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Quando retiramos vértices de um grafo de forma a deixá-lo desconexo, chamamos isso de
uma separação. Quando retiramos arestas de um grafo de forma a deixá-lo desconexo, chama-
mos isso de um corte. Vamos mostrar aqui que cortes e separações tem uma álgebra natural,
que será uma álgebra de Boole. De posse de uma álgebra de Boole, deveríamos entender quem
é seu espaço de ultrafiltros. Estes espaços que aparecem acabam sendo uma generalização na-
tural dos conceitos de espaços de extremidades e direções, contendo como caso especial ambos
estes objetos, nas suas versões em vértices ou arestas. Sendo espaços de ultrafiltros, eles serão
compactos, e assim veremos que eles formam uma compactificação do espaço de extremida-
des (via vértices ou via arestas), e também do próprio grafo em sua realização geométrica.
Na seção final, mostramos como o espaço de emaranhados (nossa tradução pros tangles, em
inglês), descritos no trabalho do Diestel [2] como também uma compactificação do grafo, é
o mesmo que a nossa compactificação. Assim, todos os espaços aqui definidos já eram co-
nhecidos - nossa contribuição se dá em trazer uma nova descrição deles, através da álgebra
de separações, e unificando esta construção com seu análogo natural via arestas, a álgebra de
cortes. (um aviso: todos os nossos grafos aqui são assumidos conexos, provavelmente)

1 Extremidades e direções, via vértices e arestas

Revisamos aqui rapidamente os espaços relevantes para este trabalho. Começamos com a
definição combinatória usual.

Definição (Raios, caudas, raios equivalentes e extremidades). Um caminho em um grafo é
uma sequência de vértices que são dois a dois adjacentes, de forma que todas os vértices e todas
as arestas desta sequência são distintas. Um raio é um caminho cuja sequência de vértices é
infinita. Uma cauda de um raio 𝜂 é um raio obtido excluindo os primeiros 𝑛 vértices de 𝜂,
para algum 𝑛 finito.

Consideramos dois raios equivalentes se existem infinitos caminhos vértice-disjuntos que
ligam vértices de um raio a vértices de outro. A classe de equivalência de um raio induzida
por essa relação é chamada de uma extremidade, e o conjunto de extremidades é denotado
Ω(𝐺).

Estas são as extremidades via vértices, e já já definiremos o análogo para arestas, que serão
as arestas-extremidades. Se a palavra for usada sem especificar qual dos dois é, geralmente ela
deve se referir a definição via vértice, que é a mais comum.
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O conjunto de extremidades admite uma topologia natural, se tornando o espaço de ex-
tremidades.

Definição (Espaço de extremidades). Seja 𝐹 um conjunto finito de vértices de um grafo 𝐺, e
𝜖 uma extremidade de 𝐺. Ao retirarmos de 𝐺 os elementos de 𝐹 , e todas as arestas adjacentes
a estes elementos, obtemos um grafo possivelmente desconexo, denotado 𝐺 \𝐹. 𝜖 deve conter
então uma cauda em alguma componente conexa de 𝐺, que chamamos de 𝐶 (𝐹, 𝜖). Defina
Ω(𝐹, 𝜖) = {𝜂 ∈ Ω(𝐺) | 𝐶 (𝐹, 𝜂) = 𝐶 (𝐹, 𝜖)}. Tomamos estes conjuntos, para todo 𝐹 fi-
nito e 𝜖 extremidade, como base para uma topologia em Ω(𝐺), chamado agora de espaço de
extremidades.

Temos uma primeira definição alternativa, que será equivalente a esta.

Definição (Direções). Dado um grafo 𝐺, uma direção 𝜌 é uma função que dado um conjunto
finito de vértices 𝐹 , retorna uma componente conexa 𝜌(𝐹) do grafo 𝐺 \ 𝐹. Pedimos que esta
função seja consistente com a inclusão: se 𝐹 ⊂ 𝐹′, então 𝜌(𝐹′) ⊂ 𝜌(𝐹). O conjunto de
direções de 𝐺 é denotado D(𝐺)

Topologizamos analogamente o conjunto de direções.

Definição (Espaço de Direções). Seja 𝐹 um conjunto finito de vértices de um grafo𝐺 e 𝜌 uma
direção. Definimos D(𝐹, 𝜌) = {𝜌′ ∈ D(𝐺) | 𝜌′(𝐹) = 𝜌(𝐹)}, e tomamos estes conjuntos
como base para uma topologia em D(𝐺), chamado agora de espaço de direções

Estes na verdade são o mesmo espaço, para quaisquer grafos.

Proposição 1 (Espaço de extremidades é homeomorfo ao espaço de direções). Seja𝐺 um grafo
e 𝜖 uma extremidade de𝐺. Defina 𝜌𝜖 como a função onde, dado um conjunto finito de vértices
𝐹 , 𝜌𝜖 (𝐹) é a componente conexa de 𝐺 \ 𝐹 que alguma cauda de 𝜖 pertence. Então 𝜌𝜖 é uma
direção e o mapa 𝜖 ↦→ 𝜌𝜖 é um homeomorfismo entre Ω(𝐺) e D(𝐺)

Demonstração: Em [3], no Teorema 2.2, temos a demonstração da bijeção, e não é difícil
ver que esta bijeção e sua inversa levam os abertos básicos de um espaço nos abertos básicos
do outro. �

Na definição de equivalência de raios, existe uma ênfase nos vértices: dois raios não são
equivalentes apenas quando existe um conjunto finito de vértices que, ao serem retirados,
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as caudas dos raios ficarão em componentes conexas diferentes. Poderíamos ter, alternati-
vamente, definido equivalência de raios como sendo raios que não podem ser separados por
finitas arestas. Isto nos leva a definição de extremidades por arestas.

Definição (Espaço de extremidades por arestas). Dois raios são ditos aresta-equivalentes se
existem infinitos caminhos aresta-disjuntos (mas não necessariamente vértices disjuntos) que
ligam vértices de um raio a vértices de outro. A classe de equivalência de um raio induzida por
essa relação é chamada de uma aresta-extremidade, e o conjunto de extremidades é denotado
Ω𝐸 (𝐺). Dada uma aresta-extremidade 𝜖 e um conjunto finito 𝐹𝐸 de arestas, se as retirarmos
do grafo deve existir apenas uma componente conexa 𝐶 (𝐹𝐸 , 𝜖) que alguma cauda de 𝜖 estará
contida. Colocamos uma topologia em Ω𝐸 (𝐺) como sendo a gerada pela base Ω𝐸 (𝐹𝐸 , 𝜀) =

{𝜂 ∈ Ω𝐸 (𝐺) | 𝐶 (𝐹𝐸 , 𝜖) = 𝐶 (𝐹𝐸 , 𝜂)}.

Da mesma forma, fazemos o análogo para arestas do espaço de direções.

Definição (Espaço de Direções por Arestas). Dado um grafo 𝐺, uma aresta-direção 𝜌 é uma
função que dado um conjunto finito de arestas 𝐹𝐸 , retorna uma componente conexa infinita
𝜌(𝐹) do grafo 𝐺 \ 𝐹𝐸 . Pedimos que esta função seja consistente com a inclusão: se 𝐹 ⊂ 𝐹′,
então 𝜌(𝐹′) ⊂ 𝜌(𝐹). O conjunto de aresta-direções de 𝐺 é denotado D𝐸 (𝐺). Seja 𝐹𝐸 um
conjunto finito de arestas de um grafo 𝐺 e 𝜌 uma aresta-direção. Definimos D𝐸 (𝐹𝐸 , 𝜌) =

{𝜌′ ∈ D𝐸 (𝐺) | 𝜌′(𝐹𝐸) = 𝜌(𝐹𝐸)}, e tomamos estes conjuntos como base para uma topologia
em D𝐸 (𝐺), chamado agora de espaço de direções por arestas.

