As algebras de cortes e de separagGes, e seus ultrafiltros
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Quando retiramos vértices de um grafo de forma a deixa-lo desconexo, chamamos isso de
uma separacdo. Quando retiramos arestas de um grafo de forma a deixa-lo desconexo, chama-
mos isso de um corte. Vamos mostrar aqui que cortes e separag¢des tem uma algebra natural,
que sera uma 4lgebra de Boole. De posse de uma algebra de Boole, deverfamos entender quem
é seu espaco de ultrafiltros. Estes espacos que aparecem acabam sendo uma generalizagdo na-
tural dos conceitos de espagos de extremidades e dire¢Ges, contendo como caso especial ambos
estes objetos, nas suas versdes em vértices ou arestas. Sendo espagos de ultrafiltros, eles serdo
compactos, e assim veremos que eles formam uma compactificagao do espago de extremida-
des (via vértices ou via arestas), e também do préprio grafo em sua realizagdo geométrica.
Na segdo final, mostramos como o espago de emaranhados (nossa tradugdo pros tangles, em
inglés), descritos no trabalho do Diestel [2] como também uma compactificagdo do grafo, é
0 mesmo que a nossa compactificagdo. Assim, todos os espagos aqui definidos ja eram co-
nhecidos - nossa contribuicéo se d4 em trazer uma nova descrigdo deles, através da algebra
de separagdes, e unificando esta construgdo com seu analogo natural via arestas, a algebra de
cortes. (um aviso: todos os nossos grafos aqui sdo assumidos conexos, provavelmente)

1 Extremidades e diregdes, via vértices e arestas

Revisamos aqui rapidamente os espagos relevantes para este trabalho. Comegamos com a
defini¢do combinatéria usual.

Definigdo (Raios, caudas, raios equivalentes e extremidades). Um caminho em um grafo é
uma sequéncia de vértices que sdo dois a dois adjacentes, de forma que todas os vértices e todas
as arestas desta sequéncia sdo distintas. Um raio é um caminho cuja sequéncia de vértices é
infinita. Uma cauda de um raio 7 é um raio obtido excluindo os primeiros n vértices de 7,
para algum n finito.

Consideramos dois raios equivalentes se existem infinitos caminhos vértice-disjuntos que
ligam vértices de um raio a vértices de outro. A classe de equivaléncia de um raio induzida
por essa relagao é chamada de uma extremidade, e o conjunto de extremidades é denotado

Q(G).

Estas sdo as extremidades via vértices, e ja ja definiremos o analogo para arestas, que serdo
as arestas-extremidades. Se a palavra for usada sem especificar qual dos dois é, geralmente ela
deve se referir a definigdo via vértice, que é a mais comum.



O conjunto de extremidades admite uma topologia natural, se tornando o espago de ex-
tremidades.

Definigéo (Espago de extremidades). Seja F um conjunto finito de vértices de um grafo G, e
€ uma extremidade de G. Ao retirarmos de G os elementos de F, e todas as arestas adjacentes
a estes elementos, obtemos um grafo possivelmente desconexo, denotado G \ F. € deve conter
entdo uma cauda em alguma componente conexa de G, que chamamos de C(F,€). Defina
Q(F,¢) = {n € Q(G) | C(F,n) = C(F,¢)}. Tomamos estes conjuntos, para todo F fi-
nito e € extremidade, como base para uma topologia em Q(G), chamado agora de espago de
extremidades.

Temos uma primeira definigdo alternativa, que sera equivalente a esta.

Definigéo (Direcoes). Dado um grafo G, uma direcdo p é uma fungio que dado um conjunto
finito de vértices F, retorna uma componente conexa p(F) do grafo G \ F. Pedimos que esta
funcdo seja consistente com a inclusdo: se F C F’, entdo p(F’) € p(F). O conjunto de
direcdes de G é denotado D(G)

Topologizamos analogamente o conjunto de diregdes.

Definigéo (Espago de DiregGes). Seja F um conjunto finito de vértices de um grafo G e p uma
diregdo. Definimos D(F,p) = {0’ € D(G) | p'(F) = p(F)}, e tomamos estes conjuntos
como base para uma topologia em 9 (G), chamado agora de espaco de diregGes

Estes na verdade sdo o mesmo espaco, para quaisquer grafos.

Proposigdo 1 (Espago de extremidades é homeomorfo ao espago de diregdes). Seja G um grafo
e € uma extremidade de G. Defina p. como a fung¢do onde, dado um conjunto finito de vértices
F, pc(F) é a componente conexa de G \ F que alguma cauda de € pertence. Entdo p. é uma
diregdo e 0 mapa € — p. é um homeomorfismo entre Q(G) e D(G)

Demonstragio: Em [3], no Teorema 2.2, temos a demonstracdo da bijegdo, e ndo ¢ dificil
ver que esta bijegdo e sua inversa levam os abertos basicos de um espago nos abertos basicos
do outro. o

Na definigdo de equivaléncia de raios, existe uma énfase nos vértices: dois raios néo sao
equivalentes apenas quando existe um conjunto finito de vértices que, ao serem retirados,



as caudas dos raios ficardo em componentes conexas diferentes. Poderiamos ter, alternati-
vamente, definido equivaléncia de raios como sendo raios que ndo podem ser separados por
finitas arestas. Isto nos leva a defini¢do de extremidades por arestas.

Definigdo (Espago de extremidades por arestas). Dois raios sdo ditos aresta-equivalentes se
existem infinitos caminhos aresta-disjuntos (mas ndo necessariamente vértices disjuntos) que
ligam vértices de um raio a vértices de outro. A classe de equivaléncia de um raio induzida por
essa relagdo é chamada de uma aresta-extremidade, e o conjunto de extremidades é denotado
Qg (G). Dada uma aresta-extremidade € e um conjunto finito Fr de arestas, se as retirarmos
do grafo deve existir apenas uma componente conexa C (Fg, €) que alguma cauda de € estara
contida. Colocamos uma topologia em Qp(G) como sendo a gerada pela base Qp(Fg,¢) =
{n € Qe(G) | C(Fg,€) = C(Fg,n)}.

