para quaisquer bases locais $\mathcal{B}_x, \mathcal{B}_y$ para $x \in y$ que os pontos próximos de respectivamente, tivermos que $\mathcal{B}_x \neq \mathcal{B}_y$.

Demonstração. Suponha (X,τ) T_0 . Tomemos $x,y\in X$ pontos distintos e $\mathcal{B}_x, \mathcal{B}_y$ bases locais arbitrárias para x e y respectivamente. Por X ser T_0 , existe um aberto A tal que $x \in A$ e $y \notin A$, ou $x \notin A$ e $y \in A$. Sem perda de generalidade, suponha o primeiro caso. Por \mathcal{B}_x ser base, existe $B \in \mathcal{B}_x$ tal que $x \in B \subset A$. Como $y \notin A$, segue que $y \notin B$ e, por tanto, $B \notin \mathcal{B}_y$, mostrando que $\mathcal{B}_x \neq \mathcal{B}_y$.

Reciprocamente, suponha que para quaisquer $x, y \in X$ distintos, toda base local de x seja distinta de qualquer base local de y. Em particular,

um ponto são diferentes dos próximos a outro num espaço T_0 .

 $\mathcal{B}_x = \{A \in \tau : x \in A\} \in \mathcal{B}_y = \{A \in \tau : y \in A\}$ são bases locais de $x \in y$ respectivamente. Logo, $\mathcal{B}_x \neq \mathcal{B}_y$ pela hipótese. Assim, existe $B \in \mathcal{B}_x$ tal que $B \notin \mathcal{B}_y$ ou existe $B \in \mathcal{B}_y$ tal que $B \notin \mathcal{B}_x$.

Já nos espaços T_1 , exigimos que ambos os abertos da Figura 1.4 existam.

enquanto o último exige e $y \notin A$. a existência de um aberto que satisfaca ao menos um dentre dois casos, ser T_1 exige a existência de abertos que satisfaçam ambos os casos.

Note que ser T_1 é "mais **Definição 1.2.5.** Dizemos que um espaço topológico (X,τ) é T_1 se, e soforte" do que ser T_0 , pois mente se, para quaisquer $x, y \in X$ distintos, existir A aberto tal que $x \in A$

Provavelmente a caracterização mais importante de T_1 é a seguinte:

Proposição 1.2.6. (X,τ) é T_1 se, e somente se, para todo $x \in X$, $\{x\}$ é fechado.

Demonstração. Suponha (X,τ) um espaço T_1 . Sejam $x,y \in X$ tais que $x \neq y$. Como (X,τ) é T_1 , existe um aberto A tal que $y \in A$ e $x \notin A$, isto é, $A \cap \{x\} = \emptyset$. Logo, $y \notin \{x\}$. Assim, o único ponto que pode pertencer a $\{x\}$ é o próprio x. Ou seja $\{x\} = \{x\}$.

Reciprocamente, sejam $x, y \in X$ distintos. Como $\{x\}$ é fechado para qualquer $x \in X$, então $X \setminus \{x\}$ é um conjunto aberto. Assim, $X \setminus \{x\}$ é um aberto tal que $y \in X \setminus \{x\}$ e $x \notin X \setminus \{x\}$.

Exemplo 1.2.7. Um conjunto X com a topologia cofinita é sempre T_1 . De fato, dados $x, y \in X$ distintos, o complementar de $\{x\}$ é um aberto que não contém x mas contém y.

Para espaços de Hausdorff, já exigimos que os abertos em volta dos pontos sejam disjuntos.

os abertos "separam" pontos.

Num espaço de Hausdorff, **Definição 1.2.8.** Dizemos que (X,τ) é T_2 (espaço de Hausdorff) se, para todo $x, y \in X$ distintos, existem A, B abertos tais que $x \in A$, $y \in B$ e $A \cap B = \emptyset$.

> **Exemplo 1.2.9.** X munido da topologia cofinita é T_1 , mas não é T_2 se Xfor infinito. De fato, sejam $x, y \in X$ distintos e abertos A, B tais que $x \in A$ e $y \in B$. Temos que $A = X \setminus F_1$ e $B = X \setminus F_2$, com F_1, F_2 finitos. Logo, $A \cap B = X \setminus (F_1 \cup F_2)$ e, como X é infinito, $A \cap B$ é necessariamente não vazio.

> **Proposição 1.2.10.** Considere (X, d) um espaço métrico. Então tal espaço é de Hausdorff (com a topologia induzida pela métrica).

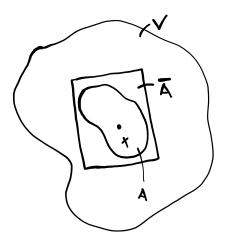


Figura 1.5: Comportamento de vizinhanças em espaços T_3

Demonstração. Sejam $x, y \in X$ distintos. Seja r = d(x, y) > 0. Vamos mostrar que $B_{\frac{r}{2}}(x) \cap B_{\frac{r}{2}}(y) = \emptyset$. Suponha que não. Seja $a \in B_{\frac{r}{2}}(x) \cap B_{\frac{r}{2}}(y)$. Então

$$d(x,y) \le d(x,a) + d(a,y) < \frac{r}{2} + \frac{r}{2} = r,$$

absurdo, pois d(x, y) = r.

Definição 1.2.11. Dizemos que (X,τ) é T_3 se, para quaisquer $x \in X$ e Num espaço topológico re- $F \subset X$ fechado tais que $x \notin F$ existirem A,B abertos tais que $x \in A$, gular, os abertos "sepa- $F \subset B$ e $A \cap B = \emptyset$. Se, além disso, (X,τ) é T_1 , dizemos que (X,τ) é um ram" pontos de fechados. **espaço regular**¹.

O próximo resultado é provavelmente a principal caracterização de espaços T_3 :

Proposição 1.2.12. Seja (X,τ) um espaço topológico. (X,τ) é T_3 se, e Veja a Figura 1.5. somente se, para todo $x \in X$ e para todo aberto V tal que $x \in V$, existe um aberto A tal que $x \in A \subset \overline{A} \subset V$.

Demonstração. Suponha (X, τ) espaço T_3 . Sejam $x \in X$ e $V \in \tau$ tais que $x \in V$. Note que $X \setminus V$ é um fechado e $x \notin X \setminus V$. Então existem A, B

 $^{^1\}mathrm{Essa}$ nomenclatura não é padrão - às vezes se supõe T_1 para regulares, às vezes não.

24

abertos disjuntos tais que $x \in A$ e $X \setminus V \subset B$. Assim, $A \subset X \setminus B$ que é fechado. Logo, $\overline{A} \subset X \setminus B \subset V$.

Reciprocamente, mostremos que (X,τ) é T_3 . Sejam $x \in X$ e $F \subset X$ fechado tais que $x \notin F$. Então $X \setminus F$ é aberto e contém x. Logo, existe A aberto tal que $x \in A \subset \overline{A} \subset X \setminus F$. Note que $x \in A, F \subset X \setminus \overline{A}$ e $A \cap (X \setminus \overline{A}) = \emptyset.$

Corolário 1.2.13. Um espaço topológico (X, τ) é T_3 se, somente se, para todo $x \in X$ existe um sistema fundamental de vizinhanças fechadas para x.

Demonstração. Veja o Alongamento 1.2.22.

plo já estamos supondo claro que os espaços em questão são T_1 .

Neste e no próximo exem- **Exemplo 1.2.14.** \mathbb{R} é regular. De fato, para cada $x \in \mathbb{R}$,

$$\{[x-\frac{1}{n},x+\frac{1}{n}]:n\in\mathbb{N}\}$$

é um sistema fundamental de vizinhanças fechadas para x.

Exemplo 1.2.15. A reta de Sorgenfrey é regular (veja o Exemplo 1.1.48, e considere o Corolário 1.2.13).

Veja o Exercício 1.2.30 para um exemplo de um espaço de Hausdorff que não seja regular.

dos disjuntos.

Num espaço normal, os **Definição 1.2.16.** Dizemos que (X,τ) é T_4 se, para quaisquer $F,G\subset X$ abertos separam os fecha- fechados disjuntos, existirem A, B abertos disjuntos tais que $F \subset A$, $G \subset B$. Se, além disso, (X,τ) é T_1 , dizemos que (X,τ) é espaço normal².

> Exemplo 1.2.17. Vamos mostrar mais para frente que todo métrico é normal (Corolário 2.3.3).

Exemplo 1.2.18. A reta de Sorgenfrey é normal. Vamos provar tal afirmação. Primeiramente, note que ela é T_1 .

Sejam F, G fechados disjuntos. Para cada $a \in F$ e cada $b \in G$, sejam x(a) e y(b) de forma que

$$[a, x(a)] \cap G = \emptyset \in [b, y(b)] \cap F = \emptyset.$$

Podemos fazer isso pois os complementares de F e G são abertos. Sejam

$$A = \bigcup_{a \in F} [a, x(a)] \in B = \bigcup_{b \in G} [b, y(b)].$$

²Novamente, tal nomenclatura não é completamente padrão. Às vezes se supõe T_1 , às vezes não.

Note que $F \subset A$ e $G \subset B$ e que A e B são abertos. Vamos mostrar que $A \cap B = \emptyset$. Suponha que não. Então existe $c \in A \cap B$. Para tanto, existem $a \in F$ e $b \in G$ tais que $c \in [a, x(a)[\cap [b, y(b)[$.

Caso a < b: então x(a) < b, pois $b \notin [a, x(a)[$, logo $[a, x(a)[\cap [b, y(b)[= \emptyset,$ absurdo. Se b < a, obtém-se uma contradição de maneira análoga. É claro que a = b não pode ocorrer por estarmos supondo $F \cap G = \emptyset$.

Exemplo 1.2.19. Veremos mais para frente que o quadrado da reta de Sorgenfrey é regular mas não é normal (Proposição ??).

Veremos que até regularidade, as propriedades desta seção são "bem comportadas" e muitas vezes a verificação de se um espaço tem ou não a propriedade é elementar ou segue de algum teorema. Mas com a normalidade, a situação muda. Desta forma, um tipo de resultado bastante útil é quando podemos "subir" alguma propriedade até a normalidade. O próximo resultado vai nesta direção: veremos que para um espaço enumerável ser normal basta ele ser regular. A ideia para a demonstração será usada outras vezes no decorrer do texto:

Proposição 1.2.20. Todo espaço enumerável e regular é normal.

Demonstração. Sejam F e G fechados disjuntos. Faça $F=\{x_n:n\in\mathbb{N}\}$ e $G=\{y_n:n\in\mathbb{N}\}$. Como o espaço é regular, para cada $m\in\mathbb{N}$, existe A_m aberto tal que $x_m\in A_m$ e $\overline{A_m}\cap G=\emptyset$ (pela Proposição 1.2.12), bem como B_m aberto tal que $y_m\in B_m$ e $\overline{B_m}\cap F=\emptyset$.

Para cada $n \in \mathbb{N}$, defina

$$A_n^* = A_n \setminus \bigcup_{k \le n} \overline{B_k} \in B_n^* = B_n \setminus \bigcup_{k \le n} \overline{A_k}.$$

Note que A_n^* e B_n^* são abertos (pois $A \setminus B = A \cap (X \setminus B)$ para $A, B \subset X$). Sejam $A = \bigcup_{n \in \mathbb{N}} A_n^*$ e $B = \bigcup_{n \in \mathbb{N}} B_n^*$. Note que $F \subset A$ e $G \subset B$ (emparticular, observe que $A_n^* \cap F = A_n \cap F$). Vamos mostrar que $A \cap B = \emptyset$. Suponha que não. Então existe $z \in A \cap B$. Sejam $m, n \in \mathbb{N}$ tais que $z \in A_n^*$ e $z \in B_m^*$.

Vamos fazer o caso $n \leq m$, o outro <u>é</u> análogo. Então $z \in A_n^* = A_n \setminus \bigcup_{k \leq n} \overline{B_k}$ e $z \in B_m^* = B_m \setminus \bigcup_{k \leq m} \overline{A_k}$. Note que, como $m \geq n$, $z \notin \bigcup_{k \leq m} \overline{A_k} \supset \overline{A_n} \supset A_n \supset A_n^*$, contradição, pois supomos $z \in A_n^*$.

Alongamentos

Alongamento 1.2.21. Mostre que um espaço finito é T_1 se, e somente se, tem a topologia discreta.

Note que na verdade estamos provando que todo espaço T_3 enumerável é T_4 .

Alongamento 1.2.22. Demonstre o Corolário 1.2.13.

Alongamento 1.2.23. Seja (X, τ) espaço topológico. Mostre que T_4 é equivalente à seguinte propriedade: "Para todo F fechado e todo V aberto tal que $F \subset V$, existe um aberto U tal que $F \subset U \subset \overline{U} \subset V$ ".

Exercícios

Exercício 1.2.24. Dê um exemplo de um espaço T_0 que não seja T_1 .

Exercício 1.2.25. (X, τ) é T_0 se, e somente se, para quaisquer $x, y \in X$ distintos tivermos $\overline{\{x\}} \neq \overline{\{y\}}$.

Exercício 1.2.26. Seja (X, τ) um espaço topológico. São equivalentes:

- (a) $(X, \tau) \notin T_1$;
- (b) $\forall x \in X$, existe \mathcal{A} uma coleção de abertos tal que $\bigcap_{A \in \mathcal{A}} A = \{x\}$;
- (c) $\forall x \in X$ existe \mathcal{V}_x um sistema fundamental de vizinhanças para x tal que $\bigcap_{V \in \mathcal{V}_x} V = \{x\};$

Exercício 1.2.27. Prove a cadeia de implicações: (X, τ) é normal $\Rightarrow (X, \tau)$ é regular $\Rightarrow (X, \tau)$ é $T_2 \Rightarrow (X, \tau)$ é $T_1 \Rightarrow (X, \tau)$ é T_0 .

Exercício 1.2.28. Sejam (X, τ) espaço topológico e $Y \subset X$ subespaço. Mostre que se (X, τ) é T_i para i = 0, ..., 3, então Y também é.

Exercício 1.2.29. Mostre que se Y é subespaço fechado de um espaço normal, então Y também é normal.

Exercício 1.2.30. Considere \mathbb{R} com a topologia gerada pelos conjuntos da forma

$$]a,b[\setminus C$$

onde $a < b \in \mathbb{Q}$ e $C \subset \mathbb{R}$ é enumerável. Vamos chamar tal espaço de **reta** esburacada.

- (a) Mostre que isso é uma base para tal topologia;
- (b) Mostre que tal espaço é de Hausdorff;
- (c) Mostre que todo subconjunto enumerável é fechado;
- (d) Mostre que tal espaço não é regular.

Exercício 1.2.31. Mostre que \mathbb{Q} com a topologia induzida pela reta de Sorgenfrey é normal.

1.3 Axiomas de Enumerabilidade

Nesta seção vamos começar a investigar quando a existência de determinados conjuntos enumeráveis nos dão propriedades importantes sobre o espaço. Tais propriedades serão muito usadas no decorrer do texto.

Definição 1.3.1. Dizemos que um espaço topológico (X, τ) satisfaz o **pri**- Veja o Alongamento 1.3.24 meiro axioma de enumerabilidade (1st countable) se, para todo $x \in X$, para ver que um ponto ter existe um sistema fundamental de vizinhanças enumerável. Neste caso, um sistema fundamental também dizemos que (X, τ) tem bases locais enumeráveis.

Exemplo 1.3.2. Todo espaço métrico (X, d) satisfaz o primeiro axioma base local enumerável. de enumerabilidade. Para isso, basta notar que $\{B_{\underline{1}}(x): n \in \mathbb{N}_{>0}\}$ é um sistema fundamental de vizinhanças para cada $x \in X$.