Note que agora pedimos que nossas arestas-direções escolhem apenas componentes cone-
xas infinitas de 𝐺 \ 𝐹𝐸 . Não precisávamos pedir isto no caso de direções por vértices, pois a
própria definição já tem como consequência que apenas componentes infinitas são escolhidas.
Se permitíssemos a escolha de componentes finitas, o espaço de direções se tornaria um pouco
maior... que será o espaço de ultrafiltros que irá aparecer em breve. Antes de introduzi-lo,
vamos clarificar a relação das extremidades por arestas com as direções por arestas. Diferen-
temente no caso dos vértices, agora não temos o mesmo espaço:

Proposição 2 (Inclusão das aresta-extremidades nas aresta-direções). Existe um embedding
Ω𝐸 (𝐺) ↩−→ D𝐸 (𝐺). Toda aresta-direção que não está na imagem deste embedding é defi-
nida do tipo 𝜌𝑣 para um vértice 𝑣 de grau infinito, onde 𝜌𝑣 é a direção que escolhe sempre a
componente conexa que 𝑣 pertence.

Demonstração: O morfismo Ω𝐸 (𝐺) ↩−→ D𝐸 (𝐺) é o análogo para arestas do isomorfismo da
Proposição 1: é o que leva um raio 𝜖 à direção 𝜌 que dado um conjunto finito de arestas 𝐹 ,
temos que 𝜌(𝐹) é a componente conexa de 𝐺 \ 𝐹 que uma cauda do 𝜖 pertence. É rotineiro
verificar que isto é injetivo, contínuo e aberto sobre a imagem, como pode ser encontrado
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com um pouco mais de detalhe na Definição 2.1.2 de [4]. Lá também pode ser encontrado a
demonstração que as únicas direções via arestas faltando na imagem são as do tipo 𝜌𝑣. �

2 Álgebra de cortes

Definição (Álgebra de cortes). Em um grafo 𝐺, um par {𝐴,𝐵} de conjuntos de vértices de
𝐺 disjuntos é dito um corte se 𝐴 ∪ 𝐵 = 𝑉 (𝐺). O corte é finito se existem finitas arestas que
ligam vértices de 𝐴 com vértices de 𝐵.

O conjunto ℭ(𝐺) := {𝐴 ⊂ 𝑉 (𝐺) | {𝐴,𝑉 (𝐺) \ 𝐴} é corte finito} é naturalmente uma
álgebra de Boole sob as operações de união, interseção e complementar. Esta é dita a álgebra
de cortes finitos de 𝐺.

Veja que um elemento da álgebra de cortes define o mesmo corte que seu complementar. In-
tuitivamente, um elemento da álgebra de cortes é melhor visto como um corte ordenado, e seu
complementar se refere ao mesmo corte orientado ao contrário.

Se temos uma álgebra de Boole, deveríamos olhar para seu espaço de Stone associado, o
espaço de ultrafiltros. Para a álgebra de cortes finitos, vamos usar a notação T̃𝐸 (𝐺) para este
espaço - este nome esquisito vai ser justificado mais tarde.

Definição (Ultrafiltros de cortes finitos). O espaço de Stone associado à álgebra de cortes
finitos de um grafo 𝐺 é denotado como T̃𝐸 (𝐺). A sua topologia tem como base os conjuntos
𝑂(𝐴) := {𝑢 ∈ T𝐸 (𝐺) | 𝐴 ∈ 𝑢} para cada 𝐴 ∈ ℭ(𝐺). Dado um vértice 𝑣 de 𝐺, o ultrafiltro
definido por 𝑢𝑣 := {𝐴 ∈ ℭ(𝐺) | 𝑣 ∈ 𝐴} é dito o ultrafiltro do vértice 𝑣, e isto define
um mapa injetivo 𝑉 (𝐺) → T̃𝐸 (𝐺), que consideramos como uma inclusão. O conjunto de
ultrafiltros que não são de vértices é denotado como T𝐸 (𝐺).

Um detalhe importante: o ultrafiltro definido por 𝑢𝑣 pode não ser principal! Lembrando,
ultrafiltros principais são ultrafiltros que possuem menor elemento. Se 𝑣 for de grau finito,
então {𝑣} ∈ ℭ(𝐺) e assim é menor elemento de 𝑢𝑣. Mas se 𝑣 for de grau infinito, então isso
não precisa mais ocorrer. Por exemplo:

Exemplo (Ultrafiltro de vértice não principal). A estrela infinita enumerável
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tem como corte finito qualquer escolha de finitos ou cofinitos vértices-folha, isto é, os de
grau 1 ligados ao seu centro. Assim,ℭ(𝐸) � Finco(𝜔) = {𝐴 ⊂ 𝜔 | 𝐴 é finito ou 𝐴𝑐 é finito}.
Os únicos ultrafiltros desta álgebra são os principais que selecionam cada um dos vértices de
grau finito, ou, o ultrafiltro que seleciona todos os conjuntos infinitos, que é exatamente o
ultrafiltro do vértice central - e este é não principal.

Ultrafiltros sobre cortes finitos vão ser objetos que já conhecíamos antes.

Teorema 1 (Ultrafiltros de cortes são aresta-direções). Dado um grafo 𝐺 conexo, temos uma
sequência de embeddings

T𝐸 (𝐺)
𝜌•
↩−→ Ω𝐸 (𝐺) ↩−→ D𝐸 (𝐺)

𝑢•
↩−→ T̃𝐸 (𝐺)

Mais detalhadamente, a imagem do primeiro morfismo será {𝜖 ∈ Ω𝐸 (𝐺) |
não existe vértice infinitamente conectado a 𝜖} (estes são os raios que chamamos de raios
não dominados) e a imagem do terceiro morfismo {𝑢 ∈ T̃𝐸 (𝐺) | 𝑢 ≠

𝑢𝑣 para todo vértice 𝑣 de grau finito}.

Demonstração: O morfismo do meio é o descrito na Proposição 2. A partir de agora iden-
tificamos Ω𝐸 (𝐺) com sua imagem em D𝐸 (𝐺).

Vamos construir uma direção 𝜌𝑢 a partir de um ultrafiltro 𝑢 ∈ T𝐸 (𝐺), e mostrar que
na verdade 𝜌𝑢 = 𝜌𝜖 para algum raio 𝜖 ∈ Ω𝐸 (𝐺), construindo assim uma função T𝐸 (𝐺) →
Ω𝐸 (𝐺). Dado um conjunto finito de arestas 𝐹 , o grafo 𝐺 \𝐹 é dividido em um número finito
de componentes conexas {𝑆1, . . . , 𝑆𝑛} (como o grafo é conexo, infinitas componentes conexas
de 𝐺 \ 𝐹 implicaria em 𝐹 ser infinito). Como 𝐹 é finito, o corte (𝑆𝑖,

⋃
𝑗≠𝑖
𝑆𝑗) é um corte finito,

e logo 𝑆𝑖 ∈ ℭ(𝐺) para todo 𝑖. Como 𝑢 é ultrafiltro, um e apenas um dos 𝑆𝑖 deve pertencer
a 𝑢. Defina 𝜌𝑢 (𝐹) como sendo este 𝑆𝑖. Para mostrarmos que isto define uma direção, seja 𝐹′

um conjunto finito de arestas com 𝐹 ⊂ 𝐹′. Ao removermos mais arestas, cada 𝑆𝑖 se divide em
componentes conexas 𝑆𝑖1, . . . , 𝑆

𝑖
𝑚𝑖

. Todas estas formam o conjunto de componentes conexas
de 𝐺 \ 𝐹. Se 𝑆𝑖 ∈ 𝑢, não podemos ter 𝑆𝑗

𝑘
∈ 𝑢 para um 𝑗 ≠ 𝑖, pois 𝑆𝑗

𝑘
∩ 𝑆𝑖 = ∅. Logo,

temos um dos 𝑆𝑖
𝑘
∈ 𝑢 e assim 𝜌𝑢 (𝐹′) = 𝑆𝑖

𝑘
⊂ 𝑆𝑖 = 𝜌𝑢 (𝐹). Resta mostrar que não estamos

escolhendo nenhuma componente conexa finita. De fato, suponha que 𝜌𝑢 (𝐹) fosse finito,
digamos 𝜌𝑢 (𝐹) = {𝑣1, . . . , 𝑣𝑚}. Veja que todos os vértices estão conectados finitamente ao
resto do grafo e logo são todos de grau finito. Assim, temos {𝑣𝑖} ∈ ℭ(𝐺) para todo 𝑖 e
portanto um e apenas um {𝑣𝑖} ∈ 𝑢 e logo 𝑢 = 𝑢𝑣𝑖 , o que contradiz 𝑢 não vir de um vértice.