Da mesma forma, fazemos o analogo para arestas do espago de diregdes.

Definigéo (Espago de Diregdes por Arestas). Dado um grafo G, uma aresta-direcio p é uma
fungdo que dado um conjunto finito de arestas Ff, retorna uma componente conexa infinita
P(F) do grafo G \ Fg. Pedimos que esta fungio seja consistente com a inclusdo: se F C F’,
entdo p(F’) C p(F). O conjunto de aresta-diregdes de G é denotado Dg(G). Seja Fg um
conjunto finito de arestas de um grafo G e p uma aresta-dire¢do. Definimos D (Fg,p) =
{0’ € De(G) | p'(Fr) = p(Fg)}, e tomamos estes conjuntos como base para uma topologia
em Dg(G), chamado agora de espaco de diregées por arestas.

Note que agora pedimos que nossas arestas-diregdes escolhem apenas componentes cone-
xas infinitas de G \ Fg. Néo precisavamos pedir isto no caso de diregGes por vértices, pois a
prépria definigdo ja tem como consequéncia que apenas componentes infinitas sao escolhidas.
Se permitissemos a escolha de componentes finitas, o espago de diregGes se tornaria um pouco
maior... que serd o espago de ultrafiltros que ira aparecer em breve. Antes de introduzi-lo,
vamos clarificar a relagdo das extremidades por arestas com as diregSes por arestas. Diferen-
temente no caso dos vértices, agora nao temos o mesmo espago:

Proposigdo 2 (Inclusdo das aresta-extremidades nas aresta-diregGes). Existe um embedding
Qp(G) = Dgp(G). Toda aresta-diregdo que ndo estd na imagem deste embedding é defi-
nida do tipo p, para um vértice v de grau infinito, onde p, é a diregdo que escolhe sempre a
componente conexa que U pertence.

Demonstragdo: O morfismo Qg(G) — Dg(G) é o analogo para arestas do isomorfismo da
Proposigdo 1: é o que leva um raio € a diregdo p que dado um conjunto finito de arestas F,
temos que p(F) é a componente conexa de G \ F que uma cauda do € pertence. E rotineiro
verificar que isto é injetivo, continuo e aberto sobre a imagem, como pode ser encontrado



com um pouco mais de detalhe na Definigio 2.1.2 de [4]. La também pode ser encontrado a
demonstragdo que as tinicas diregGes via arestas faltando na imagem sdo as do tipo p,. O

2 Algebra de cortes

Definigdo (Algebra de cortes). Em um grafo G, um par {A, B} de conjuntos de vértices de
G disjuntos é dito um cortese A U B = V(G). O corte é finito se existem finitas arestas que
ligam vértices de A com vértices de B.

O conjunto €(G) := {A c V(G) | {A,V(G) \ A} é corte finito} é naturalmente uma
algebra de Boole sob as operagbes de unido, intersegdo e complementar. Esta é dita a dlgebra
de cortes finitos de G.

Veja que um elemento da algebra de cortes define o mesmo corte que seu complementar. In-
tuitivamente, um elemento da algebra de cortes é melhor visto como um corte ordenado, e seu
complementar se refere ao mesmo corte orientado ao contrario.

Se temos uma algebra de Boole, deveriamos olhar para seu espago de Stone associado, o
espaco de ultrafiltros. Para a 4lgebra de cortes finitos, vamos usar a notagao 7z (G) para este
espago - este nome esquisito vai ser justificado mais tarde.

Definigio (Ultrafiltros de cortes finitos). O espago de Stone associado & algebra de cortes
finitos de um grafo G é denotado como 75 (G). A sua topologia tem como base os conjuntos
O(A) :={u € 7(G) | A € u} paracada A € €(G). Dado um vértice v de G, o ultrafiltro
definido por u, := {A € €(G) | v € A} é dito o ultrafiltro do vértice v, e isto define
um mapa injetivo V(G) — 75(G), que consideramos como uma inclusdo. O conjunto de
ultrafiltros que ndo sdo de vértices é denotado como ¢ (G).

Um detalhe importante: o ultrafiltro definido por u, pode ndo ser principal! Lembrando,
ultrafiltros principais sdo ultrafiltros que possuem menor elemento. Se v for de grau finito,
entdo {v} € €(G) e assim é menor elemento de u,. Mas se v for de grau infinito, entdo isso
nao precisa mais ocorrer. Por exemplo:

Exemplo (Ultrafiltro de vértice ndo principal). A estrela infinita enumerével



tem como corte finito qualquer escolha de finitos ou cofinitos vértices-folha, isto é, os de
grau 1 ligados ao seu centro. Assim, € (E) = Finco(w) = {A C w | A é finito ou A° é finito}.
Os tnicos ultrafiltros desta algebra sdo os principais que selecionam cada um dos vértices de
grau finito, ou, o ultrafiltro que seleciona todos os conjuntos infinitos, que é exatamente o
ultrafiltro do vértice central - e este é ndo principal.

Ultrafiltros sobre cortes finitos vao ser objetos que ja conheciamos antes.

Teorema 1 (Ultrafiltros de cortes sdo aresta-diregdes). Dado um grafo G conexo, temos uma
sequéncia de embeddings

T5(G) <5 Qp(G) © DE(G) <5 T5(G)

Mais detalhadamente, a imagem do primeiro morfismo serd {¢ € Qg(G) |
nio existe vértice infinitamente conectado a €} (estes sio os raios que chamamos de raios
nio dominados) e a imagem do terceiro morfismo {u € ﬁ(G) | u #
Uy para todo vértice v de grau finito}.

Demonstragdo: O morfismo do meio é o descrito na Proposigdo 2. A partir de agora iden-
tificamos Qf(G) com sua imagem em Dg(G).