Exemplo 1.3.3. A reta de Sorgenfrey satisfaz o primeiro axioma de enumerabilidade, já que $\{[x, x + \frac{1}{n}[: n \in \mathbb{N}_{>0}]\}$ é um sistema fundamental de vizinhanças para cada $x \in X$.

O primeiro axioma de enumerabilidade tem bastante em comum com o conceito de sequência convergente:

Definição 1.3.4. Seja (X,τ) um espaço topológico. Seja $(x_n)_{n\in\mathbb{N}}$ uma Note que esta definição sequência de pontos de X. Dizemos que $(x_n)_{n\in\mathbb{N}}$ converge para $x\in X$ permanece equivalente se se, para toda vizinhança V de x, existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, trocarmos vizinhança por $x_n \in V$. Notação: $x_n \to x$.

Proposição 1.3.5. Seja (X,τ) um espaço topológico e $x_n \to x$. Então, 1.3.25). $x \in \{x_n : n \in \mathbb{N}\}.$

Demonstração. Seja V vizinhança de x. Seja n_0 da definição de convergência. Note que $x_{n_0} \in V \cap \{x_n : n \in \mathbb{N}\}.$

Corolário 1.3.6. Seja (X,τ) espaço topológico e $Y\subset X$. Sejam $x\in X$ e $(y_n)_{n\in\mathbb{N}}$ uma sequência de pontos de Y. Se $y_n\to x$, então $x\in\overline{Y}$.

Para espaços que satisfazem o primeiro axioma de enumerabilidade, ser ponto aderente pode ser caracterizado por limite de sequências:

Proposição 1.3.7. Seja (X,τ) um espaço topológico com bases locais enu- A hipótese sobre as bases mer'aveis. $Sejam Y \subset X \ e \ x \in X$. $Ent\~ao, \ x \in \overline{Y} \ se, \ e \ somente \ se, \ existe$ locais é necessária. Veja o $(y_n)_{n\in\mathbb{N}}$ sequência de pontos de Y tal que $y_n\to x$.

de vizinhanças enumerável é equivalente a ter uma

aberto contendo o ponto (veja Alongamento

Exemplo 1.3.9.

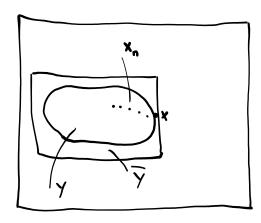


Figura 1.6: Aderência em termos de convergência

Demonstração. Um lado já está feito (vale mesmo sem a hipótese sobre as bases).

Suponha que $x \in \overline{Y}$ e seja $\mathcal{V} = \{V_n : n \in \mathbb{N}\}$ sistema fundamental de vizinhanças para x. Para cada $n \in \mathbb{N}$, escolha $y_n \in \left(\bigcap_{k \leq n} V_k\right) \cap Y$. Mostremos que $y_n \to x$. Seja V vizinhança de x. Como \mathcal{V} é sistema fundamental de vizinhanças de x, existe $n_0 \in \mathbb{N}$ tal que $V_{n_0} \subset V$. Seja $n \geq n_0$. Note que $y_n \in \bigcap_{k \leq n} V_k \subset V_{n_0} \subset V$.

Espaços de Hausdorff tem a propriedade da unicidade de limites:

Proposição 1.3.8. Seja (X, τ) um espaço topológico de Hausdorff. Se $x_n \to x$ e $x_n \to y$, então x = y.

Demonstração. Suponha, por contradição, que $x \neq y$. Sejam U e V abertos disjuntos tais que $x \in U$ e $y \in V$. Então, existem $n_1, n_2 \in \mathbb{N}$ tais que para todo $n \geq n_1, x_n \in U$ e para todo $n \geq n_2, x_n \in V$. Seja $n_0 = \max\{n_1, n_2\}$, segue que $x_{n_0} \in U \cap V$, que é uma contradição.

Exemplo 1.3.9. Na reta esburacada, se uma sequência $(x_n)_{n\in\mathbb{N}}$ é tal que $x_n \longrightarrow x$ para algum x, então existe $n \in \mathbb{N}$ tal que $x_n = x$. De fato, temos que $\{x_n : n \in \mathbb{N}\}$ é fechado por ser enumerável (veja o Exercício 1.2.30). Em particular, note que $0 \in [0,1[$ mas não existe sequência em [0,1[que

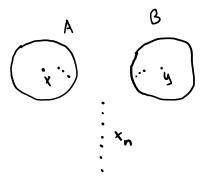


Figura 1.7: A unicidade de limites de sequências

converge para 0. Com isso, temos que a reta esburacada não tem bases locais enumeráveis.

Definição 1.3.10. Seja (X, d) um espaço métrico. Dizemos que uma sequência $(x_n)_{n\in\mathbb{N}}$ de pontos de X é uma **sequência de Cauchy** se, para todo $\varepsilon \in \mathbb{R}_{>0}$, existe $n_0 \in \mathbb{N}$ tal que para $n, m \geq n_0$, $d(x_n, x_m) < \varepsilon$.

Proposição 1.3.11. Seja (X, d) um espaço métrico e $(x_n)_{n \in \mathbb{N}}$ uma sequência de pontos de X tal que $x_n \to x$. Então, $(x_n)_{n \in \mathbb{N}}$ é uma sequência de Cauchy.

Demonstração. Seja $\varepsilon \in \mathbb{R}_{>0}$. Seja n_0 tal que, para todo $n \geq n$, $d(x_n, x) < \frac{\varepsilon}{2}$. Assim, dados $n, m \geq n_0$, temos

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \varepsilon$$

Definição 1.3.12. Seja (X,d) um espaço métrico. (X,d) é dito **espaço** métrico completo se toda sequência $(x_n)_{n\in\mathbb{N}}$ de Cauchy é convergente.

O segundo axioma de enumerabilidade é uma versão global do primeiro:

Definição 1.3.13. Dizemos que (X, τ) satisfaz o segundo axioma de enumerabilidade (2nd countable) se admite uma base enumerável.

Exemplo 1.3.14. A reta real satisfaz o segundo axioma de enumerabilidade, já que $\{a, b \in \mathbb{Q}\}$ é uma base.

Proposição 1.3.15. Se um espaço topológico (X,τ) satisfaz o segundo axioma de enumerabilidade, então também satisfaz o primeiro axioma de enumerabilidade.

Demonstração. Seja \mathcal{B} uma base para (X,τ) . Então, $\mathcal{B}_x = \{B \in \mathcal{B} : x \in B\}$ é uma base local para x.

Exemplo 1.3.16. A reta de Sorgenfrey não satisfaz o segundo axioma de enumerabilidade. De fato, suponha, por contradição, que satisfaça. Seja \mathcal{B} uma base enumerável. Para cada $x \in X$, seja $B_x \in \mathcal{B}$ tal que $x \in B_x \subset$ [x, x + 1]. Note que se $x \neq y$, então $B_x \neq B_y$. De fato, sem perda de generalidade, suponha que x < y e note que $x \notin B_y$, pois $B_y \subset [y, y + 1[$. Logo, $f: \mathbb{R} \to \mathcal{B}$ definida por $f(x) = B_x$ é injetora, o que é uma contradição, pois \mathcal{B} é enumerável e \mathbb{R} não.

Definição 1.3.17. Seja (X,τ) um espaço topológico. Dizemos que $D\subset X$ é denso em X se $\overline{D} = X$.

Definição 1.3.18. Dizemos que (X, τ) satisfaz o terceiro axioma de enumerabilidade (3rd countable) se admite um subconjunto denso enumerável. Neste caso, dizemos também que (X, τ) é um **espaço separável**.

Exemplo 1.3.19. Temos que a reta real e a reta de Sorgenfrey são separáveis pois em ambos os casos Q é denso.

O segundo axioma de enumerabilidade implica no terceiro (e já vimos que ele implica no primeiro também):

Proposição 1.3.20. Se um espaço topológico (X,τ) satisfaz o segundo axioma de enumerabilidade, então ele é separável.

Demonstração. Seja $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ uma base para (X, τ) . Para cada $n \in \mathbb{N}$, seja $x_n \in B_n$ (podemos supor sem perda de generalidade que $B_n \neq \emptyset$). Vamos mostrar que $D = \{x_n : n \in \mathbb{N}\}$ é denso. Sejam $x \in X$ e V vizinhança de x. Como \mathcal{B} é base, existe $B_n \in \mathcal{B}$ tal que $x \in B_n \subset V$. Note que $x_n \in B_n$. Portanto, $x_n \in V \cap D$.

No caso de métricos, vale a volta:

Note que a reta de Sorgen- **Proposição 1.3.21.** Se (X,d) é um espaço métrico e separável, então frey nos dá que a hipótese (X,d) satisfaz o segundo axioma de enumerabilidade.

de metrizabilidade é necessária.

Demonstração. Seja $\{x_n : n \in \mathbb{N}\}$ denso em X. Considere

$$\mathcal{B} = \{B_{\frac{1}{m}}(x_n) : n \in \mathbb{N}, m \in \mathbb{N}_{>0}\}.$$

Vamos mostrar que B é base. Sejam A aberto e $x \in A$. Seja $\varepsilon \in \mathbb{R}_{>0}$ tal que $B_{\varepsilon}(x) \subset A$. Seja $m \in \mathbb{N}$ tal que $\frac{1}{m} < \frac{\varepsilon}{2}$. Como $\{x_n : n \in \mathbb{N}\}$ é denso em X, existe $x_n \in B_{\frac{1}{m}}(x)$. Vamos mostrar que $x \in B_{\frac{1}{m}}(x_n) \subset B_{\varepsilon}(x)$. Primeiramente, note que $x \in B_{\frac{1}{m}}(x_n)$, pois $d(x, x_n) < \frac{1}{m}$. Temos também que $B_{\frac{1}{m}}(x_n) \subset B_{\varepsilon}(x)$, pois, dado $a \in B_{\frac{1}{m}}(x_n)$, temos

$$d(a,x) \le d(a,x_n) + d(x_n,x) < \frac{1}{m} + \frac{1}{m} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definição 1.3.22. Dizemos que o espaço topológico (X, τ) é um **espaço metrizável** se existe uma métrica sobre X que induz a topologia τ .

Com o que temos até o momento, já conseguimos dizer em alguns casos quando um espaço não é metrizável:

Exemplo 1.3.23. A reta de Sorgenfrey não é um espaço metrizável. De fato, temos que este é um espaço separável mas que não admite uma base enumerável. Assim, pela Proposição 1.3.21, ele não é metrizável.

Veremos outros critérios ao longo do texto.

Alongamentos

Alongamento 1.3.24. Sejam (X, τ) espaço topológico e $x \in X$. Mostre que são equivalentes:

- (i) x admite um sistema fundamental de vizinhanças enumerável;
- (ii) x admite uma base local enumerável.

Alongamento 1.3.25. Sejam (X, τ) espaço topológico, $x \in X$ e $(x_n)_{n \in \mathbb{N}}$ sequência de pontos de X. Mostre que são equivalentes:

- (i) $x_n \longrightarrow x$.
- (ii) para todo V aberto tal que $x \in V$, existe n_0 tal que, se $n \ge n_0$, então $x_n \in V$.

(iii) dado \mathcal{V} sistema fundamental de vizinhanças para x, para todo $V \in \mathcal{V}$, existe n_0 tal que, se $n \geq n_0$, então $x_n \in V$.

Alongamento 1.3.26. Seja (X, τ) um espaço topológico. Mostre que $D \subset X$ é denso se, e somente se, para todo aberto não vazio $A, A \cap D \neq \emptyset$.

Alongamento 1.3.27. Mostre que se (X,τ) é um espaço topológico enumerável que satisfaz o primeiro axioma de enumerabilidade, então (X,τ) também satisfaz o segundo axioma de enumerabilidade.

Alongamento 1.3.28. Mostre que todo subespaço de um espaço que satisfaça o primeiro axioma de enumerabilidade também satisfaz o primeiro axioma de enumerabilidade.

Alongamento 1.3.29. Mostre que todo subespaço de um espaço com base enumerável tem base enumerável.

Alongamento 1.3.30. Mostre que se (X,τ) satisfaz o primeiro axioma de enumerabilidade, então todo $x \in X$ admite um sistema fundamental de vizinhanças abertas enumerável e decrescente, isto é, $(V_n)_{n\in\mathbb{N}}$ é tal que $V_{n+1} \subset V_n$.

Exercícios

Exercício 1.3.31. Mostre que a reta esburacada não é metrizável.

Exercício 1.3.32. Mostre que na reta esburacada as únicas sequências convergentes são as quase constantes. Uma sequência $(x_n)_{n\in\mathbb{N}}$ é dita uma sequência quase constante se existem x e n_0 tais que $x_n=x$ para todo $n\geq n_0$.

Exercício 1.3.33. Considere X o espaço $\mathbb{N} \cup \{a\}$, onde $a \notin \mathbb{N}$. Considere

$$\tau = \wp(\mathbb{N}) \cup \{\mathbb{N} \cup \{a\}\}\$$

Note que qualquer subconjunto de \mathbb{N} é aberto e o único aberto que contém a é o espaço todo.

- Note que qualquer subcon- (a) Mostre que τ é uma topologia sobre X.
 - (b) Mostre que qualquer sequência em X é convergente.

Exercício 1.3.34. Seja (X, τ) um espaço topológico. Seja $D \subset X$ denso. Considerando D como subespaço, mostre que se $E \subset D$ é denso em D, então E é denso em X.

Exercício 1.3.35. Mostre que todo subespaço de um espaço que tenha base enumerável é separável.

Exercício 1.3.36. O exemplo deste exercício é chamado de plano de Niemytski.

Considere $X = \{(x, y) : x, y \in \mathbb{R}, y \ge 0\}$ com a topologia de forma que:

- (i) se (x, y) é tal que y > 0, então uma vizinhança básica de (x, y) é da forma de uma bola aberta centrada em (x, y) que não intercepta o eixo x, isto é $B_{\varepsilon}((x, y))$ com $0 < \varepsilon < y$;
- (ii) Para os pontos da forma (x,0), uma vizinhança de tal ponto é da forma de uma bola aberta contida em $\{(a,b):b>0\}$ e que tangencie o eixo x no ponto (x,0) (inclua o ponto em tal vizinhança). Ou seja, $B_y((x,y)) \cup \{(x,0)\}$.

onde $B_r((x,y))$ é a bola com a métrica usual do \mathbb{R}^2 .

- (a) Mostre que isso define uma topologia.
- (b) Mostre que tal espaço é de Hausdorff.
- (c) Mostre que tal espaço é regular.
- (d) Mostre que tal espaço é separável.
- (e) Mostre que o eixo x ($\{(x,0): x \in \mathbb{R}\}$) com a topologia de subespaço tem a topologia discreta.
- (f) Mostre que tal espaço não tem base enumerável.
- (g) Mostre que tal espaço não é metrizável.
- (h) Mostre que não é verdade que todo subespaço de um espaço separável é separável (compare com o Exercício 1.3.35).

Exercício 1.3.37. Mostre que a reta esburacada não é separável.

Exercício 1.3.38. Mostre que, se (X, τ) é um espaço regular que satisfaz o segundo axioma de enumerabilidade, então (X, τ) é um espaço normal.

Exercício 1.3.39. Sejam (X, τ) um espaço topológico, \mathcal{B} uma base enumerável para (X, τ) e seja \mathcal{C} uma base qualquer para (X, τ) . Então, existe uma família enumerável $\mathcal{C}' \subset \mathcal{C}$ que é base para (X, τ) .

