Essa é uma revisão anterior do documento!
Chamamos uma ordem $\mathbb{P}$ de um forcing se existe $1 \in \mathbb{P}$ tal que $1 \geq p$ para todo $p \in \mathbb{P}$ e, para todo $p,q \in \mathbb{P}$ tais que $q \not \leq p$, existe $p' \leq q$ tal que $p' \perp p.$ Dado $p \in \mathbb{P}$, considere $\downarrow p = \{q \in \mathbb{P}: q \leq p \}$.
1 Se $\mathbb{P}$ possui um menor elemento, então $\mathbb{P}$ é unitária.
2 O conjunto $\{ \downarrow p: p \in \mathbb{P} \}$ forma uma base para uma topologia sobre $\mathbb{P}$.
3 Seja $(X,\tau)$ um espaço topológico. Então o conjunto $\{V \subset X: \mathring{\overline{V}} = V\}$ forma uma álgebra completa com as operações usuais (Lembre-se que os subconjuntos de $X$ que satisfazem $\mathring{\overline{V}} = V$ são chamados de abertos regulares).
4 Seja $p \in \mathbb{P}$. Se $A \subset \mathbb{P}$ é aberto e $p \in A$, então $\downarrow p \subset A$.
5 Dado $p \in \mathbb{P}$, temos que $\downarrow p$ é um aberto regular.
Denotamos por $RO(\mathbb{P})$ a álgebra completa dos abertos regulares (ou o completamento) de $\mathbb{P}$.
6 A função $\varphi: \mathbb{P} \rightarrow RO(\mathbb{P})$ dada por $\varphi(p) = \downarrow p$ é um isomorfismo de ordem sobre um conjunto denso de $RO(\mathbb{P})$. Dica
7 Sejam $A,B$ álgebras de Boole completas. Se existem $a: \mathbb{P} \rightarrow A$ e $b: \mathbb{P} \rightarrow B$ isomorfismos sobre subconjuntos densos em $A$ e $B$, então $A$ e $B$ são isomorfos. Dica
Dada $\varphi$ uma fórmula, denotamos por $p \vDash \varphi$ ($p$ força $\varphi$) se $\downarrow p \leq [[\varphi]]$, onde $[[ . ]]$ é tomado em relação a $RO(\mathbb{P})$.
8 Sejam $p,q \in \mathbb{P}$ e $\varphi$ uma fórmula. Então:
8.1 Se $p \vDash \varphi$ e $q \leq p$, então $q \vDash \varphi$.
8.2 $p \vDash ¬\varphi$ se, e somente se, não existe $q \leq p$ tal que $q \vDash \varphi$.
9 Dadas $\varphi$ e $\psi$ fórmulas, temos:
9.1 $p \vDash \varphi \wedge \psi$ se, e somente se, $p \vDash \varphi$ e $p \vDash \psi$.
9.2 $p \vDash \varphi \vee \psi$ se, e somente se, para todo $q \leq p$, existe $r \leq q$ tal que $r \vDash \varphi$ ou $r \vDash \psi$.
9.3 $p \vDash \varphi \rightarrow \psi$ se, e somente se, para todo $q \leq p, (q \vDash \varphi) \Rightarrow (q \vDash \psi)$.
10 Sejam $p \in \mathbb{P}$ e $\varphi$ fórmula. Então:
10.1 $p \vDash \forall x \varphi(x)$ se, e somente se, para todo $\dot{x}$ nome $p \vDash \varphi(\dot{x})$.
10.2 $p \vDash \exists x \varphi(x)$ se, e somente se, para todo $q \leq p$, existem $r \leq q$ e $\dot{x}$ nome tais que $r \vDash \varphi(\dot{x})$.
11 Sejam $p \in \mathbb{P}$, $\varphi$ fórmula e $y$ conjunto. Então:
11.1 $p \vDash \forall x \in \check{y}$ $\varphi(x)$, se, e somente se, $\not \exists p$ ($p \vDash \varphi$).
11.2 $p \vDash \exists x \in \check{y}$ $\varphi(x)$ se, e somente se, para todo $q \leq p$, existem $r \leq q$ e $x \in y$ tais que $r \vDash \varphi(\check{x})$.
12 Seja $\varphi$ fórmula. Então:
12.1 $[[\varphi]] = 0$ se, e somente se, $\not \exists p$ $p \vDash \varphi$.
12.2 $[[\varphi]] = 1$ se, e somente se, $\forall p$ $p \vDash \varphi$.
13 Sejam $p \in \mathbb{P}$ e $\varphi$ uma fórmula. Então existe $q \leq p$ tal que $q \vDash \varphi$ ou $q ¬\vDash \varphi$. Dica
14 Sejam $p \in \mathbb{P}$ e $\varphi$ uma fórmula. Se $p \vDash \varphi$, então $p \not \vDash ¬\varphi$.