Vamos construir uma diregdo p, a partir de um ultrafiltro u € 75(G), e mostrar que
na verdade p, = p. para algum raio € € Qg(G), construindo assim uma fungdo 7(G) —
Qg (G). Dado um conjunto finito de arestas F, o grafo G \ F ¢ dividido em um ntimero finito
de componentes conexas {S,...,Sn} (como o grafo é conexo, infinitas componentes conexas
de G \ F implicaria em F ser infinito). Como F é finito, o corte (S;, [JS;) é um corte finito,

j#i

e logo S; € €(G) para todo i. Como u ¢é ultrafiltro, um e apenas ur]n dos S; deve pertencer
a u. Defina p, (F) como sendo este S;. Para mostrarmos que isto define uma diregéo, seja F’
um conjunto finito de arestas com F' C F’. Ao removermos mais arestas, cada S; se divide em
componentes conexas Si, cees S};ﬂi. Todas estas formam o conjunto de componentes conexas
de G\ F. Se S; € u, ndo podemos ter Slé € u paraum j # i, pois Si NS; = @. Logo,
temos um dos S, € u e assim p,(F’) = S, C S; = py(F). Resta mostrar que nio estamos
escolhendo nenhuma componente conexa finita. De fato, suponha que p, (F) fosse finito,
digamos o, (F) = {v1,...,Um}. Veja que todos os vértices estdo conectados finitamente ao
resto do grafo e logo sdo todos de grau finito. Assim, temos {v;} € €(G) para todo i e
portanto um e apenas um {v;} € u e logo u = uy,, o que contradiz u ndo vir de um vértice.

Pelo Corolario 2.2.2 em [4], as diregdes p € Dg(G) ou sdo da forma p. para algum raio
€ ou sdo da forma p,, para algum vértice v, isto é, a direcdo que sempre escolhe a componente
conexa que o vértice U pertence. O fato de u ndo ser ultrafiltro de vértice garante que o, # 0y
para todo vértice v (de fato, se supormos que fosse, terfamos que o ultrafiltro u, est4 contido
em U e ai por maximalidade terfamos u = Uy). Assim, Pu = Pe como gostariamos e temos
nossa fungéo p,. : 75(G) — Qg(G). Continhas rotineiras seguem para mostrarmos que esta
fungdo é injetora, continua e aberta sobre a imagem:



=> injetividade: se u # v, existe A € u e V(G) \ A € v. Como A induz corte finito,
temos um conjunto finito de arestas F que liga A a V(G) \ A. Eai, py,(F) C Ae
ouv(F) c V(G) \ A, ouseja, py # Po-

= continuidade: usando a notagio das paginas 2 e 3, veja que inversa de basico é bésico
P (Qp(F.€)) = {u € T5(G) | C(F.¢) € u} = Xc(r)

=> aberta sobre a imagem: denotamos I a imagem de p,, A € €(G) e F o conjunto fi-
nito de arestas que liga A ao seu complementar. Assim, temos po(X4 N TE(G)) =
U Qp(F,e)N1.
€ raio com cauda em A
Vamos para o tltimo morfismo. Dada uma diregdo p, construimos o ultrafiltro u, que
seleciona, dado um corte, a particdo dita pela dire¢do. Formalmente, u, := {A € €(G) |
p(F4) C A}, onde F, é o conjunto finito de arestas ligando os vértices de A ao seu com-
plementar. Vamos mostrar que isto realmente define um ultrafiltro. Como p(F4) é uma
componente conexa de G \ Fy, ela estd contida em A ou V(G) \ A. Assim, para qualquer
A €C(G),ouAd €uyouV(G)\A € uy. Também temos V(G) € u,. Se A, B € u,, veja que
P(FaUFg) C p(F4q) C Aep(FaUFg) C p(Fg) C B,ouseja p(FaUFg) C AN B. Como
Fanp C F4 U Fp, também temos p(F4 U Fg) C p(Fang), logo ndo podemos ter p(Fang)
contido no complementar de A N B e portanto p(Fang) € AN B. De forma similar podemos
argumentar que se A € U, e A C A, entdo p(F4 U F;) c Aep(FaUF;) C p(Fj) logo
p(F ;) ndo pode estar no complementar de A e portanto nao pode estar no complementar de
A e assim p(F i) C A. Com tudo isso, concluimos que U, é ultrafiltro.
Denote o0 mapa p — u, como U, : D(G) — ‘7A:E(G) Mais continhas vdo mostrar que
isto é um embedding;:

-> injetividade: se p # p’ sdo diregBes distintas, deve existir F um conjunto finito de
arestas tal que po(F) # p’(F). Sabemos que as componente conexas o(F) e p’(F)
induzem cortes finitos e portanto devem estar na algebra de Boole de G. Assim, temos
P(F) € uyep’(F) € uy. Como estes conjuntos sao disjuntos, concluimos que 1, # Uy

=> continuidade: se A € €(G), e F é o conjunto finito de arestas que ligam vértices de A

a vértices fora de A, entdo u; ' (X,) = U De(F,p)
o diregdo tal que p(F)CA

=> aberto sobre a imagem: sejam J a imagem de u,, F um conjunto finito de arestas e p
uma diregao, entdo U, (Dg(F,p)) =X, NJ

Para finalizar, vamos calcular as imagens dos morfismos. Comegamos com o tltimo:
U (De(G)) ={u € 7F7E(G) | u # u, para todo vértice v de grau finito}. Se p é uma diregao,
entdo U, ndo pode ser igual 4 um u, para um vértice v de grau finito: se fosse, entdo ao tomar-
mos I, o conjunto de arestas adjacentes ao v, teriamos p(F,) C {v} por {v} € u, eassim a
diregao estaria escolhendo uma componente finita, o que é proibido pela defini¢do de diregao.
Reciprocamente, dado um ultrafiltro u que ndo é de um vértice de grau finito, podemos fazer
a mesma construgao que define a fungdo p, para obter a dire¢do p,. A demonstragio de boa
definigdo desta construgio no segundo paragrafo é idéntica, com o tinico detalhe que na frase
final apenas precisamos que u ndo é de um vértice de grau finito para garantir que a diregdo
nao escolhe componentes finitas. E, dai, u,, = u.