Capítulo 2

Funções

2.1 Funções contínuas

Uma maneira de entender a definição de função contínua é a seguinte: imagine que f seja uma máquina de transformar algo em outra coisa. Para exemplificar, imaginemos que f transforma farinha em pizza. Assim, se O que não seria nada ruim. queremos obter " $y m^2$ de pizza", precisamos fornecer x k g de farinha, de Mas não sei de onde viria o forma que f(x) = y. Mas, como toda medição acarreta em erros, este promolho. cesso não tem precisão absoluta. Desta forma, para obtermos " $y m^2$ de pizza" dentro de uma margem de erro T (tolerância), precisamos fornecer xkq dentro de uma precisão P (exigida pela f). Vamos dizer que f é contínua se dada uma tolerância qualquer, sempre podemos encontrar uma precisão que satisfaça o processo.

Traduzindo para a nossa linguagem, dados (X,τ) e (Y,ρ) espaços topológicos, f será contínua no ponto x se para toda tolerância T em torno de f(x), existe uma precisão P em torno de x de forma que $f[P] \subset T$. Note que essa última condição simplesmente quer dizer que todo os pontos que satisfazem a precição tem imagem dentro da tolerância. Finalmente, note que estar dentro de uma precisão ou de uma tolerância é simplesmente estar "próximo" de um determinado ponto. Ou seja, basta trabalharmos com estes dois conceitos como sendo vizinhanças:

Definição 2.1.1. Sejam (X, τ) e (Y, ρ) espaços topológicos e seja $f: X \to Y$ Veja o Alongamento 2.1.17 uma função. Seja também $x \in X$. Dizemos que f é uma função função para ver que esse conceito contínua no ponto x se, para toda vizinhança A de f(x) existe uma de fato generaliza aquele vizinhança B de x tal que $f[B] \subset A$.

Da mesma forma que obtemos uma definição mais simples (e menos intuitiva) quando abandonamos vizinhanças e definimos abertos diretamente

normalmente visto em cursos de Cálculo.

de uma forma global para o espaço, também temos uma definição para funções contínuas (de maneira global):

Definição 2.1.2. Sejam (X, τ) e (Y, ρ) espaços topológicos e seja $f: X \to Y$ uma função. Dizemos que f é uma **função contínua** se, para todo aberto A de Y, temos que $f^{-1}[A]$ é aberto em X (i.e., $\forall A \in \rho$ $f^{-1}[A] \in \tau$).

De fato, os conceitos apresentados são versões globais e locais de uma mesma coisa:

Proposição 2.1.3. Sejam (X,τ) e (Y,σ) espaços topológicos e $f:X\to Y$ uma função. Então f é contínua se, e somente se, para todo $x\in X$, f é contínua no ponto x.

Demonstração. Suponha f contínua e $x \in X$. Seja A vizinhança de f(x) e A' aberto tal que $f(x) \in A' \subset A$. Assim, $f^{-1}[A']$ é aberto, com $x \in f^{-1}[A']$ (portanto, vizinhança de x) e $f[f^{-1}[A']] \subset A' \subset A$.

Agora, suponha que para todo $x \in X$, f é contínua em x. Seja A aberto em Y. Para cada $x \in X$ tal que $f(x) \in A$, seja B_x vizinhança de x tal que $f[B_x] \subset A$. Como B_x é vizinhança de x, existe B'_x aberto tal que $x \in B'_x \subset B_x$. Assim, $f^{-1}[A] = \bigcup_{x \in f^{-1}[A]} B'_x$ é aberto. \square

Exemplo 2.1.4. Considere (X, τ) um espaço topológico. Então a função $I: X \longrightarrow X$ dada por I(x) = x para todo $x \in X$ (função identidade) é contínua (a verificação é imediata).

Exemplo 2.1.5. Qualquer função constante é contínua. De fato, sejam (X,τ) e (Y,σ) espaços topológicos e considere uma função constante $f:X\to Y$ dada por f(x)=k. Seja A um aberto de (Y,σ) . Então,

$$f^{-1}[A] = \begin{cases} \emptyset, & k \notin A \\ X, & k \in A \end{cases}$$

Ou seja, em ambos os casos $f^{-1}[A]$ é um aberto de (X, τ) .

Com a definição global de continuidade, prova-se o seguinte resultado facilmente:

Este resultado é lido como **Proposição 2.1.6.** Sejam (X_1, τ_1) , (X_2, τ_2) e (X_3, τ_3) espaços topológicos "composta de funções e sejam $g: X_1 \to X_2$ e $f: X_2 \to X_3$ funções contínuas. Então, $f \circ g: X_1 \to$ contínuas é contínua". O X_3 é contínua.

Demonstração. Seja A um aberto em X_3 . Como f é contínua, temos que $f^{-1}[A]$ é aberto em X_2 . Agora, como g é contínua, $g^{-1}[f^{-1}[A]]$ é aberto em X_1 . Mas, como $g^{-1}[f^{-1}[A]] = (f \circ g)^{-1}[A]$, a proposição está provada. \square



Figura 2.1: Composta de contínuas é contínua (vá da direita para a esquerda)

Densos são "empurrados" por funções contínuas:

Proposição 2.1.7. Sejam (X,τ) e (Y,ρ) espaços topológicos e $f:X\to Y$ uma função contínua sobrejetora. Se $D\subset X$ é denso em X, então f[D] é denso em Y.

Demonstração. Seja $A \subset Y$ aberto não vazio. Note que $f^{-1}[A]$ é aberto em X. Como f é sobrejetor, $f^{-1}[A] \neq \emptyset$. Logo, existe $d \in D$ tal que $d \in f^{-1}[A]$, ou seja, $f(d) \in A$. Portanto, $f[D] \cap A \neq \emptyset$.

Corolário 2.1.8. Imagem contínua de um espaço separável é separável.

O seguinte exemplo será útil no estudo de sequências convergentes:

Exemplo 2.1.9. Considere o conjunto $\mathbb{N} \cup \{\infty\}$ com a topologia gerada pelos conjuntos

- (a) $\{n\}, n \in \mathbb{N};$
- (b) $\{\infty\} \cup A$, em que $A \subset \mathbb{N}$ e $\mathbb{N} \setminus A$ é finito.

Note que, desta forma, um conjunto contendo ∞ é aberto se, e somente se, apenas uma quantidade finita de elementos de $\mathbb N$ não pertence a ele. Chamamos este espaço de **espaço da sequência convergente**.

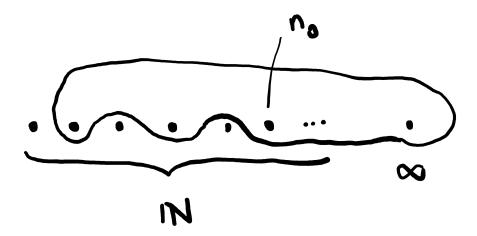


Figura 2.2: Típica vizinhança de ∞

Proposição 2.1.10. Seja (X, τ) espaço topológico e seja $f : \mathbb{N} \cup \{\infty\} \to X$ uma função $(\mathbb{N} \cup \{\infty\} \text{ com a topologia do exemplo anterior})$. Então, $f \notin contínua$ se, e somente se, $f(n) \to f(\infty)$ (i.e., a sequência $(x_n)_{n \in \mathbb{N}}$, em que cada $x_n = f(n)$, $\notin convergente$ para $x = f(\infty)$).

Demonstração. Suponha f contínua. Seja A aberto tal que $f(\infty) \in A$. Como f é contínua, $f^{-1}[A]$ é aberto. Logo, $\mathbb{N} \setminus f^{-1}[A]$ é finito, ou seja, existe $n_0 \in \mathbb{N}$ tal que para $n \geq n_0$, $n \in f^{-1}[A]$. Logo, para $n \geq n_0$, $f(n) \in A$.

Agora, suponha que $f(n) \to f(\infty)$. É imediato que f é contínua em todo $n \in \mathbb{N}$. Mostremos que f é contínua em ∞ . Seja A aberto tal que $f(\infty) \in A$. Como $f(n) \to f(\infty)$, existe n_0 tal que para $n \ge n_0$, $f(n) \in A$. Logo, $\{n : n \ge n_0\} \subset f^{-1}[A]$ e $\infty \in \{n : n \ge n_0\} \cup \{\infty\} \subset f^{-1}[A]$.

Funções contínuas também "empurram" sequências convergentes:

Proposição 2.1.11. Sejam (X,τ) e (Y,ρ) espaços topológicos, $f:X\to Y$ função contínua e $(x_n)_{n\in\mathbb{N}}$ uma sequência convergente para $x\in X$. Então, $f(x_n)\to f(x)$.

Demonstração. Considere a função $h: \mathbb{N} \cup \{\infty\} \to X$, com $h(n) = x_n$ e $h(\infty) = x$. Note que h é contínua pela proposição anterior. Note também que $f \circ h$ é contínua, pois é composta de contínuas. Note que $(f \circ h)(n) = x_n$

 $f(x_n)$, para $n \in \mathbb{N}$ e que $(f \circ h)(\infty) = f(\infty)$. Logo, pela proposição anterior, aplicada a $f \circ h$, temos $f(x_n) \to f(x)$.

No caso de espaços "ricos" em sequências convergentes, também temos a volta do resultado anterior:

Proposição 2.1.12. Sejam (X,τ) e (Y,ρ) espaços topológicos, onde (X,τ) Veja também o Exercício possui bases locais enumeráveis. Dada $f: X \to Y$ uma função, temos que 2.1.22. f é contínua se, e somente se, para toda sequência $(x_n)_{n\in\mathbb{N}}$ em X tal que $x_n \to x$, temos que $f(x_n) \to f(x)$.

Demonstração. Já está feito supondo f contínua.

Para a recíproca, sejam $x \in X$ e $(B_n)_{n \in \mathbb{N}}$ base local para x. Seja A aberto em Y tal que $f(x) \in A$. Mostremos que existe V aberto tal que $x \in V \subset f^{-1}[A]$. Suponha, por contradição, que não existe. Então, para todo $n \in \mathbb{N}$, temos que $\bigcap_{k \leq n} B_k \not\subset f^{-1}[A]$. Seja $x_n \in \bigcap_{k \leq n} B_k$ tal que $f(x_n) \notin A$. Agora, observe que $x_n \to x$. De fato, seja $V \ni x$ aberto. Existe $n \in \mathbb{N}$ tal que $x \in B_n \subset V$. Portanto, para todo $m \geq n$, $x_m \in V$. Note, também, que $f(x_n) \nrightarrow f(x)$. De fato, veja que $f(x) \in A$, que é aberto e para todo $n \in \mathbb{N}$, $f(x_n) \notin A$, que é contradição.

Corolário 2.1.13. Sejam (X, d_1) e (Y, d_2) espaços métricos e $f: X \to Y$ uma função. Então, f é contínua se, e somente se, para toda sequência $(x_n)_{n\in\mathbb{N}}$ em X tal que $x_n \to x$, temos que $f(x_n) \to f(x)$.

Alongamentos

Alongamento 2.1.14. Mostre que $f: X \longrightarrow Y$ é contínua se, e somente se, $f^{-1}[F]$ é fechado (em X) para todo $F \subset Y$ fechado.

Alongamento 2.1.15. Mostre que na definição de função contínua poderíamos supor os abertos da imagem como sendo sendo básicos (isto é, os abertos em Y serem elementos de uma base \mathcal{B} fixada previamente).

Alongamento 2.1.16. Mostre o análogo do alongamento anterior para a definição de continuidade num ponto, trocando vizinhança por "elemento de uma base local" fixada.

Alongamento 2.1.17. Sejam (X_1, d_1) e (X_2, d_2) espaços métricos e f: Para aqueles que gostam $X_1 \to X_2$ uma função. Mostre que, para cada $x \in X_1$, são equivalentes: de ε 's e δ 's.

- (a) f contínua em x (com as topologia induzidas pelas métricas);
- (b) $\forall \varepsilon > 0, \exists \delta > 0, \forall y \in X, d_1(x, y) < \delta \rightarrow d_2(f(x), f(y)) < \varepsilon.$

Alongamento 2.1.18. Sejam (X, τ) e (Y, σ) espaços topológicos e $Z \subset X$ subespaço de X. Seja $f: X \to Y$ uma função contínua. Mostre que $(f \upharpoonright Z): Z \to Y$ é contínua.

Exercícios

Exercício 2.1.19. Seja (X, τ) espaço topológico. Seja A um aberto fechado em X. Mostre que a **função característica** de A é contínua. Isto é, que a função $\chi_A: X \longrightarrow \{0,1\}$ dada por

$$\chi_A(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{caso contrário} \end{cases}$$

é contínua (considere em $\{0,1\}$ a topologia discreta (ou a induzida por \mathbb{R} , que dá na mesma)).

Exercício 2.1.20. Sejam (X, τ) e (Y, σ) espaços topológicos. Sejam $F_1, ..., F_n \subset X$ fechados tais que $\bigcup_{i=1}^n F_i = X$. Seja $f: X \longrightarrow Y$ uma função.

- (a) Mostre que se $f \upharpoonright F_i$ é contínua para todo i = 1, ..., n, então f é contínua;
- (b) Note que a volta é imediata (mesmo que cada F_i não seja fechado).
- (c) Dê um exemplo para mostrar que a hipótese de que cada F_i ser fechado é necessária no item (a).

Exercício 2.1.21. Sejam (X, τ) e (Y, σ) espaços topológicos. Seja $(A_i)_{i \in I}$ família de abertos de X tal que $\bigcup_{i \in I} A_i = X$. Seja $f: X \longrightarrow Y$.

- (a) Mostre que se $f \upharpoonright A_i$ é contínua para todo $i \in I$, então f é contínua.
- (b) Note que a volta é imediata (mesmo que cada A_i não seja aberto).

Exercício 2.1.22. Sejam (X, τ) e (Y, ρ) espaços topológicos de Hausdorff, sendo que (X, τ) satisfaz o primeiro axioma de enumerabilidade.

- (a) Mostre que neste caso podemos melhorar a Proposição 2.1.12 para $f: X \longrightarrow Y$ é contínua se, e somente, para toda sequência $(x_n)_{n \in \mathbb{N}}$ convergente em X, temos que $(f(x_n))_{n \in \mathbb{N}}$ é convergente.
- (b) Mostre que se não tivermos axiomas de separação sobre os espaços, o resultado anterior não vale.

Exercício 2.1.23. Considere (X, τ) como sendo a reta esburacada e seja (Y, ρ) um espaço qualquer. Seja $f: X \longrightarrow Y$. Mostre que se $(x_n)_{n \in \mathbb{N}}$ é uma sequência convergente em X, então $(f(x_n))_{n \in \mathbb{N}}$ é uma sequência convergente em Y. Conclua que a hipótese sobre o primeiro axioma de enumerabilidade é essencial no exercício anterior (e na Proposição 2.1.12).

Alongamentos

Alongamento 2.1.24. Prove que a função $g: X \to \mathbb{R}$ dada na demonstração do Lema ?? satisfaz as condições (a) e (b).

Exercícios

Exercício 2.1.25. Sejam $f,g:X\to Y$ funções contínuas, onde Y é de Hausdorff.

- (a) Então o conjunto $E = \{x \in X : f(x) = g(x)\}$ é fechado.
- (b) Mostre a Proposição 2.2.2 a partir do item anterior.

2.2 Extensão de funções

Nesta seção vamos discutir um pouco sobre relações entre funções definidas apenas num subespaço com as funções definidas sobre o espaço todo.

Definição 2.2.1. Sejam (X, τ) e (Y, ρ) espaços topológicos. Seja $A \subset X$. Dadas $f: A \longrightarrow Y$ e $g: X \longrightarrow Y$ funções contínuas, dizemos que g é uma **extensão contínua** de f se f(a) = g(a) para todo $a \in A$.

