Topologia e conjuntos em exercícios

Mantido pelo grupo "Topologia do Interior"

Ferramentas do usuário

Ferramentas do site


lista:primostop

Essa é uma revisão anterior do documento!


Existência de infinitos primos

Considere $\tau = \{A \subset \mathbb{Z}:$ para todo a $\in$ A, existe b $\in \mathbb{N}_{>0}$ tal que $\{a + bz: z \in \mathbb{Z}\} \subset A \}$ uma topologia para $\mathbb{Z}$.

1 Mostre que $\tau$ é um topologia sobre $\mathbb{Z}$. Solução

2 Mostre que não existe um aberto não vazio que seja finito. Solução

3 Mostre que, dados $a \in \mathbb{Z}$ e $b \in \mathbb{N}_{>0}$, o conjunto $S(a,b) = \{a + bz: z \in \mathbb{Z}\}$ é aberto e fechado. Solução

4 Mostre que $\mathbb{Z} \setminus \{-1, 1\} = \bigcup_{p é primo} S(0,p)$.Solução

5 Mostre que existem infinitos primos. Solução

lista/primostop.1491069408.txt.gz · Última modificação: 2020/11/06 16:03 (edição externa)