Agora, provamos p, (7£(G)) = {€ € Qg(G) | ndo existe vértice infinitamente conectado a €}.

Dado um ultrafiltro u € 75(G), suponha que p, fosse uma diregdo dada por um raio € do-
minado por v (isto ¢, dizemos que um vértice v domina um raio € quando v ¢ infinitamente
conectado a €). Nesse caso, dado qualquer A € €(G) com v € A, veja que p,(F4) deve ser
a componente conexa com alguma cauda de € e como v é infinitamente conectado a €, temos
U € pu(Fa). Logo, como p,(F4) ou esti totalmente contido em A ou no complementar e
v € A, concluimos que py, (F4) € A. Como p,(F4) € u, devemos ter A € u. Veja que isso
mostra que U, C U e logo u, = u, contradizendo u néo ser de vértice. Reciprocamente, dada
uma dire¢do o, vinda de um raio € ndao dominado, podemos usar o mapa u, para construir o
ultrafiltro u,, . Ja sabemos pelo calculo da imagem anterior que u,_ nao é de nenhum vértice
de grau finito, e se ele fosse de algum vértice v de grau infinito, teriamos que v dominaria €.
Assim, up, € 75(G) e finalmente, é rotineiro verificar que py, = pe.

O

Veja que quando calculamos a imagem do terceiro morfismo, generalizamos o mapa p,
para quase todo o 75(G), tirando apenas os principais de vértice de grau finito, proibidos
pelo pedido na definigdo de dire¢des que as componentes conexas escolhidas sejam finitas. Se
tirassemos essa restrigao da definigdo, teriamos o mapa p, definido em todo o 75(G), e assim
ele e o U, seriam um par de homeomorfismos inversos um do outro. Assim, o espago 7A:E(G)
pode ser visto como um espago de dire¢des onde agora as dire¢des podem escolher vértices de
grau finito (como uma direcdo que se ‘afunila’ em um tnico vértice).

Ao identificarmos 7g (G) com sua imagem em Qf(G), podemos considerar os ultrafiltros
ndo principais de cortes finitos como sendo raios ndao dominados e assim podemos visualizar
QEg(G) como uma unido disjunta dos raios dominados com os ultrafiltros ndo principais de
cortes finitos. Ao passarmos de Qg(G) para Dg(G), os tinicos objetos a mais que ganhamos
sdo vértices de grau infinito (isto é, diregdes associadas a estes vértices), como argumentado
no Corolério 2.2.2 do [4]. Estes também podem ser vistos como ultrafiltros, mas principais,
sobre o vértice de grau infinito. E ao passarmos de D(G) a %(G), ganhamos os vértices de
grau finito (isto ¢, os ultrafiltros principais de vértices de grau finito).

No artigo [4], é argumentado que D(G) é um limite de espagos finitos discretos, o que
significa que ele é um espaco de Stone. Como ele esta contido em 7% (G), isto sugere que
podemos encontrar sua algebra de Boole correspondente a partir do €(G). De fato:

Proposigio 3 (Algebra de Boole do espago de diregdes via arestas). Seja I := {U c V(G) |

U é finito e s6 contém vértices de grau finito }. Entdo, I é um ideal de €(G). Denote @

como sendo a algebra de Boole quociente de € (G) por I, e (EE;G) seu espago de Stone. Teremos

que o mapa quociente q : €(G) — @ induz uma fungdo i : w — 777'5(G) continua,

injetora, aberta sobre sua imagem, que é exatamente D (G) (onde aqui identificamos este

. — o ; . TE(G
espago com sua imagem homeomorfa em 7% (G) como na proposigdo anterior). Assim, = } ) ~

Dg(G)

Demonstragdo: I é fechado por unido, e a intersecdo de um A € I com qualquer outro B € I
75(G)
T

ainda est4 em I, e logo I é um ideal. O mapai : — 9%(G) induzido pelo quociente



qg: CG) — G(G) pode ser explicitado como sendo u — {U € C(G) | q(U) € u}. E
um resultado elementar da teoria de dualidade de Stone que este mapa é continuo, injetor
e aberto sobre a imagem, tudo isto seguindo do fato que g é um homomorfismo de 4lgebra
de Boole sobrejetor. Vamos argumentar que a imagem de i ¢ Dg(G). Estamos identificado
este espago com sua imagem em 75 (G), que pela proposicéo anterior é igual a {u € 75 (G) |
U # U, para todo vértice v de grau finito}. Dado um u € ‘7E(G) sei(u) ¢ D (G), terfamos
i(u) = uy, para algum vértice v de grau finito. Mas dai {v} € i(u), ouseja, 0 = q({v}) € u,
contradizendo u ser um ultrafiltro. Reciprocamente, dado um u € Dg(G), defina v := {U €
@ | ¢7'(U) ¢ u}. Como u ndo pode conter nenhum conjunto finito de vértices de grau
finito, podemos fazer uma continha que garante que se U,V € €(G) e q(U) = q(V) entdo
Ueceu < V € u. Istoimplicaque v = {U € %G) | 3U € C(G) talque q(U) =
U eU € u}. Assim, v é ultrafiltro:

=> 0 ¢ v, pois nenhum conjunto finito de vértices de grau finito pertence a u
2> levypoisV(G) cueq(V(G)) =1

> U,Ve v implica que existem U,V € €(G) com q(U) = U,q(V)=VeU,V ecu,e
daiUNVeueqUnNV)=qU)Nnqg(V)=UNV,ouseja, UNV €v

> UeuVe @,f] < Vimplicaque(j =q(U),V=q(V),UeueU=UnV.
Dai q(U) =q(UNV)eportantoUNV € u. ComoUNV C V, temos V € u e logo
Veu