Os valores num denso determinam, no máximo, uma função contínua:

Proposição 2.2.2. Sejam (X,τ) e (Y,ρ) espaços topológicos, onde (Y,ρ) é Veja uma generalização de Hausdorff. Se $D \subset X$ é denso e $f: X \longrightarrow Y$ e $g: X \longrightarrow Y$ são duas desse resultado no funções contínuas tais que f(d) = g(d) para todo $d \in D$, então f = g. Exercício 2.1.25

Demonstração. Suponha que não. Seja $x \in X$ tal $f(x) \neq g(x)$. Sejam A e B abertos disjuntos tais que $f(x) \in A$ e $g(x) \in B$. Note que $f^{-1}[A] \cap g^{-1}[B]$ é um aberto contendo x. Logo, existe $d \in f^{-1}[A] \cap g^{-1}[B]$. Note que $f(d) = g(d) \in A \cap B$, contradição.

Dissemos "no máximo" pois existem casos que uma função contínua num Na verdade, dada qualquer denso não admite qualquer extensão contínua: $f: \mathbb{R} \longrightarrow \mathbb{R}$, existe um

Na verdade, dada qualquer $f: \mathbb{R} \longrightarrow \mathbb{R}$, existe um denso $D \subset \mathbb{R}$ tal que f é contínua em tal denso [?].

Exemplo 2.2.3. Considere $f: \mathbb{N} \longrightarrow [0,1]$ dada por

$$f(n) = \begin{cases} 1 & \text{se } n \text{ \'e par} \\ 0 & \text{se } n \text{ \'e impar} \end{cases}$$

Note que f é contínua, \mathbb{N} é denso em $\mathbb{N} \cup \{\infty\}$ (espaço da sequência convergente) e não existe $g: \mathbb{N} \cup \{\infty\} \longrightarrow [0,1]$ contínua que estenda f.

Note que no mesmo exemplo, temos que f está definida num aberto e não pode ser estendida continuamente ao espaço todo. Na sequência, vamos apresentar um resultado sobre quando podemos estender uma função definida num fechado.

Na próxima demonstração usaremos muitas vezes o seguinte fato: Se (X,τ) é T_4 e F é um fechado contido num aberto V, então existe um aberto W tal que $F \subset W \subset \overline{W} \subset F$ (note que isto é, na verdade, equivalente a ser T_4 - veja o Alongamento 1.2.23).

[?].

Essa demonstração segue **Proposição 2.2.4.** Sejam (X,τ) espaço topológico T_4 e $f:A\to [0,1]$ contínua onde $A \subset X$ é fechado. Então existe $F: X \to [0,1]$ extensão contínua de f.

Demonstração. Para cada $r \in \mathbb{Q}$ e cada $s \in]0,1[\cap \mathbb{Q}, \text{ sejam}]$:

$$A_r = \{x \in A : f(x) \le r\}$$
$$U_s = X \setminus \{x \in A : f(x) \ge s\}$$

Note que, por continuidade, A_r é fechado, U_s é aberto e, se r < s, temos também que $A_r \subset U_s$.

Considere $(r_n, s_n)_{n \in \mathbb{N}}$ uma enumeração para $P = \{(r, s) : r, s \in \mathbb{Q} \text{ tais } \}$ que $0 \le r < s < 1$. Sobre P, considere a ordem $(r, s) \le (a, b)$ quando $r \le a$ e $s \leq b$. Note que, assim, (r,s) < (a,b) se $r \leq a$, $s \leq b$ e ocorre também $r \neq a$ ou $s \neq b$.

Vamos construir umas sequência $(H_n)_{n\in\mathbb{N}}$ de abertos de X de forma que

- (a) $A_{r_n} \subset H_n \subset \overline{H_n} \subset U_{s_n}$ para todo $n \in \mathbb{N}$
- (b) $\overline{H_m} \subset H_n$ se $(r_m, s_m) < (r_n, s_n)$.

Vamos fazer essa construção indutivamente. Por T_4 , podemos definir H_0 de forma que

$$A_{r_0}\subset H_0\subset \overline{H_0}\subset U_{s_0}$$

Suponha definido H_j satisfazendo as condições acima para todo j < n. Vamos definir H_n .

Considere $J = \{j \in \mathbb{N} : j < n, (r_j, s_j) < (r_n, s_n)\}$ e $K = \{k \in \mathbb{N} : k \leq \text{Os elementos de } J \text{ marcam } n, (r_n, s_n) < (r_k, s_k)\}$. Novamente por T_4 , podemos definir H_n de forma que os H's cujo fecho precisa

$$A_{r_n} \cup \bigcup_{j \in J} \overline{H_j} \subset H_n \subset \overline{H_n} \subset U_{s_n} \cap \bigcap_{k \in K} H_k$$

os H's cujo fecho precisa estar incluso em H_n . Já o elementos de K marcam os elementos onde $\overline{H_n}$ precisa

Podemos re-escrever a família $(H_n)_{n\in\mathbb{N}}$ construída acima como $(H_{(r,s)})_{(r,s)\in P}$ estar incluso. Note que, pela construção, temos

- (a) $A_r \subset H_{(r,s)} \subset \overline{H_{(r,s)}} \subset U_s$ para $(r,s) \in P$
- (b) $\overline{H_{(r,s)}} \subset H_{(a,b)}$ se (r,s) < (a,b).

Para $r \in \mathbb{Q} \cap [0, 1[$, considere

$$X_r = \bigcap_{s>r} \overline{H_{(r,s)}}$$

Defina também $X_r = \emptyset$ se r < 0 e $X_r = X$ se $r \ge 1$. Para cada $(r, s) \in P$, seja $t \in \mathbb{Q}$ tal que r < t < s. Note que

$$X_r \subset \overline{H_{(r,s)}} \subset H_{(t,s)} \subset \overline{H_{(t,s)}} \subset \bigcap_{u>s} \overline{H_{(s,u)}} = X_s$$

Além disso, se $r \in \mathbb{Q} \cap [0, 1]$, temos

$$A_r \subset X_r \cap A = A \cap \bigcap_{s>r} \overline{H_{(r,s)}} \subset A \cap \bigcap_{s>r} U_s = A_r$$

Assim, obtemos uma família $(X_r)_{r\in\mathbb{Q}}$ de fechados satisfazendo:

- (a) $X_r \subset \operatorname{Int}(X_s)$ se r < s
- (b) $X_r \cap A = A_r$ para todo $r \in \mathbb{Q}$.

Agora estamos prontos para definir $F: X \to [0,1]$. Para $x \in X$, defina

$$F(x) = \inf\{r \in \mathbb{O} : x \in X_r\}$$

Note que como $f(x) = \inf\{r \in \mathbb{Q} : x \in A_r\}$ para $x \in A$, temos que, de fato, F estende f. Além disso, temos que F é contínua já que, dados $a, b \in \mathbb{R}$ com a < b, temos

$$F^{-1}[]a,b[] = \bigcup_{(r,s)\in Q} (\operatorname{Int} X_s \setminus X_r)$$

onde $Q = \{(r, s) : r, s \in \mathbb{Q} \text{ e } a < r < s < b\}.$

Como consequência, obtemos um resultado que caracteriza os espços T_4 em termos de funções contínuas:

Teorema 2.2.5 (Lema de Urysohn). Seja (X, τ) espaço topológico. Então (X,τ) é T_4 se, e somente se, para todo $F,G\subset X$ fechados disjuntos, existe $f: X \to [0,1]$ continua tal que $f[F] = \{0\}$ e $f[G] = \{1\}$.

Demonstração. Considere $g: F \cup G \to \{0,1\}$ dada por g(x) = 0 se $x \in F$ e g(x) = 1 caso $x \in G$. Note que g é contínua. Assim, qualquer extensão contínua de tal g satisfaz o que precisamos.

Para a recíprova, basta notar que $f^{-1}[[0,\frac{1}{2}[] e f^{-1}[]\frac{1}{2},1]]$ são os abertos procurados.

Podemos pensar que espaços normais são aqueles em que funções contínuas separam fechados disjuntos. Ao tentarmos fazer o análogo para separação entre pontos e fechados, obtemos um novo axioma de separação:

um espaço completamente regular de um **espaço de** Tychonoff.

Alguns lugares chamam **Definição 2.2.6.** Dizemos que (X,τ) é $T_{3\frac{1}{2}}$ se, para todo $x\in X$ e $F\subset X$ fechado tal que $x \notin F$ existir $f: X \to [0, 1]$ contínua, tal que f(x) = 0 e f(y) = 1, para todo $y \in F$. No caso que (X, τ) também é T_1 , dizemos que (X,τ) é um espaço completamente regular.

> Veremos adiante que esse axioma é de fato um novo axioma de separação. Também veremos que ele tem um papel importante em compactificações.

> Também obtemos que as funções a serem estendidas não precisam ser limitadas:

> **Teorema 2.2.7** (de Tietze). Sejam (X,τ) espaço T_4 . Sejam $F \subset X$ fechado e $f: F \to \mathbb{R}$ função contínua. Então existe $F: X \to \mathbb{R}$ extensão contínua de f.

> Demonstração. Note que basta mostrarmos o resultado para $f: F \rightarrow]$ – 1,1 (pois existe $\varphi:]-1,1[\to \mathbb{R}$ bijetora contínua com inversa contínua e, portanto, o argumento segue via composições adequadas - veremos mais sobre isso em 2.4.14).

> Temos que existe $g: X \to [-1, 1]$ contínua que estende f (Veja o Alongamento 2.2.8). Seja $F' = g^{-1}[\{-1,1\}]$. Note que $F \in F'$ são fechados disjuntos. Pelo Lema de Urysohn, existe $h: X \to [0,1]$ contínua tal que $h[F] = \{1\}$ e $h[F'] = \{0\}$. Finalmente, note que a função desejada é $F: X \to]-1,1[$ dada por F(x) = g(x)h(x).

Alongamentos

Alongamento 2.2.8. Mostre que se X é T_4 e $M \subset X$ é um fechado, então para toda $f: M \to [a,b]$ contínua, existe $F: X \to [a,b]$ extensão contínua de f.

Alongamento 2.2.9. Mostre que todo espaço completamente regular é um espaço regular.

Exercícios

Exercício 2.2.10. Mostre que subespaços de espaços $T_{3\frac{1}{2}}$ são $T_{3\frac{1}{2}}$.

Exercício 2.2.11. Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de pontos de \mathbb{R} tal que $x_n \longrightarrow x \in \mathbb{R}$, $x_n \neq x_m$ se $n \neq m$ e $x_n \neq x$ para todo n. Seja também $(y_n)_{n\in\mathbb{N}}$ sequência de pontos de \mathbb{R} tal que $y_n \longrightarrow y \in \mathbb{R}$. Mostre que existe uma função contínua $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que f(x) = y e $f(x_n) = y_n$ para todo $n \in \mathbb{N}$.

2.3 Algumas aplicações

Com os resultados da seção passada, podemos discutir quando certos espaços são normais de forma simplificada. Vamos começar com o caso dos espaços métricos:

Definição 2.3.1. Sejam (X,d) espaço métrico e $A,B\subset X$ conjuntos não vazios. Definimos $d(A,B)=\inf\{d(a,b):a\in A,b\in B\}$. No caso $A=\{a\}$, denotamos d(A,B)=d(a,B) (analogamente para $B=\{b\}$).

Exemplo 2.3.2. Sejam (X, d) espaço métrico e $A \subset X$ um conjunto não vazio. Então, a função $f: X \to \mathbb{R}$, dada por f(x) = d(x, A) é contínua.

Demonstração. Seja $a \in A$ e sejam $x, y \in X$. Temos que $d(x, a) \leq d(x, y) + d(y, a)$. Logo, $d(x, A) \leq d(x, y) + d(y, A)$. Assim,

$$d(x, A) - d(y, A) \le d(x, y).$$

Analogamente, temos

$$d(y, A) - d(x, A) \le d(y, x).$$

Portanto, $|f(x) - f(y)| = |d(x, A) - d(y, A)| \le d(x, y)$. Com isso, temos que, dado $\varepsilon > 0$, para $x, y \in X$, temos que $d(x, y) < \varepsilon$ implica que $|f(x) - f(y)| < \varepsilon$. O que mostra que tal função é contínua (ver Alongamento 2.1.17 e lembre que a métrica usual em \mathbb{R} é dada por d(x, y) = |x - y|).

Corolário 2.3.3. Seja (X, d) um espaço métrico. Então, (X, d) é normal.

Demonstração. T_1 é imediato (já feito).

Sejam $F,G\subset X$ fechados disjuntos. Considere a função $f:X\to [0,1]$ A continuidade segue da dada por

 $f(x) = \frac{d(x, F)(1 - d(x, G))}{d(x, F) + d(x, G)}.$

Note que f é como no Lema de Urysohn e portanto temos o resultado. \Box

Vejamo agora uma maneira de usar os resultados anteriores para discutir quando certos espaços não são normais:

Exemplo 2.3.4. Considere (X, τ) como o plano de Niemytski (ver Exercício 1.3.36). Vamos mostrar que tal espaço não é normal. Faremos isso de duas maneiras (ambas usam um argumento de cardinalidade - escolha a que deixar você mais confortável).

Por ser T_1 , afirmar que X não é normal equivale a afirmar que X não é T_4 . Suponha, por absurdo, que X seja T_4 . Note primeiramente que $R = \mathbb{R} \times \{0\} = \{(x,0) : x \in \mathbb{R}\}$ é fechado em X e, como R é discreto, qualquer subconjunto $F \subset R$ é fechado em R e, portanto, também é fechado em X. Note que F e $R \setminus F$ são disjuntos e fechados em X. Vamos agora terminar de duas maneiras diferente:

- Aplicando o Teorema de Tietze, temos que, para cada $F \subset R$, existe $f_F: X \longrightarrow \mathbb{R}$ contínua tal que $f_F[F] = \{0\}$ e $f_F[R \setminus F] = \{1\}$. Note que, se $F \neq G$, então $f_F \neq f_G$. Logo, temos uma quantidade maior ou igual que $|\wp(R)|$ de funções contínuas saindo de X e chegando em \mathbb{R} . Por outro lado, seja $D \subset X$ denso enumerável. Então existem $|\wp(\mathbb{N})| = |\mathbb{R}|$ funções (contínuas ou não) saindo de D e chegando em \mathbb{R} . Logo, pela Proposição 2.2.2, existem, no máximo $|\mathbb{R}|$ funções contínuas saindo de X e chegando em \mathbb{R} . Como $|\wp(\mathbb{R})| > |\mathbb{R}|$, temos uma contradição.
- Aplicando diretamente o definição de T_4 , para cada $F \subset R$, existem abertos (em X) A(F) e B(F) disjuntos tais que $F \subset A(F)$ e $R \setminus F \subset B(F)$.

Vamos mostrar que, se $F \neq G$, então $A(F) \neq A(G)$. Sejam $F,G \subset R$ com $F \neq G$. Sem perda de generalidade, suponha $F \setminus G \neq \emptyset$. Como $F \setminus G = F \cap (R \setminus G)$, segue que $B(G) \cap A(F) \neq \emptyset$, mas como $A(G) \cap B(G) = \emptyset$, temos necessariamente $A(F) \neq A(G)$.

continuidade de operações básicas (exercício) e de que composta de funções

contínuas é contínua.

Isso é um fato que poder ser facilmente provado usando-se um pouco de teoria dos conjuntos.

Seja D denso enumerável em X. Defina $A'(F) = A(F) \cap D$ e B'(F) = $B(F)\cap D$. Por argumentação análoga à anterior, vemos que se $F\neq G$, então $A'(F) \neq A'(G)$. Assim, obtemos $\varphi : \wp(R) \to \wp(D)$ dada por $\varphi(F) = A'(F)$, uma função injetora, o que é absurdo, uma vez que $|\wp(R)| > |\wp(D)|.$

Estas duas demonstrações apresentadas aqui podem ser generalizadas pelo Lema de Jones (ver Exercício 2.3.6).