Pelo Corolário 2.2.2 em [4], as direções 𝜌 ∈ D𝐸 (𝐺) ou são da forma 𝜌𝜖 para algum raio
𝜖 ou são da forma 𝜌𝑣 para algum vértice 𝑣, isto é, a direção que sempre escolhe a componente
conexa que o vértice 𝑣 pertence. O fato de 𝑢 não ser ultrafiltro de vértice garante que 𝜌𝑢 ≠ 𝜌𝑣
para todo vértice 𝑣 (de fato, se supormos que fosse, teríamos que o ultrafiltro 𝑢𝑣 está contido
em 𝑢 e aí por maximalidade teríamos 𝑢 = 𝑢𝑣). Assim, 𝜌𝑢 = 𝜌𝜖 como gostaríamos e temos
nossa função 𝜌• : T𝐸 (𝐺) → Ω𝐸 (𝐺). Continhas rotineiras seguem para mostrarmos que esta
função é injetora, contínua e aberta sobre a imagem:
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Ô injetividade: se 𝑢 ≠ 𝑣, existe 𝐴 ∈ 𝑢 e 𝑉 (𝐺) \ 𝐴 ∈ 𝑣. Como 𝐴 induz corte finito,
temos um conjunto finito de arestas 𝐹 que liga 𝐴 à 𝑉 (𝐺) \ 𝐴. E aí, 𝜌𝑢 (𝐹) ⊂ 𝐴 e
𝜌𝑣 (𝐹) ⊂ 𝑉 (𝐺) \ 𝐴, ou seja, 𝜌𝑢 ≠ 𝜌𝑣.

Ô continuidade: usando a notação das páginas 2 e 3, veja que inversa de básico é básico
𝜌−1
• (Ω𝐸 (𝐹, 𝜖)) = {𝑢 ∈ T̃𝐸 (𝐺) | 𝐶 (𝐹, 𝜖) ∈ 𝑢} = 𝑋𝐶 (𝐹,𝜖)

Ô aberta sobre a imagem: denotamos 𝐼 a imagem de 𝜌•, 𝐴 ∈ ℭ(𝐺) e 𝐹 o conjunto fi-
nito de arestas que liga 𝐴 ao seu complementar. Assim, temos 𝜌•(𝑋𝐴 ∩ T𝐸 (𝐺)) =⋃
𝜖 raio com cauda em 𝐴

Ω𝐸 (𝐹, 𝜖) ∩ 𝐼.

Vamos para o último morfismo. Dada uma direção 𝜌, construímos o ultrafiltro 𝑢𝜌 que
seleciona, dado um corte, a partição dita pela direção. Formalmente, 𝑢𝜌 := {𝐴 ∈ ℭ(𝐺) |
𝜌(𝐹𝐴) ⊂ 𝐴}, onde 𝐹𝐴 é o conjunto finito de arestas ligando os vértices de 𝐴 ao seu com-
plementar. Vamos mostrar que isto realmente define um ultrafiltro. Como 𝜌(𝐹𝐴) é uma
componente conexa de 𝐺 \ 𝐹𝐴, ela está contida em 𝐴 ou 𝑉 (𝐺) \ 𝐴. Assim, para qualquer
𝐴 ∈ ℭ(𝐺), ou 𝐴 ∈ 𝑢𝜌 ou 𝑉 (𝐺) \𝐴 ∈ 𝑢𝜌. Também temos 𝑉 (𝐺) ∈ 𝑢𝜌. Se 𝐴,𝐵 ∈ 𝑢𝜌 , veja que
𝜌(𝐹𝐴 ∪ 𝐹𝐵) ⊂ 𝜌(𝐹𝐴) ⊂ 𝐴 e 𝜌(𝐹𝐴 ∪ 𝐹𝐵) ⊂ 𝜌(𝐹𝐵) ⊂ 𝐵 , ou seja 𝜌(𝐹𝐴 ∪ 𝐹𝐵) ⊂ 𝐴 ∩ 𝐵. Como
𝐹𝐴∩𝐵 ⊂ 𝐹𝐴 ∪ 𝐹𝐵 , também temos 𝜌(𝐹𝐴 ∪ 𝐹𝐵) ⊂ 𝜌(𝐹𝐴∩𝐵), logo não podemos ter 𝜌(𝐹𝐴∩𝐵)
contido no complementar de 𝐴∩𝐵 e portanto 𝜌(𝐹𝐴∩𝐵) ⊂ 𝐴∩𝐵. De forma similar podemos
argumentar que se 𝐴 ∈ 𝑢𝜌 e 𝐴 ⊂ 𝐴, então 𝜌(𝐹𝐴 ∪ 𝐹𝐴) ⊂ 𝐴 e 𝜌(𝐹𝐴 ∪ 𝐹𝐴) ⊂ 𝜌(𝐹𝐴) logo
𝜌(𝐹𝐴) não pode estar no complementar de 𝐴 e portanto não pode estar no complementar de
𝐴 e assim 𝜌(𝐹𝐴) ⊂ 𝐴. Com tudo isso, concluímos que 𝑢𝜌 é ultrafiltro.

Denote o mapa 𝜌 ↦→ 𝑢𝜌 como 𝑢• : D𝐸 (𝐺) → T̃𝐸 (𝐺). Mais continhas vão mostrar que
isto é um embedding:

Ô injetividade: se 𝜌 ≠ 𝜌′ são direções distintas, deve existir 𝐹 um conjunto finito de
arestas tal que 𝜌(𝐹) ≠ 𝜌′(𝐹). Sabemos que as componente conexas 𝜌(𝐹) e 𝜌′(𝐹)
induzem cortes finitos e portanto devem estar na álgebra de Boole de 𝐺. Assim, temos
𝜌(𝐹) ∈ 𝑢𝜌 e 𝜌′(𝐹) ∈ 𝑢𝜌′ . Como estes conjuntos são disjuntos, concluímos que 𝑢𝜌 ≠ 𝑢𝜌′

Ô continuidade: se 𝐴 ∈ ℭ(𝐺), e 𝐹 é o conjunto finito de arestas que ligam vértices de 𝐴
a vértices fora de 𝐴, então 𝑢−1

• (𝑋𝐴) =
⋃

𝜌 direção tal que 𝜌(𝐹)⊂𝐴
D𝐸 (𝐹, 𝜌)

Ô aberto sobre a imagem: sejam 𝐽 a imagem de 𝑢•, 𝐹 um conjunto finito de arestas e 𝜌
uma direção, então 𝑢•(D𝐸 (𝐹, 𝜌)) = 𝑋𝜌(𝐹) ∩ 𝐽