2> qU)=Uce S(G) .ComoU €uouV(G)\U eueq(V(G)\U) =-U, concluimos
queouUevou -Uev

E como claramente u C i(v), e ambos sdo ultrafiltros, concluimos u = i(v). O

Pelo que conhecemos, a 4lgebra de cortes como descrita aqui s6 foi considerada no con-
texto de teoria geométrica de grupos, como no capitulo 2 de [1]. L4, apenas o caso localmente
finito era considerado, onde todos os espagos de extremidades e dire¢Ges, via vértices ou ares-
tas, sd0 os mesmos. Uma forma equivalente de descrever a algebra de cortes, no caso de arvores

localmente finitas, é conhecida como tree algebra na teoria de 4lgebras de Boole, como descrita
no Handbook of Boolean Algebras. [5]

3 Algebra de separacbes

Definigdo (Algebra de separagdes). Uma separagdo {A, B} de um grafo G sio dois conjuntos
A, B de vértices tais que todo vértice de G estd em A ou em B e toda aresta de G esta no
subgrafo induzido por A ou no subgrafo induzido por B. Em simbolos: G[A] U G[B] = G.
A separagio é finita quando A N B é finito.

Juntamos as separagdes em um conjunto usando conjuntos de arestas. O conjunto
©(G) :={E C E(G) | V(E) NV (E) é finito} define uma 4lgebra de Boole, que chamamos
de 4lgebra de separagées finitas do grafo.



Um elemento E € &(G) define uma separagdo tomando os conjuntos {V (E), V(E€)}, e uma
separagio {A, B} é traduzida para um conjunto de arestas usando os conjuntos E4 := E(A)U
E(A,ANB)eEp := E(B) UE(B,A N B). Aqui, E(X) sempre se refere ao conjunto de
arestas cujas ambas pontas estdao em um dado conjunto X e E(X,Y) se refere ao conjunto de
arestas com uma ponta em X e outra em Y - usaremos esta notagao algumas vezes daqui pra
frente. Veja que nesta associagdo E e o complementar E€ sdo levados na mesma separagio.
Intuitivamente, assim como no caso da algebra de cortes, um elemento da 4lgebra de separagées
é melhor visto como uma separagao ordenada, e seu complementar se refere a mesma separagao
ordenada ao contrario.

Definigio (Ultrafiltros de separag@es finitas). O espago de Stone associado a algebra de cortes
finitos de um grafo G é denotado como 7 (G). A sua topologia tem como base os conjuntos
O(A) :={u € 7(G) | A € u} paracada A € &(G). Dado uma aresta e de G, o ultrafiltro
definido por u, := {A € ©(G) | e € A} é dito o ultrafiltro principal de e, e isto define
um mapa injetivo E(G) — T(G), que consideramos como uma inclusdo. O conjunto de
ultrafiltros ndo principais é denotado como 7 (G).

Por simplicidade, usamos a mesma notagao para os abertos basicos da algebra de cortes -
espero que pelo contexto fique claro qual est4 sendo referindo. Outro detalhe a se notar aqui
é que, como todos os conjuntos finitos de arestas estdo contidos em ©(G), um ultrafiltro é
principal se e somente se ele é 1, para alguma aresta. Logo, aqui podemos usar a nomenclatura
usual de principalidade para nos referir a estes ultrafiltros, diferentemente do caso anterior
de algebra de cortes.

Os conjuntos da forma {e} estdo todos na algebra de separagdes finitas. Entdo, o aberto
bésico de {e} em 7 (G) contém apenas o ultrafiltro principal referente ao elemento e. Isto
mostra que o subconjunto de todos os ultrafiltros principais é uma unido de abertos, e portanto
seu complementar 7 (G) é um fechado de um espaco de Stone - e portanto também é espago
de Stone. Em particular, é compacto.

Quando o grafo é localmente finito, seu espago de extremidades é compacto. Também,
ao ‘adicionar” as extremidades ao grafo original, obtemos um espago compacto. Mais preci-
samente, definimos a realizagdo geométrica do grafo como sendo o espago topoldgico que é
a unido do grafo com a topologia de 1-complexo com o espago de extremidade. Esta realiza-
¢do é sempre compacta no caso localmente finito. Ao adicionarmos a possibilidade de termos
vértices de grau infinito, perdemos a compacidade - por exemplo, a estrela infinita de raios
tem como espago de extremidades o conjunto discreto com enumeraveis elementos, que néo
é compacto. Também ndo temos compacidade do préprio grafo, mesmo sem raios - a estrela
infinita com um tnico vértice de grau infinito tem sua realizagdo geométrica ndo compacta.
O nosso espago 7 (G) é, de certa forma, uma extensdo do espago de extremidades que ira
compactificar ndo s6 as extremidades, mas também a realizagdo geométrica do grafo. Veja,
um rajo € sempre tem uma cauda contida em apenas um dentre o A e o B de uma separacio
de ordem finita {A, B} - ndo sera dificil argumentar que isso define um ultrafiltro, e assim
o espago de extremidades vai estar contido no 7 (G), com a mesma topologia. O resto dos
elementos de 7 (G) sdo o que falta para podermos compactifica o espago de extremidades e a
realizagdo geométrica do grafo.



Teorema 2 (Extremidades sdo ultrafiltros de cortes). Existe um embedding Q(G) — 7 (G).
A imagem deste embedding é fechada se e somente se Q(G) é compacto.