Exercícios

Exercício 2.3.5. Seja (X,d) espaço métrico. Sejam $F \subset X$ fechado. Mostre que, dado $x \in X$, d(x, F) = 0 se, e somente se, $x \in F$.

Exercício 2.3.6. Prove o seguinte caso particular do Lema de Jones: Seja (X,τ) espaço topológico separável. Se existe $D\subset X$ discreto fechado tal que $|D| = \mathfrak{c}$ (cardinalidade do contínuo), então (X, τ) não é T_4 .

2.4 Homeomorfismos

Nesta seção vamos apresentar como formalizar a ideia que dois espaços são o mesmo do ponto de vista topológico.

Definição 2.4.1. Sejam (X,τ) e (Y,σ) espaços topológicos. Dizemos que uma função $f: X \to Y$ é um **homeomorfismo**, se f é bijetora, contínua e f^{-1} é contínua. Neste caso, dizemos que (X,τ) e (Y,σ) são **homeomorfos**.

Intuitivamente, mostrar que dois espaços dados são homeomorfos é "fácil": basta exibir um homeomorfismo. Por outro lado, mostrar que dois espaços É lógico que às vezes é não são homeomorfos costuma ser uma tarefa mais "difícil": precisamos difícil de encontrar um homostrar que não existe um homeomorfismo. Nesse sentido, encontrar inva- meomorfismo, mas isso é riantes topológicos é bastante útil, já que se um dos espaços satisfaz algum outra história. invariante enquanto o outro não, já temos automaticamente a não existência de homeomorfismos.

Definição 2.4.2. Chamamos uma propriedade P de um invariante to**pológico**, se ela é preservada por homeomorfismos (isto é, se (X, τ) e (Y, σ) são espaços homemorfos, então (X,τ) tem a propriedade P se, e somente se, (Y, σ) tem).

Exemplo 2.4.3. Todos os axiomas de separação e de enumerabilidade que ral é muito mais fácil veapresentamos são invariantes topológicos. Por exemplo, provamos no Co- rificar invariantes do que rolário 2.1.8 que se X é separável e $f: X \longrightarrow Y$ é contínua e sobrejetora, construir homeomorfismos

Por causa desse tipo de truque, na prática muitas vezes a situação é o inverso do que a intuição pode dizer num primeiro momento, já que em geno braço.

então Y também é separável. Assim, se f é um homeomoforfismo entre X e Y, temos que o fato de X ser separável implica Y ser separável. Já a função f^{-1} nos dá que Y ser separável implica que X também é. Veja também o Exercício 2.4.25.

Nem tudo que é discutido no âmbito de espaços métricos é topológico, como o próximo exemplo ilustra:

Exemplo 2.4.4. Seja o conjunto $X = \{\frac{1}{n} : n \in \mathbb{N}_{>0}\}$. Sobre este conjunto podemos ter a métrica d_1 , herdada da métrica usual em \mathbb{R} e, também, podemos ter a métrica discreta d_2 , dada por

$$d_2(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

O espaço (X, d_1) não é completo, pois $(\frac{1}{n})_{n \in \mathbb{N}_{>0}}$ é uma sequência de Cauchy que não converge em (X, d_1) . Por outro lado, (X, d_2) é completo, pois com a métrica discreta, qualquer espaço é completo.

A métrica d_1 induz a topologia τ sobre X que é a topologia induzida de \mathbb{R} sobre X. Por outro lado, a métrica d_2 induz a topologia discreta σ sobre X. Note que, neste caso, $\tau = \sigma$. Portanto, a função $f:(X,d_1) \to (X,d_2)$, dada por f(x) = x é um homeomorfismo.

Veja o Alongamento 2.4.16

Logo, apesar da propriedade "ser sequência convergente" ser um invariante topológico, a propriedade "ser sequência de Cauchy" não é.

Vamos terminar esta seção mostrando alguns resultados envolvendo a topologia da ordem e dando uma caracterização para o reais (a menos de homeomorfismos).

Definição 2.4.5. Seja (X, \leq) um conjunto ordenado. Dizemos que \leq é uma ordem total se, para todo $x, y \in X$, vale $x \leq y$ ou $y \leq x$.

Definição 2.4.6. Seja (X, \leq) um conjunto totalmente ordenado. Chamamos de **topologia da ordem** sobre (X, \leq) a topologia gerada pelos seguintes conjuntos (para todo $a, b \in X$):

- (a) $]a,b[=\{x \in X : a < x < b\};$
- (b) $[a, b] = \{x \in X : a \le x < b\}, \text{ caso } a = \min X;$
- (c) $[a, b] = \{x \in X : a < x \le b\}$, caso $b = \max X$.

Exemplo 2.4.7. As topologias usuais sobre \mathbb{R} , \mathbb{Q} , \mathbb{N} e [0,1] são as topologias induzidas pelas ordens usuais dos respectivos conjuntos.

Definição 2.4.8. Sejam (X, \leq) e (Y, \preceq) espaços ordenados. Dizemos que $f: X \longrightarrow Y$ é um **isomorfismo de ordem** se f é bijetora e, para todo $a, b \in X$, temos $a \leq b$ se, e somente se, $f(a) \leq f(b)$.

Definição 2.4.9. Seja (X, \leq) um conjunto totalmente ordenado. Dizemos que \leq é uma **ordem densa** se para todo $x, y \in X$, com x < y, existe $z \in X$ tal que x < z < y.

Exemplo 2.4.10. Os conjuntos \mathbb{R} , \mathbb{Q} e [0,1] têm as ordens usuais densas enquanto N não tem.

Vamos apresentar uma maneira de caracterizar os reais com esta linguagem. Para isso, vamos apresentar antes outra caracterização interessante, mas esta sobre os racionais. O seguinte lema será bem útil na demonstração:

Lema 2.4.11. Seja $\{a_0,...,a_{n+1}\}$ conjunto totalmente ordenado e seja Y Não estamos supondo aqui um conjunto totalmente ordenado com ordem densa e sem maior nem menor que os a_i 's estão na ordem elemento. Dada $f: \{a_0, ..., a_n\} \longrightarrow Y$ função injetora que preserva ordem, indicada. existe $f: \{a_0, ..., a_{n+1}\} \longrightarrow Y$ extensão de f que é injetora e que preserva a ordem.

Demonstração. Note que só precisamos definir $f(a_{n+1})$ de forma a preservar a ordem. Temos três casos. Caso 1, $a_{n+1} < a_k$ para todo $k \le n$; caso 2, $a_{n+1} > a_k$ para todo $k \le n$; caso 3, existem $i, j \le n$ tais que $a_i < a_{n+1}$ e $a_{n+1} < a_i$. Vamos resolver o caso 3, os outros são análogos. Sejam

$$E = \max\{a_i : a_i < a_{n+1}, i \le n\}$$

$$D = \min\{a_j : a_{n+1} < a_j, j \le n\}$$

Note que, como a ordem de Y é densa, existe $y \in]f(E), f(D)[$. Defina $f(a_{n+1}) = y.$

Note que no caso 3 usamos que Y tem ordem Faça um rascunho para perceber que a não existência de máximo e mínimo são usados nos outros dois casos.

Teorema 2.4.12. Todo conjunto enumerável, totalmente ordenado com uma ordem densa e sem maior nem menor elementos é isomorfo (e, portanto, homeomorfo) a \mathbb{Q} .

Veja o Exercício 2.4.19

Demonstração. Seja (X, \leq) como no enunciado e $\{x_n : n \in \mathbb{N}\}$ uma enumeração para X. Seja, também, $\{q_n : n \in \mathbb{N}\}$ uma enumeração para \mathbb{Q} . Vamos definir indutivamente $f: X \to \mathbb{Q}$ um isomorfismo de ordem. Primeiramente, definimos $f(x_0) = q_0$.

Agora aplique o lema anterior para os conjuntos $\{x_0, x_1\}$ e $\mathbb{Q} \setminus \{q_0\}$. Desta forma, agora temos definidos $f(x_0)$ e $f(x_1)$. Agora invertemos um pouco o papel e estendemos f^{-1} da seguinte forma: aplicamos o lema para $Im(f) \cup \{q_k\}$ e $X \setminus dom(f)$ onde $k = \min\{n : q_n \notin Im(f)\}$. Daí estendemos f^{-1} para q_k . No passo seguinte, invertemos novamente e aplicamos o lema para $dom(f) \cup \{x_k\}$ e $\mathbb{Q} \setminus Im(f)$, onde $k = \min\{n : x_n \notin dom(f)\}$ e estendemos f para x_k . Continuamos esse processo, sempre alternando a extensão (entre f e f^{-1}).

Note que, no final, temos que a f obtida preserva ordem e é injetora. Note que ela está definida para todo x_n , já que sempre tomamos o menor índice na hora de estender f e, da mesma forma, temos que f é sobrejetora pois sempre tomamos q_n de menor índice na hora de estender f^{-1} .

Finalmente, a caracterização para os reais:

Teorema 2.4.13. Todo espaço totalmente ordenado, com ordem densa, sem maior nem menor elementos, completo e separável é homeomorfo a \mathbb{R} .

Demonstração. Seja (X, \leq) como no enunciado. Seja $D \subset X$ denso e enumerável. Vamos mostrar que D satisfaz as hipóteses do teorema anterior (Teorema 2.4.12).

Suponha por contradição que D possua maior elemento m. Sejam $x_1, x_2 \in X$ tais que $m < x_1 < x_2$ (tais elementos existem pois X não possui maior elemento). Note que $]m, x_2[\neq \emptyset \text{ e }]m, x_2[\cap D = \emptyset]$. Mas isso é uma contradição pois D é denso em X. Analogamente, D não tem menor elemento.

Suponha que a ordem de D não seja densa. Então, existem $d_1, d_2 \in D$ tais que $d_1 < d_2$ e $]d_1, d_2[\cap D = \emptyset]$. Mas, como a ordem em X é densa, $]d_1, d_2[\neq \emptyset]$, o que é, novamente, uma contradição com o fato de D ser denso em X.

Desta forma, podemos tomar $f: D \to \mathbb{Q}$ o isomorfismo dado pelo teorema anterior. Vamos estender f para X da seguinte forma:

$$\tilde{f}(x) = \sup\{f(d): d \in D, d \leq x\}$$

Note que, pela densidade de D, \tilde{f} preserva a ordem. Pela completude de X, temos que \tilde{f} é bijetora (veja o Exercício 2.4.18).

Corolário 2.4.14. Sejam $a, b \in \mathbb{R}$, com a < b. Então,]a, b[é homeomorfo $a \mathbb{R}$.

Alongamentos

Alongamento 2.4.15. Mostre que composição de homeomorfismos é um homeomorfismo.

Alongamento 2.4.16. Mostre que "ser uma sequência convergente" é um invariante topológico.

Alongamento 2.4.17. Seja $\{\frac{1}{n}: n \in \mathbb{N}_{>0}\} \cup \{0\}$ com a topologia induzida por \mathbb{R} . Mostre que tal espaço e o espaço da sequência convergente (Exemplo 2.1.9) são homeomorfos.

Exercícios

Exercício 2.4.18. Mostre que a função \tilde{f} construída na demonstração de 2.4.13 é bijetora.

Exercício 2.4.19. Se X e Y são conjuntos totalmente ordenados e com a topologia da ordem, mostre que se $f: X \longrightarrow Y$ é um isomorfismo de ordem, então f é um homeomorfismo (quando X e Y são considerados com as topologias da ordem).

Exercício 2.4.20. Mostre que todo espaço com uma topologia da ordem sempre é de Hausdorff.

Exercício 2.4.21. Seja (X, \leq) conjunto totalmente ordenado e com a topologia da ordem. Mostre que se X tem um **ponto isolado** (x é isolado se $\{x\}$ é aberto) então \leq não é uma ordem densa. Dê um exemplo de que não vale a volta.

Exercício 2.4.22. Mostre que \mathbb{Q} e $\mathbb{Q} \setminus \{0\}$ são homeomorfos.

Exercício 2.4.23. Dizemos que (X, τ) é um **espaço homogêneo** se para todo $x, y \in X$, existe $f: X \longrightarrow X$ homomorfismo de forma que f(x) = y.

- (a) Mostre que \mathbb{R} é homogêneo.
- (b) Mostre que a, b é homogêneo.
- (c) Mostre que $\mathbb{N} \cup \{\infty\}$ como no espaço da sequência convergente (Exemplo 2.1.9) não é homogêneo.

Exercício 2.4.24. Dizemos que $f: X \longrightarrow Y$ é uma função aberta se f[A] é aberto para todo A aberto em X (definimos uma função fechada de maneira análoga). Mostre que, se f é um homeomorfismo, então f é aberta.

Exercício 2.4.25. Seja $f: X \longrightarrow Y$ uma função contínua, injetora e aberta. Mostre que, se \mathcal{B} é uma base em Y, então $\{f^{-1}[B]: B \in \mathcal{B}\}$ é uma base em X.

Capítulo 3

Produto

3.1 Definição e conceitos básicos

Nesta seção, vamos apresentar como fazer o produto entre espaços topológicos. Vamos começar com o produto finito e provar algumas propriedades básicas. Depois, quando fizermos o produto geral, veremos que esses resultados são casos particulares. Mas optamos por esta ordem para acostumar o leitor com algumas notações e ideias.

Definição 3.1.1. Sejam (X, τ) e (Y, σ) espaços topológicos. Definimos a **topologia produto** sobre $X \times Y$ como a topologia gerada pelos conjuntos da forma $A \times B$, onde $A \in \tau$ e $B \in \sigma$.

Observação 3.1.2. Se \mathcal{B}_1 e \mathcal{B}_2 são bases para (X, τ) e (Y, σ) respectivamente, então $\mathcal{B} = \{B_1 \times B_2 : B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2\}$ é base para $X \times Y$ (veja o Alongamento 3.1.10).

Proposição 3.1.3. Se (X, τ) e (Y, σ) são espaços de Hausdorff, então $X \times Y$ também é.

Demonstração. Sejam $(a,b),(x,y)\in X\times Y$ distintos. Suponha, sem perda de generalidade, $x\neq a$. Então, existem $U,V\in \tau$ disjuntos tais que $x\in U$ e $a\in V$. Note que $(x,y)\in U\times Y, (a,b)\in V\times Y$ e tanto $U\times Y$, quanto $V\times Y$, são abertos disjuntos.

Proposição 3.1.4. Sejam (X, τ) e (Y, σ) espaços topológicos, sendo (Y, σ) espaço de Hausdorff e $f: X \to Y$ uma função contínua. Então, o **gráfico** de f $(G = \{(x, f(x)) : x \in X\})$ é fechado em $X \times Y$.

Demonstração. Seja $(x,y) \notin G$. Então, $y \neq f(x)$. Sejam $A, B \in \sigma$ disjuntos tais que $y \in A$ e $f(x) \in B$. Como f é contínua, seja V aberto de X tal que $x \in V$ e $f[V] \subset B$. Note que $(x,y) \in V \times A$ e $(V \times A) \cap G = \emptyset$. De fato, se $z \in V$, então $f(z) \in B$. Portanto, $f(z) \notin A$ e $(z, f(z)) \notin V \times A$.

Considere a função $\pi_X: X \times Y \to X$ dada por $\pi_X(x,y) = x$. Note que π_X é contínua $(\pi_X^{-1}[A] = A \times Y)$. Esta função é chamada de **função projeção** em X. O fato de querermos que este tipo de função seja contínua motiva a definição da topologia produto em geral: faremos a "menor" topologia que faz com que estas funções sejam contínuas.