Para finalizar, vamos calcular as imagens dos morfismos. Começamos com o último:
𝑢•(D𝐸 (𝐺)) = {𝑢 ∈ T̃𝐸 (𝐺) | 𝑢 ≠ 𝑢𝑣 para todo vértice 𝑣 de grau finito}. Se 𝑝 é uma direção,
então 𝑢𝜌 não pode ser igual à um 𝑢𝑣 para um vértice 𝑣 de grau finito: se fosse, então ao tomar-
mos 𝐹𝑣 o conjunto de arestas adjacentes ao 𝑣, teríamos 𝜌(𝐹𝑣) ⊂ {𝑣} por {𝑣} ∈ 𝑢𝜌 e assim a
direção estaria escolhendo uma componente finita, o que é proibido pela definição de direção.
Reciprocamente, dado um ultrafiltro 𝑢 que não é de um vértice de grau finito, podemos fazer
a mesma construção que define a função 𝜌• para obter a direção 𝜌𝑢. A demonstração de boa
definição desta construção no segundo parágrafo é idêntica, com o único detalhe que na frase
final apenas precisamos que 𝑢 não é de um vértice de grau finito para garantir que a direção
não escolhe componentes finitas. E, daí, 𝑢𝜌𝑢 = 𝑢.
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Agora, provamos𝑝•(T𝐸 (𝐺)) = {𝜖 ∈ Ω𝐸 (𝐺) | não existe vértice infinitamente conectado a 𝜖}.
Dado um ultrafiltro 𝑢 ∈ T𝐸 (𝐺), suponha que 𝜌𝑢 fosse uma direção dada por um raio 𝜖 do-
minado por 𝑣 (isto é, dizemos que um vértice 𝑣 domina um raio 𝜖 quando 𝑣 é infinitamente
conectado à 𝜀). Nesse caso, dado qualquer 𝐴 ∈ ℭ(𝐺) com 𝑣 ∈ 𝐴, veja que 𝜌𝑢 (𝐹𝐴) deve ser
a componente conexa com alguma cauda de 𝜖 e como 𝑣 é infinitamente conectado à 𝜖, temos
𝑣 ∈ 𝜌𝑢 (𝐹𝐴). Logo, como 𝜌𝑢 (𝐹𝐴) ou está totalmente contido em 𝐴 ou no complementar e
𝑣 ∈ 𝐴, concluímos que 𝜌𝑢 (𝐹𝐴) ⊂ 𝐴. Como 𝜌𝑢 (𝐹𝐴) ∈ 𝑢, devemos ter 𝐴 ∈ 𝑢. Veja que isso
mostra que 𝑢𝑣 ⊂ 𝑢 e logo 𝑢𝑣 = 𝑢, contradizendo 𝑢 não ser de vértice. Reciprocamente, dada
uma direção 𝜌𝜖 vinda de um raio 𝜖 não dominado, podemos usar o mapa 𝑢• para construir o
ultrafiltro 𝑢𝜌𝜖 . Já sabemos pelo cálculo da imagem anterior que 𝑢𝜌𝜖 não é de nenhum vértice
de grau finito, e se ele fosse de algum vértice 𝑣 de grau infinito, teríamos que 𝑣 dominaria 𝜖.
Assim, 𝑢𝜌𝜖 ∈ T𝐸 (𝐺) e finalmente, é rotineiro verificar que 𝜌𝑢𝜌𝜖 = 𝜌𝜖 .

�

Veja que quando calculamos a imagem do terceiro morfismo, generalizamos o mapa 𝑝•
para quase todo o T̃𝐸 (𝐺), tirando apenas os principais de vértice de grau finito, proibidos
pelo pedido na definição de direções que as componentes conexas escolhidas sejam finitas. Se
tirássemos essa restrição da definição, teríamos o mapa 𝑝• definido em todo o T̃𝐸 (𝐺), e assim
ele e o 𝑢• seriam um par de homeomorfismos inversos um do outro. Assim, o espaço T̃𝐸 (𝐺)
pode ser visto como um espaço de direções onde agora as direções podem escolher vértices de
grau finito (como uma direção que se ‘afunila’ em um único vértice).

Ao identificarmos T𝐸 (𝐺) com sua imagem em Ω𝐸 (𝐺), podemos considerar os ultrafiltros
não principais de cortes finitos como sendo raios não dominados e assim podemos visualizar
Ω𝐸 (𝐺) como uma união disjunta dos raios dominados com os ultrafiltros não principais de
cortes finitos. Ao passarmos de Ω𝐸 (𝐺) para D𝐸 (𝐺), os únicos objetos a mais que ganhamos
são vértices de grau infinito (isto é, direções associadas a estes vértices), como argumentado
no Corolário 2.2.2 do [4]. Estes também podem ser vistos como ultrafiltros, mas principais,
sobre o vértice de grau infinito. E ao passarmos de D(𝐺) à T̃𝐸 (𝐺), ganhamos os vértices de
grau finito (isto é, os ultrafiltros principais de vértices de grau finito).

No artigo [4], é argumentado que D(𝐺) é um limite de espaços finitos discretos, o que
significa que ele é um espaço de Stone. Como ele está contido em T̃𝐸 (𝐺), isto sugere que
podemos encontrar sua álgebra de Boole correspondente a partir do ℭ(𝐺). De fato:

Proposição 3 (Álgebra de Boole do espaço de direções via arestas). Seja 𝐼 := {𝑈 ⊂ 𝑉 (𝐺) |
𝑈 é finito e só contém vértices de grau finito }. Então, I é um ideal de ℭ(𝐺). Denote ℭ(𝐺)

𝐼

como sendo a álgebra de Boole quociente de ℭ(𝐺) por 𝐼 , e T̃𝐸 (𝐺)
𝐼 seu espaço de Stone. Teremos

que o mapa quociente 𝑞 : ℭ(𝐺) → ℭ(𝐺)
𝐼 induz uma função 𝑖 : T̃𝐸 (𝐺)

𝐼 → T̃𝐸 (𝐺) contínua,
injetora, aberta sobre sua imagem, que é exatamente D𝐸 (𝐺) (onde aqui identificamos este
espaço com sua imagem homeomorfa em T̃𝐸 (𝐺) como na proposição anterior). Assim, T̃𝐸 (𝐺)𝐼 �

D𝐸 (𝐺)

Demonstração: 𝐼 é fechado por união, e a interseção de um𝐴 ∈ 𝐼 com qualquer outro 𝐵 ∈ 𝐼

ainda está em 𝐼 , e logo 𝐼 é um ideal. O mapa 𝑖 : T̃𝐸 (𝐺)
𝐼 → T̃𝐸 (𝐺) induzido pelo quociente
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𝑞 : ℭ(𝐺) → ℭ(𝐺)
𝐼 pode ser explicitado como sendo 𝑢 ↦→ {𝑈 ∈ ℭ(𝐺) | 𝑞(𝑈) ∈ 𝑢}. É

um resultado elementar da teoria de dualidade de Stone que este mapa é contínuo, injetor
e aberto sobre a imagem, tudo isto seguindo do fato que 𝑞 é um homomorfismo de álgebra
de Boole sobrejetor. Vamos argumentar que a imagem de 𝑖 é D𝐸 (𝐺). Estamos identificado
este espaço com sua imagem em T̃𝐸 (𝐺), que pela proposição anterior é igual a {𝑢 ∈ T̃𝐸 (𝐺) |
𝑢 ≠ 𝑢𝑣 para todo vértice 𝑣 de grau finito}. Dado um 𝑢 ∈ T̃𝐸 (𝐺), se 𝑖(𝑢) ∉ D𝐸 (𝐺), teríamos
𝑖(𝑢) = 𝑢𝑣 para algum vértice 𝑣 de grau finito. Mas daí {𝑣} ∈ 𝑖(𝑢), ou seja, 0 = 𝑞({𝑣}) ∈ 𝑢,
contradizendo 𝑢 ser um ultrafiltro. Reciprocamente, dado um 𝑢 ∈ D𝐸 (𝐺), defina 𝑣 := {𝑈̃ ∈
ℭ(𝐺)
𝐼 | 𝑞−1(𝑈̃) ⊂ 𝑢}. Como 𝑢 não pode conter nenhum conjunto finito de vértices de grau

finito, podemos fazer uma continha que garante que se 𝑈,𝑉 ∈ ℭ(𝐺) e 𝑞(𝑈) = 𝑞(𝑉) então
𝑈 ∈ 𝑢 ⇐⇒ 𝑉 ∈ 𝑢. Isto implica que 𝑣 = {𝑈̃ ∈ ℭ(𝐺)

𝐼 | ∃𝑈 ∈ ℭ(𝐺) tal que 𝑞(𝑈) =

𝑈̃ e 𝑈 ∈ 𝑢}. Assim, 𝑣 é ultrafiltro:

Ô 0 ∉ 𝑣, pois nenhum conjunto finito de vértices de grau finito pertence a 𝑢

Ô 1 ∈ 𝑣, pois 𝑉 (𝐺) ∈ 𝑢 e 𝑞(𝑉 (𝐺)) = 1

Ô 𝑈̃, 𝑉̃ ∈ 𝑣 implica que existem 𝑈,𝑉 ∈ ℭ(𝐺) com 𝑞(𝑈) = 𝑈̃, 𝑞(𝑉) = 𝑉̃ e 𝑈,𝑉 ∈ 𝑢, e
daí 𝑈 ∩ 𝑉 ∈ 𝑢 e 𝑞(𝑈 ∩ 𝑉) = 𝑞(𝑈) ∩ 𝑞(𝑉) = 𝑈̃ ∩ 𝑉̃ , ou seja, 𝑈̃ ∩ 𝑉̃ ∈ 𝑣

Ô 𝑈̃ ∈ 𝑣, 𝑉̃ ∈ ℭ(𝐺)
𝐼 , 𝑈̃ ≤ 𝑉̃ implica que 𝑈̃ = 𝑞(𝑈), 𝑉̃ = 𝑞(𝑉),𝑈 ∈ 𝑢 e 𝑈̃ = 𝑈̃ ∩ 𝑉̃.