Demonstragio: Como comentamos mais cedo, um raio € sempre tem uma cauda contida
em apenas um dentre o A e 0 B de uma separacio de ordem finita {A, B}, e assim pode-
mos usar esta escolha para definir nosso ultrafiltro. Defina 7. como sendo o {E € &(G) |
existe uma cauda de € contida em E'}. Para qualquer E € &(G), ao retirarmos os finitos vér-
tices V (E) NV (E€), restam componentes conexas inteiramente contidas em E ou inteiramente
contidas em E°, e nosso raio morara em apenas uma delas - assim ou E ou E€ estdo em 7. O
vazio nio est4 14 (como pode haver uma cauda no vazio?), e se temos dois E1, E2 com caudas
de €, tome a cauda mais a frente dentre as duas e ela estara na interse¢do. Assim, temos um
ultrafiltro, que sera ndo principal pois caudas sdo infinitas, isto é, nenhuma mora em uma
componente conexa finita e assim nenhum conjunto finito é escolhido.
Chame este mapa € + 7, de ¢. Para qualquer E em ©(G)), é rotineiro verificar que

o'~ (0(E)) = g Q(V(E) NV (E%),C)

C componente conexas em E

onde as componentes conexas C sdo as do grafo G \ (V(E) NV (E©)).
Similarmente, dado um conjunto finito X de vértices e uma componente conexa C de G\ X
p(0(X,C)) = O(Ec) N 9(Q(G))

onde E¢ é o conjunto de todas as arestas com pelo menos uma ponta em C.

Isto mostra que temos um mapa continuo e aberto sobre sua imagem, ou seja, um embed-
ding. A outra afirmag¢do é uma simples consequéncia topoldgica vinda do fato de 7 (G) ser
um compacto Hausdorff. Se a imagem do embedding é fechada, temos Q(G) homeomorfo
a um fechado de um compacto, que é compacto. Reciprocamente, se Q(G) é compacto, sua
imagem é um compacto de um compacto Hausdorff, que deve entdo ser fechado.

O

A situagdo s é realmente diferente no caso ndo localmente finito.

Proposigdo 4 (Np-emaranhado de localmente finito vem de um raio). O embedding Q(G) —
7 (G) é sobrejetor quando G é localmente finito.

Demonstragdo: Aquele argumento errado que o embedding é sobrejetivo quando Q(G) é
compacto funciona aqui. O

Vamos ver alguns exemplos destes espagos e algebras.
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Exemplo (Estrela infinita, raio, estrela com infinitas finitas caudas, pente infinito, arvore binaria). =

J& vimos que a estrela infinita tem a algebra de cortes como sendo a algebra dos finitos-
cofinitos sobre @, cujo espago de Stone é a compactificacdo de 1 ponto de w. Indo
para algebra de separagbes, vamos obter a outra famosa compactificagdo dos na-
turais. De fato, veja que qualquer conjunto de arestas da estrela s6 intercepta seu
complementar no vértice do meio - assim, é finito. Dai, chamando de T a estrela,
&(T) =P(E(T)) = 2%. O espago de Stone desta algebra é SN, a compactificagdo de
Stone-Cech. Os ultrafiltros principais sdo os conjuntos de uma tinica aresta, e assim
concluimos que 7 (T) = SN — N.

-> No grafo R que é apenas um raio, qualquer conjunto de arestas infinito em &(R) deve
conter uma cauda de um raio, se ndo existiriam infinitos vértices de separagdo. Assim,
ele é cofinito, e concluimos que &(R) = Finco(w), e seu tinico ultrafiltro ndo principal
é o referente ao raio, como definido no embedding das extremidades em 7 (R).

Para os préximos trés exemplos, é mais conveniente descrever a algebra =2 %) _ que éa
P plos, g Fin(£(6))’ 9

algebra dual ao espago 7 (G), como argumentaremos mais tarde na Proposigao 7. E a situagdo
anéloga que j& vimos no caso de algebra de cortes: para retirar os ultrafiltros principais basta
quocientar pelos atomos.

=> Nomeie cada folha da estrela infinita com um niimero natural n e forme o grafo R’
colando na folha n um caminho de n — 1 vértices. Tome um E € ©(R’). O conjunto
de arestas B’ C E vizinhas do vértice central ir4 definir todo o E: de fato, apenas
finitas das caudas adicionadas podem ter a propriedade de ter algumas arestas em E e
algumas arestas fora. Todas as outras fora estas finitas devem ter seu pertencimento
em E determinado pela aresta adjacente ao vértice central. Concluimos que, a menos

de quase-igualdade, E” determina E e assim Fing(jE(?lz')) = thlc(uw). Logo 7 (R’) = SN —-N

Nos préximos dois exemplos, tragamos o caminho contrario. Como o grafo é localmente
finito, sabemos que 7 (G) é apenas o espago de extremidades. Sabendo quem ele é, determi-
namos sua algebra.

=> O pente infinito P tem o espago de extremidades como sendo uma sequéncia conver-
gente, ou seja, a compactificagdo de 1 ponto dos naturais. Sua algebra % entdo,
ser4 isomorfa a Finco(w).

-> A 4rvore regular de ordem 2 T5 (a 4rvore binaria) tem o conjunto de Cantor como
seu espago de extremidades. Assim, sua algebra % sera a algebra livre gerada

por enumeraveis geradores. (também conhecida como sendo a tinica 4lgebra de Boole
contavel sem atomos).

Vamos clarificar a afirmacdo que 7 (G) compactifica todo o grafo.
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Definigdo (Realizagdo geométrica e realizagio geométrica estendida). A realizagdo geomé-
trica de um grafo G é o espago topoldgico |G| dado pelos vértices e arestas do grafo com a
topologia de 1-complexo usual - a que vem induzida da colagem de varios intervalos [0, 1]
referentes as arestas.

Estendemos esta realizagdo pro infinito com o espago |G|* := |G| U7 (G) onde os abertos
bésicos serdo os abertos basicos de |G| e os abertos bésicos ao redor dos ultrafiltros de cortes,
mas agora estendidos para conter arestas e vértices do grafo O(E)* = O(E) UE UV (E) \
V(E) NV (E°).

A nossa defini¢do |G|* naturalmente contém como subespaco a defini¢ao mais usual do
espago |G| U Q(G), que é compacto no caso localmente finito. No caso geral, este subespago
é estritamente menor que o |G|*.

Proposigdo 5 (Realizagdo geométrica estendida é compacta). |G|* é compacto.