Definição 3.1.5. Seja \mathcal{F} uma família de funções da forma $f_{\alpha}: X \to Y_{\alpha}$, $\alpha \in A$, em que X é um conjunto e cada $(Y_{\alpha}, \tau_{\alpha})$ é um espaço topológico. Chamamos de **topologia fraca** induzida por \mathcal{F} a topologia sobre X gerada pelos conjuntos da forma $f_{\alpha}^{-1}[V]$, onde $\alpha \in A$ e $V \in \tau_{\alpha}$. Note que, desta forma, cada f_{α} é contínua (veja o Alongamento 3.1.13).

Agora temos todo o material para definir o produto no caso geral:

Definição 3.1.6. Seja $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ uma família de espaços topológicos. Defina o **produto** dos $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ como

$$\prod_{\alpha \in A} X_{\alpha} = \{(x_{\alpha})_{\alpha \in A} : x_{\alpha} \in X_{\alpha}\}$$

com a topologia fraca induzida pelas funções $(\pi_{\alpha})_{\alpha \in A}$ onde cada $\pi_{\alpha} : \prod_{\beta \in A} X_{\beta} \to X_{\alpha}$ é dada por $\pi_{\alpha}((x_{\alpha})_{\alpha \in A}) = x_{\alpha}$ (chamamos x_{α} de α -ésima **coordenada** de $(x_{\alpha})_{\alpha \in A}$).

Esta topologia é chamada de **topologia produto** sobre $\prod_{\alpha \in A} X_{\alpha}$ (ou **topologia de Tychonoff**).

Observação 3.1.7. Note que tal topologia é gerada pelos conjuntos da forma $\prod_{\beta \in A} V_{\beta}$, onde

$$V_{\beta} = \left\{ \begin{array}{ll} V & \text{se } \beta = \alpha \\ X_{\beta} & \text{se } \beta \neq \alpha \end{array} \right.$$

onde V é um aberto de X_{α} . Isso é verdade pois $\pi_{\alpha}^{-1}[V] = \prod_{\beta \in A} V_{\beta}$.

Fechando tal família por interseções finitas, temos uma base para a topologia. Ou seja, uma base para tal espaço é formada por conjuntos da forma:

$$\prod_{\alpha \in A} V_{\alpha}$$

onde $\{\alpha \in A : V_{\alpha} \neq X_{\alpha}\}$ é finito e cada V_{α} é aberto em X_{α} . Chamaremos tais abertos de **abertos básicos** do produto. Neste caso, também se costuma chamar de **suporte** do aberto o conjunto finito $\{\alpha \in A : V_{\alpha} \neq X_{\alpha}\}$.

Em geral, produto de abertos não é aberto: por exemplo, o produto $A=\prod_{n\in\mathbb{N}}]0,1+n[$ não é um aberto em $\prod_{n\in\mathbb{N}}\mathbb{R}$. De fato, o ponto $x=(\frac{1}{2})_{n\in\mathbb{N}}\in A$, mas não existe um aberto básico contendo x e contido em A. Para ver isso, suponha que V seja um aberto básico tal que $x\in V\subset A$. Seja n fora do suporte de V. Note que o ponto $y=(y_k)_{k\in\mathbb{N}}$ onde

$$y_k = \begin{cases} \frac{1}{2} & \text{se } k \neq n \\ -1 & \text{caso contrário} \end{cases}$$

é tal que $y \in V$ mas $y \notin A$.

Apesar de produto de abertos nem sempre ser aberto, o produto de fechados sempre é fechado:

Proposição 3.1.8. Se $(F_{\alpha})_{\alpha \in A}$ é uma família tal que cada F_{α} é um fechado em X_{α} , então $\prod_{\alpha \in A} F_{\alpha}$ é fechado em $\prod_{\alpha \in A} X_{\alpha}$.

Demonstração. Seja $x=(x_\alpha)_{\alpha\in A}\in\prod_{\alpha\in A}X_\alpha\smallsetminus\prod_{\alpha\in A}F_\alpha$. Logo, existe $\alpha\in A$ tal que $x_\alpha\notin F_\alpha$. Note que $V=\prod_{\beta\in A}V_\beta$ onde

$$V_{\beta} = \begin{cases} X_{\alpha} \setminus F_{\alpha} & \text{se } \beta = \alpha \\ X_{\beta} & \text{se } \beta \neq \alpha \end{cases}$$

é um aberto tal que $x \in V$ e $V \cap \prod_{\alpha \in A} F_{\alpha} = \emptyset$.

Vamos terminar esta seção mostrando como algumas propriedades de separação se comportam no produto:

Proposição 3.1.9. Se cada X_{α} é T_i , então $\prod_{\alpha \in A} X_{\alpha}$ é T_i , para $i \in \{0, 1, 2, 3\}$. Discutiremos as propriedades $T_{3\frac{1}{2}}$ e T_4 na próxima seção.

 T_1 Pela proposição anterior e pela caracterização dos unitários serem fechados.

 T_2 Sejam $x \neq y$ e $\alpha \in A$ tais que $x_{\alpha} \neq y_{\alpha}$. Sejam U e V abertos disjuntos de X_{α} tais que $x_{\alpha} \in U$ e $y_{\alpha} \in V$. Note que $\prod_{\beta \in A} U_{\beta}$ e $\prod_{\beta \in A} V_{\beta}$, onde

$$U_{\beta} = \left\{ \begin{array}{ll} U & \text{se } \beta = \alpha \\ X_{\beta} & \text{caso contrário} \end{array} \right.$$

$$V_{\beta} = \left\{ \begin{array}{ll} V & \text{se } \beta = \alpha \\ X_{\beta} & \text{caso contrário} \end{array} \right.$$

são abertos que separam x e y.

Um dos erros mais comuns aqui é simplesmente tomar uma vizinhança fechada em cada coordenada e tomar o produto de todas elas. O problema é que, apesar disso ser fechado, não é vizinhança (lembrando que produto infinito de abertos não necessariamente é aberto).

 T_3 Seja $x \in \prod_{\alpha \in A} X_\alpha$ e seja $\prod_{\alpha \in A} V_\alpha$ aberto básico (i.e., cada V_α é aberto em X_α e $\{\alpha \in A : V_\alpha \neq X_\alpha\}$ é finito). Para cada α tal que $V_\alpha \neq X_\alpha$ seja W_α aberto em X_α tal que $x_\alpha \in W_\alpha \subset \overline{W_\alpha} \subset V_\alpha$ (usando T_3). Note que $\prod_{\alpha \in A} W_\alpha^*$ é uma vizinhança fechada de x onde

$$W_{\alpha}^* = \left\{ \begin{array}{ll} \overline{W_{\alpha}}, & V_{\alpha} \neq X_{\alpha} \\ X_{\alpha}, & V_{\alpha} = X_{\alpha} \end{array} \right.$$

Note, também, que $\prod_{\alpha \in A} W_{\alpha}^* \subset \prod_{\alpha \in A} V_{\alpha}$.

Alongamentos

Alongamento 3.1.10. Sejam (X_1, τ_1) , (X_2, τ_2) espaços topológicos e sejam \mathcal{B}_1 e \mathcal{B}_2 bases para eles respectivamente. Mostre que $\mathcal{B} = \{B_1 \times B_2 : B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2\}$ é uma base para $X_1 \times X_2$.

Alongamento 3.1.11. Mostre que um espaço (X, τ) é de Hausdorff se, e somente se, $D = \{(x, x) \in X \times X : x \in X\}$ é fechado em $X \times X$.

Alongamento 3.1.12. Sejam (X, τ) e (Y, σ) espaços topológicos não vazios. Seja $y \in Y$.

- (a) Mostre que (X, τ) é homeomorfo a $X \times \{y\}$;
- (b) Se (Y, σ) é T_1 , mostre que $X \times \{y\}$ é fechado (em $X \times Y$).

Alongamento 3.1.13. Seja $(f_{\alpha})_{\alpha \in A}$ família de funções da forma $f_{\alpha}: X \longrightarrow X_{\alpha}$. Mostre que a topologia fraca em X induzida por tal família é a menor topologia sobre X tal que cada f_{α} é contínua.

Exercícios

Exercício 3.1.14. Seja $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ família de espaços topológicos. Para cada $\alpha \in A$, seja $B_{\alpha} \subset X_{\alpha}$. Mostre que $\overline{\prod_{\alpha \in A} B_{\alpha}} = \prod_{\alpha \in A} \overline{B_{\alpha}}$.

Exercício 3.1.15. Sejam (X_1, d_1) e (Y_1, d_1) espaços métricos.

- (a) Mostre que $d_E: (X_1 \times X_2)^2 \longrightarrow \mathbb{R}$ dada por $d_E((x_1, x_2), (y_1, y_2)) = O$ melhor para fazer $\sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$ é uma métrica sobre $X_1 \times X_2$ (**métrica eu-** esse exercício é olhar os clidiana).
 - exercícios extras abaixo.
- (b) Mostre que $d_T: (X_1 \times X_2)^2 \longrightarrow \mathbb{R}$ dada por $d_T((x_1, x_2), (y_1, y_2)) =$ $|x_1-y_1|+|x_2-y_2|$ é uma métrica sobre $X_1\times X_2$ (métrica do taxista).
- (c) Mostre que $d_M:(X_1\times X_2)^2\longrightarrow \mathbb{R}$ dada por $d_M((x_1,x_2),(y_1,y_2))=$ $\max\{|x_1-y_1|,|x_2-y_2|\}$ é uma métrica sobre $X_1\times X_2$ (**métrica do** máximo).
- (d) Mostre que todas a métricas dos itens anteriores induzem a topologia do produto entre $X_1 \times X_2$ (e, portanto, são todas equivalentes).

Exercícios extras

Definição 3.1.16. Seja V um espaço vetorial sobre \mathbb{R} . Chamos uma função conceito de norma que, em $\langle \cdot, \cdot \rangle : V \times V \longrightarrow \mathbb{R}$ de um **produto interno** se são satisfeitas as seguintes particular, ajuda a provar condições, para quaisquer $a, b, c \in V$ e $\lambda \in \mathbb{R}$:

Vamos apresentar aqui o que a métrica euclidiana é de fato uma métrica.

- (a) $\langle a+b,c\rangle = \langle a,c\rangle + \langle b,c\rangle$;
- (b) $\langle \lambda a, b \rangle = \lambda \langle a, b \rangle$:
- (c) $\langle a, b \rangle = \langle b, a \rangle$;
- (d) $\langle a, a \rangle > 0$ se $a \neq 0$

Exercício 3.1.17. Mostre que $\langle (a,b),(x,y)\rangle = ax+by$ é um produto interno em \mathbb{R}^2 . Este é o produto interno usual de \mathbb{R}^2 .

Exercício 3.1.18. Seja V espaço vetorial sobre \mathbb{R} com produto interno $\langle \cdot, \cdot \rangle$. Sejam $a, b \in V$.

- (a) Suponha $a \neq 0$. Mostre que $\langle a, b \lambda a \rangle = 0$, onde $\lambda = \frac{\langle a, b \rangle}{\langle a, a \rangle}$.
- (b) Suponha $a \neq 0$. Mostre que $\langle b, b \rangle = \langle b \lambda a, b \lambda a \rangle + \lambda^2 \langle a, a \rangle$, onde λ é o mesmo acima.

- (c) Suponha $a \neq 0$. Mostre que $\langle b, b \rangle \geq \frac{\langle a, b \rangle^2}{\langle a, a \rangle}$.
- (d) Mostre que $\langle a, b \rangle^2 \le \langle a, a \rangle \langle b, b \rangle$. Esta é a **desigualdade de Cauchy-Schwarz**.

Definição 3.1.19. Dado um espaço vetorial V sobre \mathbb{R} , dizemos que uma função $\|\cdot\|: V \longrightarrow \mathbb{R}$ é uma **norma** sobre V se, dados $u, v \in V$ e $\lambda \in \mathbb{R}$:

- (a) ||v|| > 0 se $v \neq 0$;
- (b) $\|\lambda v\| = |\lambda| \|v\|$;
- (c) $||u+v|| \le ||u|| + ||v||$.

Exercício 3.1.20. Seja V espaço vetorial sobre \mathbb{R} com produto interno $\langle \cdot, \cdot \rangle$ Mostre que a função $\|\cdot\|: V \longrightarrow \mathbb{R}_{\geq 0}$ dada por $\|a\| = \sqrt{\langle a, a \rangle}$ é uma norma sobre V. Chamamos tal norma de norma induzida pelo produto interno $\langle \cdot, \cdot \rangle$.

Exercício 3.1.21. Dada uma $\|\cdot\|$, mostre que $d(x,y) = \|x-y\|$ é uma métrica. Esta é a métrica induzida pela norma $\|\cdot\|$.

Exercício 3.1.22. Mostre que a métrica euclidiana em \mathbb{R}^2 é a métrica induzida pela norma induzida pelo produto interno usual de \mathbb{R}^2 .

3.2 Algumas propriedades sobre produtos

Vamos começar esta seção provando que os axiomas de enumerabilidade são preservados por produtos enumeráveis. Alguns destes resultados podem ser melhorados - veja a seção de exercícios extras abaixo.

Proposição 3.2.1. Seja $((X_n, \tau_n))_{n \in \mathbb{N}}$ família de espaços que satisfazem o i-ésimo axioma de enumerabilidade. Então, $\prod_{n \in \mathbb{N}} X_n$ também satisfaz o i-ésimo axioma de enumerabilidade.

Demonstração. • Primeiro axioma de enumerabilidade (base locais enumeráveis): seja $x = (x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n$. Seja, também, \mathcal{V}_n base local enumerável para cada x_n . Sem perda de generalidade, suponha que $X_n \in \mathcal{V}_n$. Note que

$$\{\prod_{n\in\mathbb{N}} V_n: V_n\in\mathcal{V}_n, \{m\in\mathbb{N}: V_m\neq X_m\} \text{ \'e finito}\}$$

é enumerável¹ e é uma base local para x. De fato, seja $A = \prod_{n \in \mathbb{N}} A_n$ aberto básico tal que $x \in A$. Para cada $n \in \mathbb{N}$ tal que $A_n \neq X_n$, seja $V_n \in \mathcal{V}_n$ de forma que $x_n \in V_n \subset A_n$ (existe pois \mathcal{V}_n é base local para x_n). Para n tal que $A_n = X_n$, defina $V_n = X_n$. Note que

$$x \in \prod_{n \in \mathbb{N}} V_n \subset \prod_{n \in \mathbb{N}} A_n$$

- Segundo axioma de enumerabilidade (base enumerável): análogo (veja Alongamento 3.2.15).
- Terceiro axioma de enumerabilidade (separabilidade): para cada $n \in \mathbb{N}$, seja D_n denso enumerável em X_n . Fixe $x = (x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n$. Defina

 $D = \{(y_n)_{n \in \mathbb{N}} : \exists F \subset \mathbb{N} \text{ finito tal que, para todo } n \in F, y_n \in D_n$ e, para todo $n \notin F, y_n = x_n\}.$

Note que D é enumerável. Seja $\prod_{n\in\mathbb{N}}V_n$ aberto básico não vazio. Seja $F\subset\mathbb{N}$ finito tal que, para $n\notin F$, $V_n=X_n$. Para cada $n\in F$, seja $y_n\in V_n\cap D_n$. Note que $(y_n)_{n\in\mathbb{N}}\in D\cap\prod_{n\in\mathbb{N}}V_n$, onde $y_n=x_n$, para $n\notin F$.