Daí 𝑞(𝑈) = 𝑞(𝑈 ∩𝑉) e portanto 𝑈 ∩𝑉 ∈ 𝑢. Como 𝑈 ∩𝑉 ⊂ 𝑉 , temos 𝑉 ∈ 𝑢 e logo
𝑉̃ ∈ 𝑢

Ô 𝑞(𝑈) = 𝑈̃ ∈ ℭ(𝐺)
𝐼 . Como 𝑈 ∈ 𝑢 ou 𝑉 (𝐺) \𝑈 ∈ 𝑢 e 𝑞(𝑉 (𝐺) \𝑈) = −𝑈̃ , concluímos

que ou 𝑈̃ ∈ 𝑣 ou −𝑈̃ ∈ 𝑣

E como claramente 𝑢 ⊂ 𝑖(𝑣), e ambos são ultrafiltros, concluímos 𝑢 = 𝑖(𝑣). �

Pelo que conhecemos, a álgebra de cortes como descrita aqui só foi considerada no con-
texto de teoria geométrica de grupos, como no capítulo 2 de [1]. Lá, apenas o caso localmente
finito era considerado, onde todos os espaços de extremidades e direções, via vértices ou ares-
tas, são os mesmos. Uma forma equivalente de descrever a álgebra de cortes, no caso de árvores
localmente finitas, é conhecida como tree algebra na teoria de álgebras de Boole, como descrita
no Handbook of Boolean Algebras. [5]

3 Álgebra de separações

Definição (Álgebra de separações). Uma separação {𝐴,𝐵} de um grafo 𝐺 são dois conjuntos
𝐴,𝐵 de vértices tais que todo vértice de 𝐺 está em 𝐴 ou em 𝐵 e toda aresta de 𝐺 está no
subgrafo induzido por 𝐴 ou no subgrafo induzido por 𝐵. Em símbolos: 𝐺 [𝐴] ∪ 𝐺 [𝐵] = 𝐺.
A separação é finita quando 𝐴 ∩ 𝐵 é finito.

Juntamos as separações em um conjunto usando conjuntos de arestas. O conjunto
𝔖(𝐺) := {𝐸 ⊂ 𝐸 (𝐺) | 𝑉 (𝐸) ∩ 𝑉 (𝐸𝑐) é finito} define uma álgebra de Boole, que chamamos
de álgebra de separações finitas do grafo.
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Um elemento 𝐸 ∈ 𝔖(𝐺) define uma separação tomando os conjuntos {𝑉 (𝐸),𝑉 (𝐸𝑐)}, e uma
separação {𝐴,𝐵} é traduzida para um conjunto de arestas usando os conjuntos 𝐸𝐴 := 𝐸 (𝐴)∪
𝐸 (𝐴,𝐴 ∩ 𝐵) e 𝐸𝐵 := 𝐸 (𝐵) ∪ 𝐸 (𝐵,𝐴 ∩ 𝐵). Aqui, 𝐸 (𝑋) sempre se refere ao conjunto de
arestas cujas ambas pontas estão em um dado conjunto 𝑋 e 𝐸 (𝑋,𝑌) se refere ao conjunto de
arestas com uma ponta em 𝑋 e outra em 𝑌 - usaremos esta notação algumas vezes daqui pra
frente. Veja que nesta associação 𝐸 e o complementar 𝐸𝑐 são levados na mesma separação.
Intuitivamente, assim como no caso da álgebra de cortes, um elemento da álgebra de separações
é melhor visto como uma separação ordenada, e seu complementar se refere a mesma separação
ordenada ao contrário.

Definição (Ultrafiltros de separações finitas). O espaço de Stone associado à álgebra de cortes
finitos de um grafo 𝐺 é denotado como T̃ (𝐺). A sua topologia tem como base os conjuntos
𝑂(𝐴) := {𝑢 ∈ T (𝐺) | 𝐴 ∈ 𝑢} para cada 𝐴 ∈ 𝔖(𝐺). Dado uma aresta 𝑒 de 𝐺, o ultrafiltro
definido por 𝑢𝑒 := {𝐴 ∈ 𝔖(𝐺) | 𝑒 ∈ 𝐴} é dito o ultrafiltro principal de 𝑒, e isto define
um mapa injetivo 𝐸 (𝐺) → T̃ (𝐺), que consideramos como uma inclusão. O conjunto de
ultrafiltros não principais é denotado como T (𝐺).

Por simplicidade, usamos a mesma notação para os abertos básicos da álgebra de cortes -
espero que pelo contexto fique claro qual está sendo referindo. Outro detalhe a se notar aqui
é que, como todos os conjuntos finitos de arestas estão contidos em 𝔖(𝐺), um ultrafiltro é
principal se e somente se ele é 𝑢𝑒 para alguma aresta. Logo, aqui podemos usar a nomenclatura
usual de principalidade para nos referir a estes ultrafiltros, diferentemente do caso anterior
de álgebra de cortes.

Os conjuntos da forma {𝑒} estão todos na álgebra de separações finitas. Então, o aberto
básico de {𝑒} em T̃ (𝐺) contém apenas o ultrafiltro principal referente ao elemento 𝑒. Isto
mostra que o subconjunto de todos os ultrafiltros principais é uma união de abertos, e portanto
seu complementar T (𝐺) é um fechado de um espaço de Stone - e portanto também é espaço
de Stone. Em particular, é compacto.

Quando o grafo é localmente finito, seu espaço de extremidades é compacto. Também,
ao ‘adicionar” as extremidades ao grafo original, obtemos um espaço compacto. Mais preci-
samente, definimos a realização geométrica do grafo como sendo o espaço topológico que é
a união do grafo com a topologia de 1-complexo com o espaço de extremidade. Esta realiza-
ção é sempre compacta no caso localmente finito. Ao adicionarmos a possibilidade de termos
vértices de grau infinito, perdemos a compacidade - por exemplo, a estrela infinita de raios
tem como espaço de extremidades o conjunto discreto com enumeráveis elementos, que não
é compacto. Também não temos compacidade do próprio grafo, mesmo sem raios - a estrela
infinita com um único vértice de grau infinito tem sua realização geométrica não compacta.
O nosso espaço T (𝐺) é, de certa forma, uma extensão do espaço de extremidades que irá
compactificar não só as extremidades, mas também a realização geométrica do grafo. Veja,
um raio 𝜖 sempre tem uma cauda contida em apenas um dentre o 𝐴 e o 𝐵 de uma separação
de ordem finita {𝐴,𝐵} - não será difícil argumentar que isso define um ultrafiltro, e assim
o espaço de extremidades vai estar contido no T (𝐺), com a mesma topologia. O resto dos
elementos de T (𝐺) são o que falta para podermos compactifica o espaço de extremidades e a
realização geométrica do grafo.
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Teorema 2 (Extremidades são ultrafiltros de cortes). Existe um embedding Ω(𝐺) ↩−→ T (𝐺).
A imagem deste embedding é fechada se e somente se Ω(𝐺) é compacto.

Demonstração: Como comentamos mais cedo, um raio 𝜖 sempre tem uma cauda contida
em apenas um dentre o 𝐴 e o 𝐵 de uma separação de ordem finita {𝐴,𝐵}, e assim pode-
mos usar esta escolha para definir nosso ultrafiltro. Defina 𝜏𝜖 como sendo o {𝐸 ∈ 𝔖(𝐺) |
existe uma cauda de 𝜖 contida em 𝐸}. Para qualquer 𝐸 ∈ 𝔖(𝐺), ao retirarmos os finitos vér-
tices𝑉 (𝐸)∩𝑉 (𝐸𝑐), restam componentes conexas inteiramente contidas em𝐸 ou inteiramente
contidas em 𝐸𝑐 , e nosso raio morará em apenas uma delas - assim ou 𝐸 ou 𝐸𝑐 estão em 𝜏𝜖 . O
vazio não está lá (como pode haver uma cauda no vazio?), e se temos dois 𝐸1,𝐸2 com caudas
de 𝜖, tome a cauda mais a frente dentre as duas e ela estará na interseção. Assim, temos um
ultrafiltro, que será não principal pois caudas são infinitas, isto é, nenhuma mora em uma
componente conexa finita e assim nenhum conjunto finito é escolhido.