Demonstragdo: Dada uma cobertura aberta de |G|*, podemos refina-la para uma cobertura
por abertos basicos. Em particular, ela cobre 77(G) - e se esse espago é coberto por con-
juntos do tipo O(E)*, ele é claro coberto por conjuntos do tipo O(E). Mas 7 (G) é com-
pacto, e logo existem finitos destes que o cobrem, digamos 7(G) C O(E1) U ...O(Ey).
Esta inclusdo vai nos garantir que os conjuntos Ej, ..., E, cobrem todas as arestas de G a
menos, possivelmente, de finitas arestas. De fato, suponha que existam infinitas arestas nao
cobertas por estes conjuntos, ou seja, a intersecdo E{ N - - - N Ey, é infinita. Construa o filtro
{E € &(G) | E{N---NE} C E} esejau um ultrafiltro que o contém. Ele sera ndo principal
por possuir apenas conjuntos infinitos, e E{ € u para todo i, o que contradiz a cobertura
7 (G) C O(E1) U...O(Ey).

Seja G’ o subgrafo finito induzido por todas as (finitas) arestas ndo cobertas por E1, .. ., Ej,
e por todos os (finitos) vértices dos conjuntos V (E1) NV (E Dy, V(En) NV (Ey). Teremos
entdo que |G|* € O(E1)* U---UO(E,)" UG’. Mas G’ é finito e portanto compacto e assim
podemos refinar a cobertura aberta original para uma subcobertura finita que cobre o G’, e
assim encontramos uma subcobertura finita para o |G|*, como queriamos. o

4 Emaranhados

Vamos finalmente justificar porque estamos usando a letra 7 para o espago de ultrafiltros.
O conceito de tangle nasceu na teoria de grafos como uma tentativa de abstrair a nogao de
uma parte bastante emaranhada de um grafo - assim, os traduzimos em portugués para ema-
ranhados. Os emaranhados, quando estendidos para sua versdo infinita, chamados de No-
emaranhados, agora ndo apontam exatamente para uma parte muito conectada do grafo - mas
apontam para suas dire¢des no infinito, de forma a recuperar os conceitos de extremidades e
direcdes (via vértices). Em [2], foi mostrado que estes sdo descritos por um limite inverso de
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ultrafiltros. Aqui, mostramos que basta uma tinica algebra de Boole, a algebra de separagdes
finitas, para obtermos todos os 8y-emaranhados, que serdo seus ultrafiltros ndo principais.

Definigdo (Orientagdo, contradigdo e emaranhado). A ordem de uma separagio {A, B} é o
cardinal k = |A N B|. Uma orientagdo de { A, B} é uma escolha de ordem (A, B), onde agora
temos um par ordenado. Uma k-orientagdo é um conjunto que contém uma tnica orientagio
para cada separagdo {A, B} de ordem estritamente menor que k.

Diremos que n separagdes orientadas (A1, By), ..., (An, By) formam uma contradigio se
G[A1]U---UG[A,] =G. Diremos que n é a ordem dessa contradigdo.

Um k-emaranhado T é uma k-orientagdo sem contradi¢ées de ordem 1, 2 ou 3. Isto é, é
um conjunto com uma tnica orientagdo para cada separagdo de ordem estritamente menor
que k tal que nenhum de seus subconjuntos forma uma contradigao de ordem 1, 2 ou 3.

Teorema 3 (N-emaranhados sdo a mesma coisa que ultrafiltros ndo principais de separagoes
finitas). Em um grafo G conexo, ultrafiltros ndo principais da lgebra de separagdes finitas
©(G) estdo em bijegdo com os Np-emaranhados de G.

Demonstragdo: Vamos construir um Np-emaranhado a partir de um ultrafiltro nao prin-
cipal u. Dada uma separagdo {A, B} de ordem finita, vamos ter que E(A),E(B) € ©(G)
pelo fato de ndo existir arestas entre A \ B e B\ A e de A N B ser finito. Disso também
concluimos que E(A)¢ = E(B) \ E(A N B). Como u é ndo principal e E(A N B) é fi-
nito, temos que E(A)° € u &= E(B) € u, e portanto E(A) € u <= E(B) ¢ u.
Assim, u escolhe um e apenas um dentre estes dois conjuntos e portanto podemos definir a
No-orientagdo 7, := {(A,B) | E(B) € u}. Resta apenas verificarmos que ela ndo possui
contradi¢des. De fato, se (A1,B1), ..., (Ay, By) € T, formassem uma contradicio, terfamos
que E(A1) U...E(A,) = E(G) e portanto E(A1) N --- N E(A,)¢ = @, mas todos estes
E(A;)° estdao em u, que ndo pode conter o vazio e é fechado por intersecio.

Resta agora mostrar a volta - construir um ultrafiltro ndo principal a partir de um No-
emaranhado 7. Dado um E € ©(G), defina a separagdo {V(E), V(E€)}, que sera finita.
(note que aqui usamos que G é conexo para garantir que ndo ha vértices isolados, e assim
esse par realmente é separagdo). Assim, 7 a ordena, e com isso podemos construir u; :=
{E € &(G) | (V(E®),V(E)) € t} que iremos argumentar que forma um ultrafiltro ndo
principal. Por construgio, para qualquer E € &(G) teremos E ou E€ em u;. O vazio nio
estara 14, pois (@,V (G)) € 7. Para ver que é fechado por intersegdo, tome dois E1, Eo € u;
e primeiramente note que V(E;) N V(E3) = V(E1 N E3). De fato, qualquer vértice que
seja adjacente a uma aresta em E; e a uma aresta em Ey deve necessariamente ou estar em
V (E1 N E3) (quando uma destas arestas estiver na intersegdo E1 N E2) ou estar em V (E1) N
V(E{) e em V(E2) N V(ES), que sdo ambos finitos. Voltando, entdo, suponha que E; N
Es ¢ ug, ouseja, (V(E1 N E2), V(E] UES)) € 7. Como a orientagdo de 7 é preservada por
quase-igualdade, temos que (V (E1) NV (E2), V(E{ U ES)) € T. Mas, dai, terfamos uma 3-
contradigdo (V' (E1) NV (E2), V(E] UEY)), (V(E]),V(E1)), (V(ES),V (E2)) contida em .
Isto conclui nossa demonstragao que u; é ultrafiltro, e ele devera ser ndo principal pois ndo

13



conterd nenhum conjunto finito: se {A, B} é uma separagdo com A finito, temos (A,B) € T
sempre.