O próximo resultado é um bom teste para verificação de continuidade de uma função:

Teorema 3.2.2. Seja $f: X \to \prod_{\alpha \in A} X_{\alpha}$ uma função. Então f é contínua Um bom teste para ver se se, e somente se, para todo $\alpha \in A$, $\pi_{\alpha} \circ f$ é contínua. você está entendo é ver

Demonstração. Se f é contínua, então $\pi_{\alpha} \circ f$ é contínua (composta de contínuas). Por outro lado, seja $V = \prod_{\alpha \in A} V_{\alpha}$ um aberto básico e $F = \{\alpha \in A : V_{\alpha} \neq X_{\alpha}\}$ (note que F é finito). Temos assim

$$\begin{array}{rcl} f^{-1}[V] & = & f^{-1}\left[\bigcap_{\alpha \in F} \pi_{\alpha}^{-1}[V_{\alpha}]\right] \\ & = & \bigcap_{\alpha \in F} (\pi_{\alpha} \circ f)^{-1}[V_{\alpha}]. \end{array}$$

Note que o último termo é aberto pois é interseção finita de abertos. \Box

Observação 3.2.3. Note que o uso do resultado anterior muitas vezes se dá nesta forma:

f(x) dada por $(f_{\alpha}(x))_{\alpha \in A}$ é contínua se, e somente se, cada f_{α} é contínua.

Um bom teste para ver se você está entendo é ver quem são o domínio e o contra domínio de cada $\pi_{\alpha} \circ f$.

Note que a quantidade de conjuntos finitos de \mathbb{N} é enumerável e que, para cada F finito fixado, só existe uma quantidade enumerável de possibilidades de abertos.

Vejamos agora o comportamento dos últimos axiomas de separação com relação ao produto, começando com a propriedade $T_{3\frac{1}{5}}$, que é preservada:

Proposição 3.2.4. Se cada $(X_{\alpha}, \tau_{\alpha})$ é $T_{3\frac{1}{2}}$, então $\prod_{\alpha \in A} X_{\alpha}$ é $T_{3\frac{1}{2}}$.

 $\begin{array}{l} \textit{Demonstração}. \text{ Seja } x=(x_\alpha)_{\alpha\in A}\in \prod_{\alpha\in A}X_\alpha \text{ e } F\subset \prod_{\alpha\in A}X_\alpha \text{ fechado tal que } x\not\in F. \text{ Seja } V=\prod_{\alpha\in A}V_\alpha \text{ um aberto básico tal que } x\in V \text{ e } V\cap F=\emptyset. \\ \text{Seja } G=\{\alpha\in A: V_\alpha\neq X_\alpha\}. \text{ Para cada } \alpha\in G, \text{ seja } f_\alpha: X_\alpha\to [0,1] \text{ contínua tal que } f_\alpha(x_\alpha)=0 \text{ e } f_\alpha[X_\alpha\setminus V_\alpha]=\{1\} \text{ (estamos usando } T_{3\frac{1}{2}} \text{ nas coordenadas)}. \end{array}$

Considere $f: \prod_{\alpha \in A} X_{\alpha} \to [0,1]$ dada por $f(y) = \max\{f_{\alpha}(y_{\alpha}) : \alpha \in G\}$, onde $y = (y_{\beta})_{\beta \in A}$. Note que f(x) = 0. Além disso, $f[F] = \{1\}$, pois se $y \in F$, então existe α tal que $y_{\alpha} \notin V_{\alpha}$, com $\alpha \in G$ (caso contrário, teríamos $V \cap F \neq \emptyset$) e, portanto, $f_{\alpha}(y_{\alpha}) = 1$. Resta provar que f é contínua. De fato, para cada $\alpha \in G$, defina $g_{\alpha} = f_{\alpha} \circ \pi_{\alpha}$. Note que cada g_{α} é contínua (pois é composta de contínuas) e também que $f(x) = \max\{g_{\alpha}(x) : \alpha \in G\}$. Assim, f é contínua (ver Alongamento 3.2.13).

Agora veremos que a propriedade T_4 não é preservada:

Proposição 3.2.5. $\mathbb{R}_S \times \mathbb{R}_S$ não é um espaço normal, onde \mathbb{R}_S é a reta de Sorgenfrey. Em particular, produto de espaços normais não é necessariamente normal.

Demonstração. Considere \mathbb{R}_S . Como já vimos, \mathbb{R}_S é normal. Vamos mostrar que $\mathbb{R}_S \times \mathbb{R}_S$ não é normal. Considere $D = \{(x, -x) : x \in \mathbb{R}_S\}$. Note que D é discreto e fechado. De fato, os conjuntos da forma

$$[x,x+1[\cap [-x,-x+1[\cap D=\{(-x,x)\}$$

são abertos em D e, portanto, D é discreto. Para verificar que é fechado, basta notar que seu complementar é aberto (Exercício 3.2.14).

Note que $\mathbb{R}_S \times \mathbb{R}_S$ é separável. Logo, $\mathbb{R}_S \times \mathbb{R}_S$ tem um denso enumerável e um discreto fechado de tamanho contínuo. Logo, pelo Lema de Jones (Exercício 2.3.6), $\mathbb{R}_S \times \mathbb{R}_S$ não é normal.

Vamos agora caminhar para um teorema que iremos usar diversas vezes no texto: o Teorema da Imersão.

Definição 3.2.6. Sejam $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ uma família de espaços topológicos, (X, τ) um espaço topológico e $(f_{\alpha})_{\alpha \in A}$ uma família de funções da forma $f_{\alpha}: X \to X_{\alpha}$. Chamamos de **função diagonal** a função

$$\begin{array}{ccc} \Delta_{\alpha \in A} f_{\alpha} : & X & \to & \prod_{\alpha \in A} X_{\alpha} \\ & x & \mapsto & (f_{\alpha}(x))_{\alpha \in A} \end{array}$$

Observação 3.2.7. Se cada f_{α} é contínua, então $\Delta_{\alpha \in A} f_{\alpha}$ é contínua (pela Proposição 3.2.2).

Veremos agora condições para que exista uma cópia de X dentro de um produto. Depois, veremos que tal produto tem boas propriedades, sendo algumas hereditárias - o que vai permitir concluir novas propriedades sobre o próprio X.

Definição 3.2.8. Dizemos que $f: X \to Y$ é uma **imersão** se $f: X \to f[X]$ é um homeomorfismo. Dizemos neste caso que Y contém uma **cópia** de X (como subespaço).

Definição 3.2.9. Seja $\mathcal{F} = \{f_{\alpha} : X \to X_{\alpha} | \alpha \in A\}$. Dizemos que \mathcal{F} separa pontos se para quaisquer $x, y \in X$ distintos, existe $f \in \mathcal{F}$ tal que $f(x) \neq f(y)$. Dizemos que \mathcal{F} separa pontos de fechados se, para todo $x \in X$ e $F \subset X$ fechado tal que $x \notin F$, existe $f \in \mathcal{F}$ tal que $f(x) \notin \overline{f[F]}$.

Teorema 3.2.10 (Teorema da imersão). Seja $\mathcal{F} = \{f_{\alpha} : X \to X_{\alpha} | \alpha \in A\}$ família de funções contínuas. Se \mathcal{F} separa pontos, então $\Delta_{\alpha \in A} f_{\alpha} : X \to \prod_{\alpha \in A} X_{\alpha}$ é injetora. Se, além disso, \mathcal{F} separa pontos de fechados, então $\Delta_{\alpha \in A} f_{\alpha}$ é uma imersão.

Demonstração. Sejam $x,y\in X$ distintos. Então existe $\beta\in A$ tal que $f_{\beta}(x)\neq f_{\beta}(y)$. Logo

$$(\Delta_{\alpha \in A} f_{\alpha}(x))_{\beta} \neq (\Delta_{\alpha \in A} f_{\alpha}(y))_{\beta}$$

pois $\pi_{\beta}(\Delta_{\alpha \in A} f_{\alpha}(x)) = f_{\beta}(x)$ e $\pi_{\beta}(\Delta_{\alpha \in A} f_{\alpha}(y))_{\beta} = f_{\beta}(y)$.

Já temos que a aplicação é contínua pela Observação 3.2.7. Do parágrafo acima, $\Delta_{\alpha \in A} f_{\alpha}$ é injetora. Resta mostrar que $\Delta_{\alpha \in A} f_{\alpha}[F]$ é fechado (na imagem) para todo $F \subset X$ fechado (pois disso segue que sua inversa é contínua).

Sejam $z \in \overline{\Delta_{\alpha \in A} f_{\alpha}[F]} \cap \Delta_{\alpha \in A} f_{\alpha}[X]$ e $x \in X$ tais que $\Delta_{\alpha \in A} f_{\alpha}(x) = z$ e $z = (z_{\alpha})_{\alpha \in A}$. Vamos mostrar que $x \in F$ (e, portanto, que $z \in \Delta_{\alpha \in A} f_{\alpha}[F]$). Suponha que não. Logo existe $\beta \in A$ tal que $f_{\beta}(x) \notin \overline{f_{\beta}[F]}$ (pois tal família separa pontos de fechados). Seja $V_{\beta} \subset X_{\beta}$ aberto tal que $f_{\beta}(x) \in V_{\beta}$ e $V_{\beta} \cap f_{\beta}[F] = \emptyset$. Para todo $\alpha \in A$, com $\alpha \neq \beta$, denote $V_{\alpha} = X_{\alpha}$. Seja $V = \prod_{\alpha \in A} V_{\alpha}$. Note que $z \in V$, pois $z_{\beta} = f_{\beta}(x) \in V_{\beta}$. Note que $V \cap \Delta_{\alpha \in A} f_{\alpha}[F] = \emptyset$, pois $V_{\beta} \cap f_{\beta}[F] = \emptyset$. Logo $z \notin \overline{\Delta_{\alpha \in A} f_{\alpha}[F]}$, contradição. \square

Já vamos mostrar uma aplicação importante (e um pouco surpreendente) de tal teorema:

Proposição 3.2.11. Seja (X,τ) um espaço completamente regular. Então $\mathcal{F} = \{f: X \to [0,1] | f \text{ \'e continua}\} \text{ separa pontos de fechados.}$

Demonstração. Decorre diretamente da forma como construímos \mathcal{F} e do fato de X ser completamente regular.

O fato de podermos "comuitas consequências interessantes.

Corolário 3.2.12. Seja (X,τ) espaço topológico. Então (X,τ) é completalocar" X dentro de um mente regular se, e somente se, existe A tal que (X,τ) é homeomorfo a um espaço desta forma terá subespaço de $\prod_{\alpha \in A} [0,1]$.

> Demonstração. Como [0,1] é completamente regular, $\prod_{\alpha \in A} [0,1]$ é completamente regular e, portanto, qualquer um de seus subespaços também é. Reciprocamente, se (X,τ) for completamente regular, basta notar que $\mathcal{F} = \{f: X \to [0,1] | f \text{ \'e contínua} \}$ separa pontos de fechados. Assim, o resultado segue pelo Teorema da Imersão.

Alongamentos

Alongamento 3.2.13. Mostre que, se $f_1,...,f_n:X\longrightarrow \mathbb{R}$ são funções contínuas, então $g(x) = \max\{f_1(x), ..., f_n(x)\}$ é contínua (isso termina a demonstração da Proposição 3.2.4).

Alongamento 3.2.14. Mostre que o conjunto D construído na demonstração da Proposição 3.2.5 é fechado.

Alongamento 3.2.15. Mostre que, se cada $(X_n, \tau_n)_{n \in \mathbb{N}}$ tem base enumerável, então $\prod_{n\in\mathbb{N}} X_n$ também tem base enumerável.

Alongamento 3.2.16. Mostre diretamente que se (X, τ) e (Y, σ) são separáveis, então $X \times Y$ é separável.

Exercícios

Exercício 3.2.17. Considere $((X_n, d_n))_{n \in \mathbb{N}}$ espaços métricos. Sem perda de generalidade, podemos supor que cada d_n é limitada por 1 (ver o Exercício 1.1.68).

- (a) Mostre que $d: \prod_{n\in\mathbb{N}} X_n \times \prod_{n\in\mathbb{N}} X_n \longrightarrow \mathbb{R}$ dada por $d(x,y) = \sup\{d_n(x(n),y(n)):$ $n \in \mathbb{N}$ é uma métrica sobre $\prod_{n \in \mathbb{N}} X_n$. Esta é chamada de **métrica** produto.
- (b) Mostre que não necessariamente a topologia induzida pela métrica produto é a mesma que a topologia produto (induzida pela topologia de cada uma das coordenadas). Uma delas tem mais abertos que a outra. Qual?

(c) Mostre que se o produto tiver apenas finitas coordenadas, ambas topologias coincidem.

Exercício 3.2.18. O objetivo deste exercício é mostrar que \mathbb{R}_S (reta de Sorgenfrey) não tem base enumerável de uma maneira alternativa.

- (a) Suponha que \mathbb{R}_S tem base enumerável. Note que $\mathbb{R}_S \times \mathbb{R}_S$ também tem.
- (b) Considere D o conjunto determinado em 3.2.5. Note que tal conjunto não tem base enumerável.
- (c) Lembre que subsespaço de conjunto com base enumerável também tem base enumerável. Chegue numa contradição.

Exercício 3.2.19. Mostre que se $(X_i)_{i\in I}$ é uma família não enumerável tal que cada X_i tem pelo menos dois pontos, então todo G_{δ} (intersecção enumerável de abertos) não vazio em $\prod_{i\in I} X_i$ tem pelo menos dois pontos.

3.3 Exercícios extras

Exercício 3.3.1. O objetivo deste exercício é mostrar que $\prod_{\alpha \in A} \mathbb{N}$ é seresultado que mostra que parável se $|A| \leq \mathfrak{c}$ (\mathbb{N} com a topologia usual).

- (a) Note que podemos supor sem perda de generalidade que $A \subset \mathbb{R}$. Seja com produtos de compri- $\mathcal{B}_0 = \{]p, q[\cap A : p < q \in \mathbb{Q}\}$. Note que \mathcal{B}_0 é enumerável. mento contínuo. Nestes
- (b) Para cada n > 0, defina \mathcal{B}_n o conjunto de todos os subconjuntos de \mathcal{B}_0 com exatamente n elementos e que sejam 2-2 disjuntos. Note que cada \mathcal{B}_n é enumerável (use o fato que a quantidade de subconjuntos finitos de um conjunto enumerável é enumerável).
- (c) Fixe $n \geq 1$. Para cada $(a_1, ..., a_n) \in \mathbb{N}^n$ e cada $\{J_1, ..., J_n\} \in \mathcal{B}_n$ (vamos supor que $J_i < J_j$ se i < j Isto é, todo elemento de J_i é menor que todo elemento de J_j). Defina $f_{(a_1, ..., a_n), \{J_1, ..., J_n\}} : A \longrightarrow \mathbb{N}$ por

$$f_{(a_1,\dots,a_n),\{J_1,\dots,J_n\}}(\alpha) = \begin{cases} a_i & \text{se } \alpha \in J_i \\ 0 & \text{caso contrário} \end{cases}$$

Note que o conjunto de todas estas funções é enumerável (com n fixado). Seja D o conjunto de todas essas funções (com n variando). Note que D também é enumerável.

(d) Note que $D \subset \prod_{\alpha \in A} \mathbb{N}$.

Aqui vamos apresentar o resultado que mostra que a separabilidade ainda é preservada, mesmo com produtos de comprimento contínuo. Nestes exercícios, vamos usar um pouco mais de argumentos de teoria dos conjuntos do que o usual neste texto.

(e) Mostre que D é denso em $\prod_{\alpha \in A} \mathbb{N}.$

Exercício 3.3.2. O objetivo deste exercício é mostrar que se cada $(X_{\alpha}, \tau_{\alpha})$ é separável, então $\prod_{\alpha \in A} X_{\alpha}$ também é separável se $|A| \leq \mathfrak{c}$.

