Exercícios de enumerabilidade

Grupo:

Definição 0.1. Dizemos que um conjunto X é enumerável¹ se $|X| = |\mathbb{N}|$.

1 Sejam A e B conjuntos enumeráveis. Mostre que $A \cup B$ é enumerável (para facilitar, mostre o caso em que eles são disjuntos).

2 Mostre que, se para cada $n \in \mathbb{N}$, X_n é enumerável, então $\bigcup_{n \in \mathbb{N}} X_n$ é enumerável (novamente, faça o caso em que eles são todos dois a dois disjuntos).

¹Em geral, um conjunto finito também é dito enumerável, mas vamos supor nestes exercícios que todos os conjuntos são infinitos para facilitar.

- 3 Seja X um conjunto enumerável. Para cada $n \in \mathbb{N}_{>0}$, considere $X_n = \{A \subset X : A \text{ tem } n \text{ elementos}\}.$
 - (a) Mostre que X_1 é enumerável.

(b) Seja $x \in X$. Lembre-se que existe $f: X \to X \setminus \{x\}$ bijetora. Mostre que $|X_n| = |Y|$, onde $Y = \{B \subset X \setminus \{x\} : B \text{ tem } n \text{ elementos}\}.$

(c)	Dado $r \in X$	mostre que $ W $	= X a	ande $W =$	$\{R \subset X :$	$r \in R \cap R$	2 tem n + 1	elementos}

(d) Mostre que cada X_n é enumerável.

Definição 0.2. Dizemos que um conjunto A é **finito** se A tem n elementos para algum n.

(e) Mostre que \mathcal{F} é enumerável, onde $\mathcal{F} = \{F \subset X : F \text{ \'e finito}\}.$