Chame este mapa 𝜖 ↦→ 𝜏𝜖 de 𝜑. Para qualquer 𝐸 em 𝔖(𝐺), é rotineiro verificar que

𝜑(−1(𝑂(𝐸)) =
⋃

𝐶 componente conexas em 𝐸

Ω(𝑉 (𝐸) ∩ 𝑉 (𝐸𝑐),𝐶)

onde as componentes conexas 𝐶 são as do grafo 𝐺 \ (𝑉 (𝐸) ∩ 𝑉 (𝐸𝑐)).

Similarmente, dado um conjunto finito𝑋 de vértices e uma componente conexa𝐶 de𝐺\𝑋

𝜑(𝑂(𝑋,𝐶)) = 𝑂(𝐸𝐶) ∩ 𝜑(Ω(𝐺))

onde 𝐸𝐶 é o conjunto de todas as arestas com pelo menos uma ponta em 𝐶.

Isto mostra que temos um mapa contínuo e aberto sobre sua imagem, ou seja, um embed-
ding. A outra afirmação é uma simples consequência topológica vinda do fato de T (𝐺) ser
um compacto Hausdorff. Se a imagem do embedding é fechada, temos Ω(𝐺) homeomorfo
a um fechado de um compacto, que é compacto. Reciprocamente, se Ω(𝐺) é compacto, sua
imagem é um compacto de um compacto Hausdorff, que deve então ser fechado.

�

A situação só é realmente diferente no caso não localmente finito.

Proposição 4 (ℵ0-emaranhado de localmente finito vem de um raio). O embedding Ω(𝐺) ↩−→
T (𝐺) é sobrejetor quando 𝐺 é localmente finito.

Demonstração: Aquele argumento errado que o embedding é sobrejetivo quando Ω(𝐺) é
compacto funciona aqui. �

Vamos ver alguns exemplos destes espaços e álgebras.
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Exemplo (Estrela infinita, raio, estrela com infinitas finitas caudas, pente infinito, árvore binária). Ô

Já vimos que a estrela infinita tem a álgebra de cortes como sendo a álgebra dos finitos-
cofinitos sobre 𝜔, cujo espaço de Stone é a compactificação de 1 ponto de 𝜔. Indo
para álgebra de separações, vamos obter a outra famosa compactificação dos na-
turais. De fato, veja que qualquer conjunto de arestas da estrela só intercepta seu
complementar no vértice do meio - assim, é finito. Daí, chamando de 𝑇 a estrela,
𝔖(𝑇 ) = P(𝐸 (𝑇 )) � 2𝜔. O espaço de Stone desta álgebra é 𝛽N, a compactificação de
Stone-Cech. Os ultrafiltros principais são os conjuntos de uma única aresta, e assim
concluímos que T (𝑇 ) � 𝛽N − N.

Ô No grafo 𝑅 que é apenas um raio, qualquer conjunto de arestas infinito em 𝔖(𝑅) deve
conter uma cauda de um raio, se não existiriam infinitos vértices de separação. Assim,
ele é cofinito, e concluímos que 𝔖(𝑅) � Finco(𝜔), e seu único ultrafiltro não principal
é o referente ao raio, como definido no embedding das extremidades em T (𝑅).

Para os próximos três exemplos, é mais conveniente descrever a álgebra 𝔖(𝐺)
Fin(𝐸 (𝐺)) , que é a

álgebra dual ao espaço T (𝐺), como argumentaremos mais tarde na Proposição 7. É a situação
análoga que já vimos no caso de álgebra de cortes: para retirar os ultrafiltros principais basta
quocientar pelos átomos.

Ô Nomeie cada folha da estrela infinita com um número natural 𝑛 e forme o grafo 𝑅′

colando na folha 𝑛 um caminho de 𝑛 − 1 vértices. Tome um 𝐸 ∈ 𝔖(𝑅′). O conjunto
de arestas 𝐸′ ⊂ 𝐸 vizinhas do vértice central irá definir todo o 𝐸: de fato, apenas
finitas das caudas adicionadas podem ter a propriedade de ter algumas arestas em 𝐸 e
algumas arestas fora. Todas as outras fora estas finitas devem ter seu pertencimento
em 𝐸 determinado pela aresta adjacente ao vértice central. Concluímos que, a menos
de quase-igualdade, 𝐸′ determina 𝐸 e assim 𝔖(𝐺)

Fin(𝐸 (𝑅′)) �
2𝜔

Fin(𝜔) . Logo T (𝑅′) � 𝛽N−N

Nos próximos dois exemplos, traçamos o caminho contrário. Como o grafo é localmente
finito, sabemos que T (𝐺) é apenas o espaço de extremidades. Sabendo quem ele é, determi-
namos sua álgebra.

Ô O pente infinito 𝑃 tem o espaço de extremidades como sendo uma sequência conver-
gente, ou seja, a compactificação de 1 ponto dos naturais. Sua álgebra 𝔖(𝑃)

Fin(𝐸 (𝑃)) então,
será isomorfa a Finco(𝜔).

Ô A árvore regular de ordem 2 𝑇2 (a árvore binária) tem o conjunto de Cantor como
seu espaço de extremidades. Assim, sua álgebra 𝔖(𝑇2)

Fin(𝐸 (𝑇2)) será a álgebra livre gerada
por enumeráveis geradores. (também conhecida como sendo a única álgebra de Boole
contável sem átomos).

Vamos clarificar a afirmação que T (𝐺) compactifica todo o grafo.

11



Definição (Realização geométrica e realização geométrica estendida). A realização geomé-
trica de um grafo 𝐺 é o espaço topológico |𝐺 | dado pelos vértices e arestas do grafo com a
topologia de 1-complexo usual - a que vem induzida da colagem de vários intervalos [0, 1]
referentes as arestas.

Estendemos esta realização pro infinito com o espaço |𝐺 |∗ := |𝐺 | ∪T (𝐺) onde os abertos
básicos serão os abertos básicos de |𝐺 | e os abertos básicos ao redor dos ultrafiltros de cortes,
mas agora estendidos para conter arestas e vértices do grafo 𝑂(𝐸)∗ = 𝑂(𝐸) ∪ 𝐸 ∪ 𝑉 (𝐸) \
𝑉 (𝐸) ∩ 𝑉 (𝐸𝑐).

A nossa definição |𝐺 |∗ naturalmente contém como subespaço a definição mais usual do
espaço |𝐺 | ∪Ω(𝐺), que é compacto no caso localmente finito. No caso geral, este subespaço
é estritamente menor que o |𝐺 |∗.

Proposição 5 (Realização geométrica estendida é compacta). |𝐺 |∗ é compacto.

Demonstração: Dada uma cobertura aberta de |𝐺 |∗, podemos refiná-la para uma cobertura
por abertos básicos. Em particular, ela cobre T (𝐺) - e se esse espaço é coberto por con-
juntos do tipo 𝑂(𝐸)∗, ele é claro coberto por conjuntos do tipo 𝑂(𝐸). Mas T (𝐺) é com-
pacto, e logo existem finitos destes que o cobrem, digamos T (𝐺) ⊂ 𝑂(𝐸1) ∪ . . .𝑂(𝐸𝑛).
Esta inclusão vai nos garantir que os conjuntos 𝐸1, . . . ,𝐸𝑛 cobrem todas as arestas de 𝐺 a
menos, possivelmente, de finitas arestas. De fato, suponha que existam infinitas arestas não
cobertas por estes conjuntos, ou seja, a interseção 𝐸𝑐

1 ∩ · · · ∩ 𝐸𝑐
𝑛 é infinita. Construa o filtro

{𝐸 ∈ 𝔖(𝐺) | 𝐸𝑐
1 ∩ · · · ∩𝐸𝑐

𝑛 ⊂ 𝐸} e seja 𝑢 um ultrafiltro que o contém. Ele será não principal
por possuir apenas conjuntos infinitos, e 𝐸𝑐

𝑖 ∈ 𝑢 para todo 𝑖, o que contradiz a cobertura
T (𝐺) ⊂ 𝑂(𝐸1) ∪ . . .𝑂(𝐸𝑛).