Ambas estas construgdes sdo inversas uma da outra, que pode ser visto através de uma
conta rotineira (porém carregada de notagdes) que explicita todas as defini¢des:

=> do ultrafiltro para o emaranhado de volta para o ultrafiltro

ur— 17, ={(A,B) | E(B) € u}
= ur, ={E € &(G) | (V(E°),V(E)) € tu}

E ai, usando que E(V(E)) = EUE(V(E) NV (E)), isto é, E(V (E)) e E diferem por

um conjunto finito, temos

Ecu, — (V(E°),V(E)) €ty
— E(V(E)) €eu
< Ecu

=> do emaranhado para o ultrafiltro de volta para o ultrafiltro

T u = {E € 8(G) | (V(EY),V(E)) € 1}
— 7y, ={(A,B) | E(B) € ur}

E ai, usando que V(E(B)) = B, e que V(E(B)) difere de A por um conjunto finito de
vértices, temos

(A,B)ert, < (V(EB)),V(E(B)) €T
< (A,B)ert

O

Em [2], uma topologia é colocada nos Ny-emaranhados ao descrevé-lo como um limite
inverso de espagos de ultrafiltros. Resumidamente, 14 é mostrado que todo 8y-emaranhado 7
define unicamente, para cada subconjunto finito de vértices X, um ultrafiltro v; x nas algebras
de Boole P (Cx ), onde Cx é o conjunto de componentes conexas de G\ X . Estes satisfazem uma
condi¢do de compatibilidade quando X C X’ dada pela fungdo fx x que associa um ultrafil-
tro em P (Cx’) a um ultrafiltro em $(Cx). Reciprocamente, qualquer escolha de ultrafiltros
(vx) em P (Cx) para cada X que satisfaga a condigao de compatibilidade fx- x (V) = vx de-
fine um Ry-emaranhado. Usando a topologia de Stone em cada um dos espagos de ultrafiltros
de P (Cx), a topologia induzida no espago de Np-emaranhados sera a topologia de subespago
da topologia produto de todos estes espagos de ultrafiltros.

Proposigdo 6 (Topologia por limite inverso é a topologia de Stone nos 8 -emaranhados). A to-
pologia induzida por limite inverso nos Np-emaranhados é homeomorfa a topologia de Stone

em 7 (G).
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Demonstragdo: Dado um u € 7 (G), na bijegao construida no teorema anterior, o associa-
mos ao 8g-emaranhado 7, = {(A, B) | E(B) € u}. Este, por sua vez, é associado como em [2],
aos ultrafiltros (7, ) onde 7, :={C c Cx | (U(Cx \C)UX,JCUX) € 7,}. A condigdo
se traduz em E(|J C UX) € 7, que é equivalente a dizer que Ec = E(C) UE(C,X) € 7.

Os abertos basicos na topologia do limite inverso serdo os conjuntos O(X,C) :={r | C €
Tx } onde Tx é o ultrafiltro correspondente ao conjunto finito X do Np-emaranhado 7 e C
é um conjunto de componentes conexa de G \ X. Os abertos bésicos na topologia de Stone
sdo os da forma O(E) := {u € 7(G) | E € u} para um dado E € ©&(G). Na bijecio,
basico sera mandado em basico. A imagem de um basico O (X, C) sera exatamente O(E();
reciprocamente, a imagem de um basico O(E) serda O(X,Cg) onde X = V(E) N V(E®) e
Cp:={CeCx |CcV(E)}. O

Em [2], a realizagdo geométrica estendida definida 14 é inteiramente analoga a nossa, tendo
sido inspirada nela, e ndo é dificil de se ver que ambas sdo homeomorfas.

O espago 7 (G) é um subespago fechado de um compacto Hausdorff totalmente desco-
nexo, e portanto é também compacto Hausdorff totalmente desconexo - isto é, um espago de
Stone. Obtemos a sua algebra de Boole através da mesma ideia que usamos para a algebra
de cortes, quocientando &(G) por um ideal, agora o ideal de todos os conjuntos finitos de
arestas. Esta mesma algebra pode ser obtida de outra maneira, através do resultado anterior.
Aplicamos o funtor de dualizagdo ao limite inverso que caracteriza 7 (G), e assim obtemos
um limite direto de 4lgebras de Boole.

Proposiggo 7 (Algebra de Boole dos No-emaranhados). A algebra de Boole dual ao espaco
T(G) é gropess onde Fin(E(G)) := {E € E(G) | E é finito }.

Para cada conjunto finito de vértices X C V/(G), seja Sx o conjunto de componentes
conexas de G—X e P (Sx) seu conjunto de partes, munido da sua estrutura usual como algebra
de Boole. Dado dois conjuntos finitos de vértices X C X’, defina fx x : P(Sx) — P(Sx’)
como sendo f(A) = {C’ € Sx/ | existe C € A tal que C C C’}. Entio, % é o limite
direto do diagrama dado pelos mapas fx x-.

Demonstragdo: A primeira parte é um resultado usual de algebras de Boole: para retirar
ultrafiltros ndo principais do espago de Stone basta quocientar sua algebra pelo ideal gerado
por todos os atomos. (o dual da derivada de Cantor-Bendixson). Para a segunda parte, basta
aplicar o funtor de dualizagdo entre algebras de Boole e espagos de Stone. no diagrama de
limite inverso da proposigdo anterior - lembrando que o funtor é contravariante, isto é, ele
reverte setas, logo limite inverso vira limite direto. O
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