Prova 1 - Aplicações de teoria dos conjuntos - 2016

Nome: NUSP:

Pseudônimo:

Justifique suas respostas

1 Dizemos que $\mathcal{F} \subset \wp(\mathbb{R})$ é **bom** se cada $F \in \mathcal{F}$ é não enumerável e, dados $F, G \in \mathcal{F}$ distintos, $F \cap G$ é enumerável (poder ser finito sem problemas). Mostre que para todo \mathcal{F} bom, existe $\mathcal{G} \supset \mathcal{F}$ bom maximal.

2 Mostre que não existe $X \subset \mathbb{R}$ isomorfo a ω_1 (com as ordens usuais).

3	Suponha a hipótese do contínuo (isto é, existe uma bijeção entre ω_1 e 2^{ω}). uma cadeia (pela inclusão) de conjuntos de medida nula cuja união dá \mathbb{R} .	Mostre que existe
	and cadela (pera merasao) de conjuntos de medida maia edja amac da 22.	

4 Seja $A\subset\mathbb{R}^3$ subconjunto enumerável. Mostre que $\mathbb{R}^3\smallsetminus A$ é uma união de retas disjuntas.

Dicas:

- Entre dois reais tem um racional.
- Se um ponto não pertence a uma reta, tem só um plano que contém os 2.
- Indução e Lema de Zorn são coisas úteis.
- Conjuntos enumeráveis tem medida nula. Conjuntos não enumeráveis não dá para saber (pode ser qualquer coisa).