- (a) Fixe $D_{\alpha} \subset X_{\alpha}$ denso enumerável em cada X_{α} . Mostre que $\prod_{\alpha \in A} D_{\alpha}$ é denso em $\prod_{\alpha \in A} X_{\alpha}$;
- (b) Para cada $\alpha\in A,$ seja $\varphi_\alpha:\mathbb{N}\longrightarrow D_\alpha$ bijetora. Note que cada φ_α é contínua.
- (c) Defina $f:\prod_{\alpha\in A}\mathbb{N}\longrightarrow\prod_{\alpha\in A}D_{\alpha}.$ Mostre que f é contínua.
- (d) Conclua que $\prod_{\alpha \in A} X_\alpha$ é separável.

Dicas de alguns exercícios

1.1.62

d Para o lado $\overline{A} \subset A \cup \partial A$, considere $x \in \overline{A}$. Note que se $x \in A$, é trivial. No caso que $x \notin A$, mostre que $x \in \partial A$.

1.1.75

e Suponha que não e use os itens anteriores.

1.1.77

a Comece com $A \in \tau$ e $x \in A$. Use o fato que \mathcal{B} é base. Depois use a propriedade do enunciado. Mostre que $A \in \sigma$.

1.2.21 Veja a Proposição **1.1.16**.

1.2.30

- a Mostre que tal conjunto é fechado por intersecções finitas.
- **d** Considere o conjunto $\{\frac{1}{n}:n\in\mathbb{N}\smallsetminus\{0\}\}$. Mostre que tal conjunto não pode ser separado do ponto 0.
- 1.2.31 Lembre que os racionais são enumeráveis.
- 1.3.27 Fixe uma base local enumerável para cada ponto, mostre que a união de todoas elas forma uma base.
- **1.3.38** Veja a demonstração da proposição **1.2.20**. Use o fato da existência de uma base enumerável para construir o análogo das famílias $(A_n)_{n\in\mathbb{N}}$ e $(B_n)_{n\in\mathbb{N}}$.

1.3.39 Considere $\mathcal{A} = \{(B_1, B_2) \in \mathcal{B}^2 : B_1 \subset B_2\}$. Fixe $C' \in \mathcal{C}$. Para cada $(B_1, B_2) \in \mathcal{A}$, se existir $C \in \mathcal{C}$ de forma que $B_1 \subset C \subset B_2$, então escolha C_{B_1,B_2} como um destes elementos. Se não existir, simplesmente faça $C_{B_1,B_2} = C'$. Note que $\mathcal{C}' = \{C_{B_1,B_2} : (B_1, B_2) \in \mathcal{A}\}$ é enumerável. Mostre que \mathcal{C}' é base.

2.1.20

- a Use o Alongamento 2.1.14.
- **c** Considere $X = [0, 1], F_1 = \{0\} \in F_2 =]0, 1].$

2.1.22

- a Suponha $x_n \longrightarrow x$. Note que a sequência $y_{2n} = x_n$ e $y_{2n+1} = x$ também é convergente.
- **b** Veja o Exemplo ??.
- **2.4.16** Mostre que se $f: X \longrightarrow Y$ é um homeomorfismo, então $(x_n)_{n \in \mathbb{N}}$ é uma sequência convergente em X se, e somente se, $(f(x_n))_{n \in \mathbb{N}}$ é uma sequência convergente em Y. Lembre que funções contínuas levam sequências convergentes em sequências convergentes (Proposição 2.1.11).
- **2.4.18** Para mostrar que \tilde{f} é bijetora, considere $x \in RR$, mostre que f(a) = x, onde $a \sup \{d \in D : f(d) \le x\}$.
- **2.4.21** Considere $[0,1] \cup [2,0]$.

2.4.23

- **b** Use o Corolário 2.4.14 e o item (a).
- **3.1.13** Mostre que em tal topologia, cada uma das f_{α} 's é contínua. Mostre que se um dos abertos da definição da topologia fraca não estiver na topologia, então alguma das f_{α} 's não é contínua.
- **3.2.14** Considere $(x,y) \notin D$. Mostre que existe uma vizinhança básica de (x,y) que não intercepta D. Faça um desenho e separe em casos que fica mais fácil.
- **3.2.15** Considere conjuntos da forma $\prod_{n \in \mathbb{N}} B_n$ onde B_n é elemento de alguma base se $n < n_0$ e $B_n = X_n$ caso contrário.

- **b** Primeiro tome o conjunto de todos os subconjuntos com n elementos. Tal conjunto é enumerável pelo resultado do enunciado. Depois tome o subconjunto deste cujo os elementos sejam 2-2 disjuntos.
- \mathbf{c} Elas são indexadas por coisas enumeráveis (com n fixado).
- e Fixe um aberto básico. Olhe as coordenadas em que ele é diferente de \mathbb{N} . Escolha intervalos abertos disjuntos (de \mathbb{R}) em torno de tais coordenadas (que são finitas). Construa uma $f \in D$ com tais intervalos e que esteja no aberto básico.

3.3.2

- **b** Basta notar que ℕ é discreto.
- ${\bf d}$ Use o fato que imagem contínua de separável é separável e que denso em denso é denso.

Soluções de alguns exercícios

1.1.59

b Vamos mostrar que $X \setminus (F \cup G)$ é aberto. Se mostrarmos que $X \setminus (F \cup G) = (X \setminus F) \cap (X \setminus G)$, seguirá que o complementar de $F \cup G$ é aberto por ser a interseção (finita) de abertos, o que acarretará que $F \cup G$ é fechado. De fato, se $x \in X \setminus (F \cup G)$, segue que $x \in X$ e $x \notin F$ e $x \notin G$, e daí decorre que $x \in (X \setminus F) \cap (X \setminus G)$. Reciprocamente, se $x \in (X \setminus F) \cap (X \setminus G)$, segue que $x \in X$ e $x \notin F$ e $x \notin G$, ou equivalentemente, $x \in X$ e $x \notin F \cup G$, acarretando a igualdade desejada.

 ${f c}$ Note que se ${\cal A}$ é uma família não vazia de conjuntos, então

$$X \setminus \bigcap_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} X \setminus A$$

Da igualdade acima, e do fato de que cada membro de \mathcal{F} possui o complementar aberto, o temos (c).

1.1.60 Por definição, $\overset{\circ}{A}$ é a reunião dos abertos contidos em A. Daí, se $x \in V$ para algum V aberto contido em A, temos $x \in \overset{\circ}{A}$. A recíproca é imediata.

1.1.71 Seja $F \subset Y$ fechado em Y. Então $Y \setminus F$ é aberto em Y. Logo, existe $A \subset X$ um aberto em X tal que $A \cap Y = Y \setminus F$. Vamos mostrar que $F' = X \setminus A$ satisfaz o que desejamos. Primeiramente, note que F' é fechado em X (pois é complementar de um aberto). Agora só precisamos mostrar que, de fato,

$$F = F' \cap Y$$

Seja $y \in F$. Então $y \notin Y \setminus F$ e, portanto, $y \notin A$. Assim, $y \in X \setminus A$ e, portanto, $y \in Y \cap (X \setminus A) = F'$. A outra inclusão segue de maneira análoga (e é um bom alongamento para o leitor).

Agora precisamos mostrar que, dado F' fechado em X, $F' \cap Y$ é fechado em Y. Isso decorre imediatamente do fato que $Y \setminus (Y \cap F') = Y \cap (X \setminus F')$. Logo, $Y \setminus (Y \cap F')$ é aberto em Y e, portanto, $Y \cap F'$ é fechado em Y.

- **1.1.72** Suponha $F \subset Y$ fechado em Y. Então existe $F' \subset X$ fechado em X tal que $F' \cap Y = F$. Logo, F é fechado em X (por ser interseção de fechados). Agora suponha $F \subset Y$ fechado em X. Note que $F = F \cap Y$ e, portanto, F é fechado em Y.
- **1.1.73** Sejam (X,τ) um espaço topológico e $Y\subset X$ um subespaço aberto. Então $A\subset Y$ é aberto em Y se, e somente se, for aberto em X.

A demonstração é análoga a da Proposição 1.1.72.

1.1.76 Suponha $x \in \overline{A}$. Seja $V \in \mathcal{V}$, então existe $U \subset V$ aberto tal que $x \in U$. Como $x \in \overline{A}$, obtemos $U \cap A \neq \emptyset$ e, portanto, $V \cap A \neq \emptyset$.

Suponha que para todo $V \in \mathcal{V}, \ V \cap A \neq \emptyset$. Seja $U \subset X$ aberto tal que $x \in U$. Como \mathcal{V} é sistema fundamental de vizinhanças de x, existe $V \in \mathcal{V}$ tal que $x \in V \subset U$. Logo, como $V \cap A \neq \emptyset$, segue que $U \cap A \neq \emptyset$.

- **1.2.22** Supondo (X, τ) T_3 e fixando $x \in X$, a família $\mathcal{V}_x = \{\overline{A} : A \in \tau \text{ e} x \in A\}$ é um sistema fundamental de vizinhanças fechadas para x. Reciprocamente, supondo a existência de um sistema fundamental de vizinhanças fechadas podemos concluir que (X, τ) é T_3 .
- 1.2.25 Procedamos pela contrapositiva.

Suponha $\overline{\{x\}} = \overline{\{y\}}$, para quaisquer $x, y \in X$ distintos. Isso equivale a afirmar que a é ponto aderente de $\{x\}$ se, e somente se, a é ponto aderente de $\{y\}$ ou, equivalentemente, todo aberto que contém x também contém y, isto é, (X, τ) não é T_0 .

1.2.26 Supondo (X, τ) T_1 , provemos (b). Basta considerar $\mathcal{A} = \{A \in \tau : x \in A\}$. Por construção, vale que $\{x\} \subset \bigcap \mathcal{A}$. Por outro lado, se existisse $y \neq x$ tal que $y \in \bigcap \mathcal{A}$, então todo aberto de A que contém x também conteria y, o que contraria a hipótese de estarmos supondo (X, τ) T_1 .

Agora suponha que para todo $x \in X$, existe uma coleção \mathcal{A}_x de abertos tal que $\bigcap \mathcal{A}_x = \{x\}$. Defina $B_x = \{A \in \tau | x \in A\}$ e $\mathcal{V}_x = \{U \in \tau : (\exists A, B)(A \in A_x \text{ e } B \in B_x)(U = A \cap B)\}$. Claramente, \mathcal{V}_x é sfv para x e $\bigcap \mathcal{V}_x = \{x\}$.

Finalmente, se para cada $x \in X$ existir um sfv \mathcal{V}_x para x tal que $\bigcap \mathcal{V}_x = \{x\}$, então para $x \neq y$, segue que existem sistemas de vizinhanças \mathcal{V}_x e \mathcal{V}_y para x e y, respectivamente, tais que $\{x\} = \bigcap \mathcal{V}_x \neq \bigcap \mathcal{V}_y = \{y\}$, ou seja,

existem abertos $A_y \in \mathcal{V}_y$ e $A_x \in \mathcal{V}_x$ tais que $x \in A_x$ mas $y \notin A_x$ e $y \in A_y$ mas $x \notin A_y$, donde (X, τ) é T_1 .

1.2.27 Se (X, τ) é normal, então em particular $\{x\}$ é fechado. Assim, sejam F um fechado e $x \in X$ tais que $x \notin F$, isto é, $\{x\}$ e F são fechados disjuntos. Por X ser T_4 , existem abertos A e B disjuntos tais que $\{x\} \subset A$ e $F \subset B$, isto é, (X, τ) é T_3 e, por ser T_1 , X é regular.

Se (X, τ) for regular, novamente $\{x\}$ é fechado, para qualquer $x \in X$. Em particular, se $x \neq y$, $x \notin \{y\}$, logo existem abertos disjuntos A, B tais que $x \in A$ e $\{y\} \subset B$, logo (X, τ) é de Hausdorff.

Daí, se (X, τ) é Hausdorff, dados $x \neq y$ elementos de X, existem abertos disjuntos A, B tais que $x \in A$ e $y \in B$, em particular, por serem disjuntos, $x \in A$ e $y \notin A$ e $y \in B$ e $x \notin B$, implicando em (X, τ) ser T_1 .

Se (X, τ) é T_1 , então claramente também é T_0 .

1.3.26 Suponha que exista um aberto não vazio A tal que $A \cap D = \emptyset$. Então, $X \setminus A$ é um fechado diferente de X de modo que $D \subset (X \setminus A)$. Então, como \overline{D} é a interseção de todos os fechados que contém D, segue que $\overline{D} \neq X$ e D não é denso.

Agora, suponha que para qualquer aberto não vazio A, temos que $A\cap D\neq\emptyset$. Seja F um fechado tal que $D\subset F$, segue que $X\smallsetminus F$ é um aberto tal que $(X\smallsetminus F)\cap D=\emptyset$. Logo $X\smallsetminus F=\emptyset$ e, então, F=X. Portanto, X é o único fechado que contém D e $\overline{D}=X$.

2.1.18 Seja A um aberto em Y. Então, como f é contínua, $f^{-1}[A]$ é um aberto em X, e portanto, $f^{-1}[A] \cap Z$ é um aberto de Z. Por outro lado, como $(f \upharpoonright Z)^{-1}[A] = f^{-1}[A] \cap Z$, temos que $f \upharpoonright Z$ é contínua.

2.1.25

- a Seja $x \in X$ tal que $f(x) \neq g(x)$. Sejam V, W abertos disjuntos tais que $f(x) \in V$ e $g(x) \in W$. Como f e g são contínuas, existem A, B abertos tais que $x \in A \cap B$ e $f[A] \subset V$ e $f[B] \subset W$. Note que $(A \cap B) \cap E = \emptyset$.
- **2.4.20** Sejam (X, \leq) um conjunto totalmente ordenado e $x, y \in X$ tais que $x \neq y$. Suponha, sem perda de generalidade, que x < y. Então, se $x \neq \min X$ e $y \neq \max X$, temos que existem $\tilde{x}, \tilde{y} \in X$ de modo que $\tilde{x} < x < y < \tilde{y}$. Primeiramente, vamos fazer o caso em que existe $c \in X$ tal que $c \in X$ que $c \in X$ tal que c

Para os casos $x = \min X$ ou $y = \max X$, basta tomar conjuntos como [x, y[e]] e trabalhar como anteriormente.

3.1.11 Suponha que (X, τ) seja espaço de Hausdorff. Seja $(a, b) \in X \times X$, com $a \neq b$. Sejam, também, $A, B \in \tau$ disjuntos tais que $a \in A$ e $b \in B$. Note que $(A \times B) \cap D = \emptyset$ e $(a, b) \in A \times B$.

Suponha que D seja fechado. Sejam $a,b \in X$, com $a \neq b$. Logo, $(a,b) \notin D$ e existem $A,B \in \tau$ tais que $(a,b) \in A \times B$ e $(A \times B) \cap D = \emptyset$. Portanto, $A \cap B = \emptyset$.

3.2.13 Basta mostrar para n=2. Seja $x\in X$ e $\varepsilon\in\mathbb{R}_{>0}$. Como cada f_i é contínua, existe V_i tal que $f_i[V_i]\subset]f_i(x)-\varepsilon, f_i(x)+\varepsilon[$. Seja $V=V_1\cap V_2.$ Sem perda de generalidade, vamos supor que $f_1(x)\leq f_2(x)$ (e, portanto, $g(x)=f_2(x)$). Assim, dado $y\in V$, temos:

$$g(y) = \max\{f_1(y), f_2(y)\}$$

$$< \max\{f_1(x) + \varepsilon, f_2(x) + \varepsilon\}$$

$$\leq f_2(x) + \varepsilon$$

$$= g(x) + \varepsilon$$

Analogamente, provamos que $g(y)>g(x)-\varepsilon$ e, portanto, g é contínua no ponto x.

Referências Bibliográficas

[1] S. Willard. *General topology*. Dover Publications Inc., Mineola, NY, 2004.

Notação

Índice Remissivo