Seja𝐺′ o subgrafo finito induzido por todas as (finitas) arestas não cobertas por𝐸1, . . . ,𝐸𝑛
e por todos os (finitos) vértices dos conjuntos𝑉 (𝐸1) ∩𝑉 (𝐸𝑐

1), . . . ,𝑉 (𝐸𝑛) ∩𝑉 (𝐸𝑛)𝑐. Teremos
então que |𝐺 |∗ ⊂ 𝑂(𝐸1)∗ ∪ · · · ∪ 𝑂(𝐸𝑛)∗ ∪ 𝐺′. Mas 𝐺′ é finito e portanto compacto e assim
podemos refinar a cobertura aberta original para uma subcobertura finita que cobre o 𝐺′, e
assim encontramos uma subcobertura finita para o |𝐺 |∗, como queríamos. �

4 Emaranhados

Vamos finalmente justificar porque estamos usando a letra T para o espaço de ultrafiltros.
O conceito de tangle nasceu na teoria de grafos como uma tentativa de abstrair a noção de
uma parte bastante emaranhada de um grafo - assim, os traduzimos em português para ema-
ranhados. Os emaranhados, quando estendidos para sua versão infinita, chamados de ℵ0-
emaranhados, agora não apontam exatamente para uma parte muito conectada do grafo - mas
apontam para suas direções no infinito, de forma a recuperar os conceitos de extremidades e
direções (via vértices). Em [2], foi mostrado que estes são descritos por um limite inverso de

12



ultrafiltros. Aqui, mostramos que basta uma única álgebra de Boole, a álgebra de separações
finitas, para obtermos todos os ℵ0-emaranhados, que serão seus ultrafiltros não principais.

Definição (Orientação, contradição e emaranhado). A ordem de uma separação {𝐴,𝐵} é o
cardinal 𝑘 = |𝐴 ∩ 𝐵 |. Uma orientação de {𝐴,𝐵} é uma escolha de ordem (𝐴,𝐵), onde agora
temos um par ordenado. Uma 𝑘-orientação é um conjunto que contém uma única orientação
para cada separação {𝐴,𝐵} de ordem estritamente menor que 𝑘.

Diremos que 𝑛 separações orientadas (𝐴1,𝐵1), . . . , (𝐴𝑛,𝐵𝑛) formam uma contradição se
𝐺 [𝐴1] ∪ · · · ∪ 𝐺 [𝐴𝑛] = 𝐺. Diremos que 𝑛 é a ordem dessa contradição.

Um 𝑘-emaranhado 𝜏 é uma 𝑘-orientação sem contradições de ordem 1, 2 ou 3. Isto é, é
um conjunto com uma única orientação para cada separação de ordem estritamente menor
que 𝑘 tal que nenhum de seus subconjuntos forma uma contradição de ordem 1, 2 ou 3.

Teorema 3 (ℵ0-emaranhados são a mesma coisa que ultrafiltros não principais de separações
finitas). Em um grafo 𝐺 conexo, ultrafiltros não principais da álgebra de separações finitas
𝔖(𝐺) estão em bijeção com os ℵ0-emaranhados de 𝐺.

Demonstração: Vamos construir um ℵ0-emaranhado a partir de um ultrafiltro não prin-
cipal 𝑢. Dada uma separação {𝐴,𝐵} de ordem finita, vamos ter que 𝐸 (𝐴),𝐸 (𝐵) ∈ 𝔖(𝐺)
pelo fato de não existir arestas entre 𝐴 \ 𝐵 e 𝐵 \ 𝐴 e de 𝐴 ∩ 𝐵 ser finito. Disso também
concluímos que 𝐸 (𝐴)𝑐 = 𝐸 (𝐵) \ 𝐸 (𝐴 ∩ 𝐵). Como 𝑢 é não principal e 𝐸 (𝐴 ∩ 𝐵) é fi-
nito, temos que 𝐸 (𝐴)𝑐 ∈ 𝑢 ⇐⇒ 𝐸 (𝐵) ∈ 𝑢, e portanto 𝐸 (𝐴) ∈ 𝑢 ⇐⇒ 𝐸 (𝐵) ∉ 𝑢.
Assim, 𝑢 escolhe um e apenas um dentre estes dois conjuntos e portanto podemos definir a
ℵ0-orientação 𝜏𝑢 := {(𝐴,𝐵) | 𝐸 (𝐵) ∈ 𝑢}. Resta apenas verificarmos que ela não possui
contradições. De fato, se (𝐴1,𝐵1), . . . , (𝐴𝑛,𝐵𝑛) ∈ 𝜏𝑢 formassem uma contradição, teríamos
que 𝐸 (𝐴1) ∪ . . .𝐸 (𝐴𝑛) = 𝐸 (𝐺) e portanto 𝐸 (𝐴1)𝑐 ∩ · · · ∩ 𝐸 (𝐴𝑛)𝑐 = ∅, mas todos estes
𝐸 (𝐴𝑖)𝑐 estão em 𝑢, que não pode conter o vazio e é fechado por interseção.

Resta agora mostrar a volta - construir um ultrafiltro não principal a partir de um ℵ0-
emaranhado 𝜏. Dado um 𝐸 ∈ 𝔖(𝐺), defina a separação {𝑉 (𝐸),𝑉 (𝐸𝑐)}, que será finita.
(note que aqui usamos que 𝐺 é conexo para garantir que não há vértices isolados, e assim
esse par realmente é separação). Assim, 𝜏 a ordena, e com isso podemos construir 𝑢𝜏 :=
{𝐸 ∈ 𝔖(𝐺) | (𝑉 (𝐸𝑐),𝑉 (𝐸)) ∈ 𝜏} que iremos argumentar que forma um ultrafiltro não
principal. Por construção, para qualquer 𝐸 ∈ 𝔖(𝐺) teremos 𝐸 ou 𝐸𝑐 em 𝑢𝜏 . O vazio não
estará lá, pois (∅,𝑉 (𝐺)) ∈ 𝜏. Para ver que é fechado por interseção, tome dois 𝐸1,𝐸2 ∈ 𝑢𝜏
e primeiramente note que 𝑉 (𝐸1) ∩ 𝑉 (𝐸2)

∗
= 𝑉 (𝐸1 ∩ 𝐸2). De fato, qualquer vértice que

seja adjacente a uma aresta em 𝐸1 e a uma aresta em 𝐸2 deve necessariamente ou estar em
𝑉 (𝐸1 ∩ 𝐸2) (quando uma destas arestas estiver na interseção 𝐸1 ∩ 𝐸2) ou estar em 𝑉 (𝐸1) ∩
𝑉 (𝐸𝑐

1) e em 𝑉 (𝐸2) ∩ 𝑉 (𝐸𝑐
2), que são ambos finitos. Voltando, então, suponha que 𝐸1 ∩

𝐸2 ∉ 𝑢𝜏 , ou seja, (𝑉 (𝐸1 ∩ 𝐸2),𝑉 (𝐸𝑐
1 ∪ 𝐸𝑐

2)) ∈ 𝜏. Como a orientação de 𝜏 é preservada por
quase-igualdade, temos que (𝑉 (𝐸1) ∩ 𝑉 (𝐸2),𝑉 (𝐸𝑐

1 ∪ 𝐸𝑐
2)) ∈ 𝜏. Mas, daí, teríamos uma 3-

contradição (𝑉 (𝐸1) ∩𝑉 (𝐸2),𝑉 (𝐸𝑐
1 ∪𝐸𝑐

2)), (𝑉 (𝐸𝑐
1),𝑉 (𝐸1)), (𝑉 (𝐸𝑐

2),𝑉 (𝐸2)) contida em 𝜏.
Isto conclui nossa demonstração que 𝑢𝜏 é ultrafiltro, e ele deverá ser não principal pois não
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conterá nenhum conjunto finito: se {𝐴,𝐵} é uma separação com 𝐴 finito, temos (𝐴,𝐵) ∈ 𝜏
sempre.

Ambas estas construções são inversas uma da outra, que pode ser visto através de uma
conta rotineira (porém carregada de notações) que explicita todas as definições:

Ô do ultrafiltro para o emaranhado de volta para o ultrafiltro

𝑢 ↦→ 𝜏𝑢 = {(𝐴,𝐵) | 𝐸 (𝐵) ∈ 𝑢}
↦→ 𝑢𝜏𝑢 = {𝐸 ∈ 𝔖(𝐺) | (𝑉 (𝐸𝑐),𝑉 (𝐸)) ∈ 𝜏𝑢}

E aí, usando que 𝐸 (𝑉 (𝐸)) = 𝐸 ∪ 𝐸 (𝑉 (𝐸) ∩ 𝑉 (𝐸𝑐)), isto é, 𝐸 (𝑉 (𝐸)) e 𝐸 diferem por
um conjunto finito, temos

𝐸 ∈ 𝑢𝜏𝑢 ⇐⇒ (𝑉 (𝐸𝑐),𝑉 (𝐸)) ∈ 𝜏𝑢

⇐⇒ 𝐸 (𝑉 (𝐸)) ∈ 𝑢

⇐⇒ 𝐸 ∈ 𝑢

Ô do emaranhado para o ultrafiltro de volta para o ultrafiltro

𝜏 ↦→ 𝑢𝜏 = {𝐸 ∈ 𝔖(𝐺) | (𝑉 (𝐸𝑐),𝑉 (𝐸)) ∈ 𝜏}
↦→ 𝜏𝑢𝜏 = {(𝐴,𝐵) | 𝐸 (𝐵) ∈ 𝑢𝜏}

E aí, usando que 𝑉 (𝐸 (𝐵)) = 𝐵 , e que 𝑉 (𝐸 (𝐵)𝑐) difere de 𝐴 por um conjunto finito de
vértices, temos

(𝐴,𝐵) ∈ 𝜏𝑢𝜏 ⇐⇒ (𝑉 (𝐸 (𝐵)𝑐),𝑉 (𝐸 (𝐵))) ∈ 𝜏

⇐⇒ (𝐴,𝐵) ∈ 𝜏

�

Em [2], uma topologia é colocada nos ℵ0-emaranhados ao descrevê-lo como um limite
inverso de espaços de ultrafiltros. Resumidamente, lá é mostrado que todo ℵ0-emaranhado 𝜏
define unicamente, para cada subconjunto finito de vértices𝑋 , um ultrafiltro 𝑣𝜏,𝑋 nas álgebras
de Boole P(C𝑋), onde C𝑋 é o conjunto de componentes conexas de𝐺\𝑋. Estes satisfazem uma
condição de compatibilidade quando 𝑋 ⊂ 𝑋′ dada pela função 𝑓𝑋′,𝑋 que associa um ultrafil-
tro em P(C𝑋′) a um ultrafiltro em P(C𝑋). Reciprocamente, qualquer escolha de ultrafiltros
(𝑣𝑋) em P(C𝑋) para cada 𝑋 que satisfaça a condição de compatibilidade 𝑓𝑋′,𝑋 (𝑣′𝑋) = 𝑣𝑋 de-
fine um ℵ0-emaranhado. Usando a topologia de Stone em cada um dos espaços de ultrafiltros
de P(C𝑋), a topologia induzida no espaço de ℵ0-emaranhados será a topologia de subespaço
da topologia produto de todos estes espaços de ultrafiltros.

Proposição 6 (Topologia por limite inverso é a topologia de Stone nosℵ0-emaranhados). A to-
pologia induzida por limite inverso nos ℵ0-emaranhados é homeomorfa a topologia de Stone
em T (𝐺).
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Demonstração: Dado um 𝑢 ∈ T (𝐺), na bijeção construída no teorema anterior, o associa-
mos aoℵ0-emaranhado 𝜏𝑢 = {(𝐴,𝐵) | 𝐸 (𝐵) ∈ 𝑢}. Este, por sua vez, é associado como em [2],
aos ultrafiltros (𝜏𝑢𝑋 ) onde 𝜏𝑢𝑋 := {𝐶 ⊂ C𝑋 | (⋃(C𝑋 \𝐶) ∪𝑋,

⋃
𝐶 ∪𝑋) ∈ 𝜏𝑢}. A condição

se traduz em 𝐸 (⋃𝐶 ∪ 𝑋) ∈ 𝜏, que é equivalente a dizer que 𝐸𝐶 = 𝐸 (𝐶) ∪ 𝐸 (𝐶,𝑋) ∈ 𝜏.
Os abertos básicos na topologia do limite inverso serão os conjuntos 𝑂(𝑋,𝐶) := {𝜏 | 𝐶 ∈

𝜏𝑋} onde 𝜏𝑋 é o ultrafiltro correspondente ao conjunto finito 𝑋 do ℵ0-emaranhado 𝜏 e 𝐶
é um conjunto de componentes conexa de 𝐺 \ 𝑋. Os abertos básicos na topologia de Stone
são os da forma 𝑂(𝐸) := {𝑢 ∈ T (𝐺) | 𝐸 ∈ 𝑢} para um dado 𝐸 ∈ 𝔖(𝐺). Na bijeção,
básico será mandado em básico. A imagem de um básico 𝑂(𝑋,𝐶) será exatamente 𝑂(𝐸𝐶);
reciprocamente, a imagem de um básico 𝑂(𝐸) será 𝑂(𝑋,𝐶𝐸) onde 𝑋 = 𝑉 (𝐸) ∩ 𝑉 (𝐸𝑐) e
𝐶𝐸 := {𝐶 ∈ 𝐶𝑋 | 𝐶 ⊂ 𝑉 (𝐸)}. �

Em [2], a realização geométrica estendida definida lá é inteiramente análoga a nossa, tendo
sido inspirada nela, e não é difícil de se ver que ambas são homeomorfas.

O espaço T (𝐺) é um subespaço fechado de um compacto Hausdorff totalmente desco-
nexo, e portanto é também compacto Hausdorff totalmente desconexo - isto é, um espaço de
Stone. Obtemos a sua álgebra de Boole através da mesma ideia que usamos para a álgebra
de cortes, quocientando 𝔖(𝐺) por um ideal, agora o ideal de todos os conjuntos finitos de
arestas. Esta mesma álgebra pode ser obtida de outra maneira, através do resultado anterior.
Aplicamos o funtor de dualização ao limite inverso que caracteriza T (𝐺), e assim obtemos
um limite direto de álgebras de Boole.

Proposição 7 (Álgebra de Boole dos ℵ0-emaranhados). A álgebra de Boole dual ao espaço
T (𝐺) é 𝔖(𝐺)

Fin(𝐸 (𝐺)) onde Fin(𝐸 (𝐺)) := {𝐸 ⊂ 𝐸 (𝐺) | 𝐸 é finito }.

Para cada conjunto finito de vértices 𝑋 ⊂ 𝑉 (𝐺), seja 𝑆𝑋 o conjunto de componentes
conexas de𝐺−𝑋 e P(𝑆𝑋) seu conjunto de partes, munido da sua estrutura usual como álgebra
de Boole. Dado dois conjuntos finitos de vértices 𝑋 ⊂ 𝑋′, defina 𝑓𝑋,𝑋′ : P(𝑆𝑋) → P(𝑆𝑋′)
como sendo 𝑓(𝐴) = {𝐶′ ∈ 𝑆𝑋′ | existe 𝐶 ∈ 𝐴 tal que 𝐶 ⊂ 𝐶′}. Então, 𝔖(𝐺)

Fin(𝐸 (𝐺)) é o limite
direto do diagrama dado pelos mapas 𝑓𝑋,𝑋′ .

Demonstração: A primeira parte é um resultado usual de álgebras de Boole: para retirar
ultrafiltros não principais do espaço de Stone basta quocientar sua álgebra pelo ideal gerado
por todos os átomos. (o dual da derivada de Cantor-Bendixson). Para a segunda parte, basta
aplicar o funtor de dualização entre álgebras de Boole e espaços de Stone. no diagrama de
limite inverso da proposição anterior - lembrando que o funtor é contravariante, isto é, ele
reverte setas, logo limite inverso vira limite direto. �
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